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1. Introduction 

For machines with variable rotor imbalance and 

when balancing rotors of machines without stopping under 

operating conditions, traditional methods of reducing vi-

brations are ineffective. These machines include separators 

and centrifuges that are used in various sectors of the na-

tional economy (food, chemical, sugar, mining, etc.), med-

icine, and everyday life. The most reliable, promising, and 

often the only possible method for reducing the vibrations 

of such machines is automatic balancing with the help of 

devices with the free movement of correction masses, 

which have the form of a hollow chamber partially filled 

with working bodies (liquid), and are passive direct action 

regulators that do not require power supply and control 

system for moving correction masses [1]. 

The idea fluid balancer is thus not new; but re-

cently there has been a renewed interest, both in industry 

and in academia [2]. Experimental fluid balancer studies 

have been carried out by Kasahara [3] and Nakamura [4]. 

As to mathematical models, simple lumped mass models 

have been considered by Bae [5], Jung [6], Majewski [7], 

Chen [8], and Urbiola-Soto and Lopez-Parra [9]. The first 

and the last two of these papers include experimental stud-

ies a swell. The paper [6] includes a few numerical simula-

tion results based on computational fluid dynamics.  

Making a fluid balancer to work perfectly is a del-

icate process and, thus, a more detailed understanding of 

the fluid dynamics of the balancer is desirable. This is the 

main motivation behind the present work. 

The characteristic features of the process of auto-

matic balancing of liquid under stationary conditions of 

rotor movement with a vertical axis of rotation is that au-

tomatic fluid balancing is effective for elastically de-

formable rotors, on elastic supports ones, where there is a 

phase difference between the direction of force from the 

imbalance and the rotor deflection or the displacement of 

the rotor, as well as the fact that in the auto-balancer de-

vice chamber the liquid tends to set against an imbalance 

not only in the above resonance but also in the pre-

resonant area of rotation of the rotor and at the resonance 

itself [10]. However, there is no theoretical verification of 

fluid behavior in the auto-balancing device (ABD) cham-

ber under non-stationary conditions of rotor rotation. 

Under some simplified assumptions it is [11] 

shown that the risk of loss of stability of a system contain-

ing a cavity partially filled with a liquid always exists 

where the intrinsic frequency of any form of free fluid 

fluctuations is close to the nutation frequency of the carrier 

fluid of the body. An infinite number of forms of free fluc-

tuation of a fluid corresponds to an infinite number of are-

as of instability, however, as shown in [12], only a few 

first regions can have practical value. It is believed that the 

internal friction that damps its own fluctuations in the fluid 

reduces the region of higher order instability. 

The purpose of the paper is to analyze the behav-

ior of a fluid in an auto-balancing device chamber for ro-

tors of machines with a vertical axis of rotation in the case 

of a non-stationary movement of the shaft-fluid ABD sys-

tem, where it is necessary to take into account the fluctua-

tions of the free surface of the liquid. 

2. Experimental details 

In [14] it is shown that the free surface of a fluid 

is part of a paraboloid of rotation with an axis that coin-

cides with the main central axis of the inertia of the sys-

tem. As the velocity increases, the parabolic form gets into 

a cylindrical one. In the horizontal section of the ABD 

chamber, the free surface of the fluid is a circle. Reducing 

the radius of the free surface and correspondingly increas-

ing the thickness of the liquid layer at a constant radius of 

the chamber R does not cause a shift in the centre of the 

mass of the system, since the centre of the free surface of 

the liquid coincides with the centre of the mass of the sys-

tem. In the change of the unbalanced state of the rotary 

system, a thin layer of fluid is involved, which is close to 

the magnitude of the double displacement of the centre of 

the mass of the rotor [10, 13]. Another liquid only increas-

es the mass of the system, located concentrically around 

the axis of rotation. However, it has been experimentally 

determined that the amplitude of the system fluctuations 

increased at a critical frequency range when the ABD 

chamber was filled with more fluid than necessary for bal-

ancing. 

To investigate fluid behavior in an auto balancing 
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device in the pre-resonance and above resonance areas, an 

ABD model of optically transparent material was devel-

oped and made. The ABD is a ring with an outer diameter 

Ø400 mm, two concentric partitions Ø300 and Ø200 mm 

in diameter, forming three concentric chambers for the 

arrangement of working bodies in them. The installation 

for studying the behavior of working bodies in the ABD is 

a hard console vertical rotor 1 elastically suspended to the 

body 5 (Fig. 1). To ensure sufficient rotor rigidity and the 

ABD 7 fixed on it, the first is shaped like a hollow cylinder 

of sheet stainless steel with a bottom at one end, which is 

rigidly secured to the shaft. The axis of the rotor through 

the rolling bearings 3 is connected to the rigid platform 2 

connected to the body of the unit 5 by four elastically 

damping pendants 4 (the actual frequency of oscillations of 

the suspension system is ~ 9 - 10 Hz).  

 
 

Fig. 1 Installation for studying the behavior of working 

bodies in the ABD: 1 - drum (rotor); 2 - platform;  

3 - bearing housing; 4 - elastic elements; 5 - body;  

6 - electric motor; 7 - ABD; 8 - imbalance; 9 - in-

ductive sensor; 10 - piezo sensor (accelerometer) 

scheme 

At the free end of the hollow cylinder (further on 

the rotor), a model of ABD 7 is inserted, which is inserted 

into the rotor and fixed to it by the outer diameter with the 

help of clamps. Due to this, the necessary stiffness of fas-

tening of the ABD on the rotor and co-ordination are pro-

vided. The ABD model has an inner opening sufficient for 

free access to the inner cavity of the rotor, which allows, 

without dismantling the ABD, to change the rotor's imbal-

ance 8 both in location and size by attaching it to the inner 

wall of the specified load, which during the research addi-

tionally holds the centrifugal by forces. The rotor drive is 

carried out by a synchronous electric motor 6 with a power 

output of 180 watts through a lowering clutch transmis-

sion. The motor is powered by alternating current, whose 

voltage can vary in a wide range with the help of an auto-

transformer with a control system. Thanks to this, the in-

stallation allows you to set the rotation of the rotor with 

different frequencies in the range of 0.5-18 Hz (30-

1080 rpm), to set different angular accelerations when ac-

celerating the rotor, to stop in the pre-resonance and above 

resonance areas of rotation of the rotor on a given time for 

detailed research on the work of the ABD.  

In order to determine the effect of the volume of 

liquid on the efficiency of the system balancing on the res-

onant rotor frequencies, a series of studies with an imbal-

ance D = 3000 gcm for a variety of radii of the chambers 

ABD (R = 0.2, 0.15, 0.1 m) separately where performed. 

The chamber stepwise (in 50 ml increments) was filled 

with liquid (fresh water). After each change in the volume 

of the liquid, the vibration of the upper edge of the rotor 

was recorded during its movement. The results of pro-

cessing records are presented on Fig. 2.  

 
 

Fig. 2 Amplitude of fluctuations of the upper edge of the drum at different volumes of the working fluid in the ABD 

From Fig. 2 it is seen that automatic balancing 

with liquid working bodies for a vertical rotor at the reso-

nance itself is obvious (comparing with the points corre-

sponding to V = 0 ml). There is an optimal amount of fluid 

for efficient balancing of the rotor, it is 100 ml for a radius 

of 200 mm, 150 ml for a radius of 150 mm and 200 ml for 

a camera with a radius of 100 mm with a mass of imbal-

ance of 150 g. In cases where the volume of the working 

fluid increases, there is an increase in the amplitudes of 

oscillations. 

To explain this behaviour of the system we con-

sider the conditions of wave formation on the free surface 

of the liquid. To do this, we will analyze the frequency 

equation of the system of differential equations, which 

describe the motion of a rotating rotor with an ABD and a 

liquid inside it. 

3. Results and discussion 

We accept the calculation scheme, shown in 

Fig. 3. Let us suppose that a simplified flat task is consid-

ered (since the geometric dimensions of the ABD have a 

ratio R>>h [10]); that the liquid involves into the cylinder 

chamber of the ABD and rotates with the rotor as a single 

solid, and that, when neglected by gravitational forces, it 

has the form of a ring with an internal radius R1 and exter-

nal – R. We shall consider the small translational motion of 

the cylinder in the plane of rotation (z = z(t) and y = y(t) are 

the generalized coordinates of the cylinder axis). In this 

case, the movement of the liquid in relation to the cylinder 
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Fig. 3 Calculation scheme 

is also considered as small one. In a relative motion, vis-

cosity strengths are not taken into account. 

For a moving coordinate system connected with a 

rotating cylinder, we take the polar coordinate system O1 

with the polar axis n (Fig. 3); r, θ – coordinates of A point 

in this system. In addition, in Fig. 3 the following notation 

is introduced: u = u(r, θ, t); υ = υ(r, θ, t) – respectively, the 

radial and tangential components of the relative velocity of 

the liquid at the point (r, θ). Denote М – mass of rotor with 

ABD. 

Free oscillations of the rotor-fluid system are de-

scribed linearized (due to the smallness of the considered 

motions of the system) by differential equations in the cho-

sen polar coordinate system: 
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equation of continuity:  
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and expressions for the forces acting on the system: 
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where р = р(r, θ, t) is the liquid pressure at the point A(r, 

θ), ρ is the density of the liquid; h is height of cylindrical 

chamber; ς = ς(r, θ) is the radial deviation of the points of 

the free surface of the liquid. 

Integration of the system of equations (1) – (3) is 

experiencing considerable difficulties. Therefore, in view 

of the study of the stability of the system, we turn to the 

analysis of its characteristic equation. 

If we look for possible movements of the system 

in the form of principal oscillations, in which all general-

ized coordinates change with the same frequency (denote it 

k), setting the law of the change of the generalized rotor 

coordinates in the form: 

 

z=A1 sin kt; y=A2 cos kt, (4) 

 

and take into account only the waves of the 1st order (since 

in the case of joint oscillations of the system a cylinder – a 

liquid in a liquid, waves arise only in the first order (the 

wavelength is equal to the length of the free surface of the 

liquid) [3]), we find the form of the inner surface of the 

liquid to the arbitrary constants В1 and В2: 

 

ς = B1cos[(k + ω) t+ θ]+ B2cos[(k – ω) t – θ]. (5) 

 

We find the principal fluctuations of the fluid of 

the same frequency k. 

The solution of the system of equations (1) – (3) 

with allowance for dependencies (4) and (5) is a system of 

four equations: 
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     (6) 

where: m – mass of fluid in the rotor, A=A1 – A2, В=В1 – 

В2. 

In order for system (6) to have a nontrivial solu-

tion, its determinant must be zero. From this condition we 

obtain the equation of frequencies:  
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If сz=су=с, then system (6) splits into two un-

bound systems, and the frequency equation (7) is to two 

independent expressions, since the left side of (7) for 

сz=су=с can be given as two multipliers, and the second 

one is obtained from the first substitute k by (-k). To solve 

the question of the stability of the vibrations of the system 

under consideration for сz=су=с it is enough to investigate 

one of the equations of the fourth degree, for example:  
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The division of expression (7) into two independ-

ent equations means that for сz=су the principal oscillations 

of the system are circular. Equations (4) describe the mo-

tion of an axis of a cylinder in an elliptical trajectory. 

However, using the expressions A=A1 – A2, В=В1 – В2, an 

elliptic trajectory can be presented as a sum of two circu-

lar, with the angular velocities of these trajectories will be 

equal to k and (-k): 
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which corresponds to the propagation of the wave in the 

forward and reverse directions (in a moving coordinate 

system a direct wave propagates towards the cylinder rota-

tion, and the opposite is opposite to the rotation). 

An indication of the instability of the system is 

the presence in the partial equation (8) of the roots with a 

negative imaginary part. Therefore, if among the four roots 

of equation (8) there is a couple of complex-conjugate, 

motion can be considered unstable. 

The roots of equation (8) are the oscillation fre-

quencies of the rotor-liquid system at сz=су=с. 

Taking the liquid stationary relative to the rotor 

(A1 = A2, В1 = В2 = 0), we obtain the partial frequencies of 

the propagation of direct and reverse waves and the fre-

quency of oscillations of the rotor-liquid system: 
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We express (8) through the partial frequencies: 
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partial frequency of the rotor with the liquid in it is in a 

state of rest. 

It is shown in [12] that for any α, а, b, kp
2, which 

is the constructive parameters of a system, there is always 

a rotational speed of the rotor ω, in which the equation (8) 

will have complex roots, that is, the system will be unsta-

ble. For the specific parameters of the system by numerical 

methods, equating the discriminant equation (9) to zero or 

using the Euclidean algorithm, one can determine the 

boundaries of the area of instability. 

Thus, the rotating rotor is partially filled with liq-

uid and installed on elastic supports, at some speeds of 

rotation, it loses its stability. These speeds are not discrete. 

When сz=су there is one zone of instability, located around 

the rotational speed ωcr, at which there is a coincidence of 

the partial frequency of the rotor kp with a partial velocity 

of propagation of the return wave in the liquid 

(


liqk  = ω  а). 

With this condition (


liqk  = ω∙ а) we get the for-

mula of critical velocity: 

 

 













 





2

/1
1

2

1 RR

mM

c
cr . (10) 

 

Expression (10) defines a central point of an un-

stable zone. The main parameter characterizing the width 

of an unstable area is α. 

4. Numerical example 

The parameter α is a constructive parameter of the 

rotor-fluid system, which depends on the degree of filling 

of the ABD chamber with a liquid. In addition, it was nu-

merically checked that an increase in the mass of the fluid 

leads to the expansion of the instability area. So for such 
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parameters of the system: the weight of the rotor with the 

camera ABD (M) – 7.3 kg, the weight of the imbalance 

(md) – 0,1 kg, the external radius of the camera ABD (R) – 

0.2 m, the height of the chamber ABD (h) – 0.05 (m), mass 

of liquid (m) – 0.05-0.45 kg, liquid density (ρ) – 

1000 kg/m3, liquid temperature (t) – 18°C, critical speed of 

the rotor (ωcr) – 9.64-14.00 Hz, the relationship between 

the degree of filling of the chamber ABD and the coeffi-

cient α  has the form shown in Fig. 4. 

 

 
 

Fig. 4 Increase of the width of the area of motion instabil-

ity rotor system - ABD - liquid depending on the 

filling of the ABD chamber with liquid 

 

Thus, when the chamber is filled with a liquid 

weighing 50 g, the instability area of the system is 

10.726 – 11.036 Hz (the width of the instability area is 

0.31 Hz), and when the 450 g of liquid is filled, the system 

instability area is 10.047-12.885 Hz (the width of the in-

stability area is 2.839 Hz). 

5. Conclusions  

Effect of the volume of liquid on the efficiency of 

the system balancing on the resonant rotor frequencies was 

determined. 

A numerical model of auto-balancing device 

(ABD) was created. The presence of the areas of instability 

of the rotor-fluid system and the dependence of the area 

width on the mass of the fluid filling the chamber of the 

ABD can be explained by an increase in the amplitudes of 

the oscillations of the system when the ABD chamber is 

filled with more liquid than necessary for balancing. The 

wave frequency in the fluid resonates with the rotor's rota-

tional speed. 
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INVESTIGATION OF SMALL MOTIONS OF LIQUID 

IN CYLINDRICAL CHAMBER  

OF AUTO-BALANCING DEVICE 

 

S u m m a r y 

 

The article deals with the process of wave form-

ing on the surface of a liquid in a chamber of auto-

balancing device partially filled with a liquid for rotors 

with a vertical axis of rotation under non-stationary modes 

of the system's motion. In non-stationary processes, the 

possible wave formation causes a dynamic instability in 

the operation of the machine and the increase of vibrations 

under certain operating modes. In this article the case when 

the rotor is installed in elastic supports is solved, the joint 

movements of the rotor - liquid system are considered and 

their stability is investigated. 

Keywords: rotor, imbalance, automatic balancing (self-

balancing), auto-balancing device (ABD), process of wave 

forming on the surface of a liquid. 
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