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1. Introduction 

The piezoelectricity is used to control the dynamic 

behavior of structures in order to attenuating vibrations, 

avoid the resonance and consequently the damage at a later. 

Active vibration control of composite structures using pie-

zoelectric sensors and actuators has received much attention 

in several research studies. The dynamic behavior of com-

posite laminate plates has been studied in terms of analyti-

cal, numerical and experimental works.  

Authors Crawley et al [1, 2] studied the analytic 

and experimental development of piezoelectric actuators as 

elements of intelligent structures, where static and dynamic 

analytic models are derived for segmented piezoelectric ac-

tuators that are either bonded to an elastic substructure or 

embedded in a laminated composite. But in the second paper 

[2] the development and experimental verification of the in-

duced strain actuation of plate components of an intelligent 

structure is presented. Dimitradis et al [3] studied the behav-

ior of two dimensional patches of piezoelectric material 

bonded to the surface of elastic distributed structures and 

used as vibration actuators is analytically investigated, and 

the theory is then applied to develop an approximate dy-

namic model for the vibration response of a simply sup-

ported elastic rectangular plate. Her et al [4] present the an-

alytical solution of the flexural displacement of a simply 

supported plate subjected to the bending moment is solved 

by using the plate theory, and the effects of the size and lo-

cation of the piezoelectric actuators on the response of a 

plate are presented through a parametric study. In [5] 

Hwang et al presented a finite element formulation for vi-

bration control of a laminated plate with piezoelectric sen-

sors/actuators, and for a laminated plate under the negative 

velocity feedback control, the direct time responses are cal-

culated by the Newmark-β method, and the damped fre-

quencies and modal damping ratios are derived by modal 

state space analysis. A finite element method based on the 

classical laminated plate theory is developed for the active 

vibration control of a composite plate containing distributed 

piezoelectric sensors and actuators by Lam et al [6], and the 

static analysis and active vibration suppression of a cantile-

ver composite plate are performed as a numerical example 

to verify the proposed model. Liu et al [7] use a simple neg-

ative velocity feedback control algorithm coupling the direct 

and converse piezoelectric effects to actively control the dy-

namic response of an integrated structure through a closed 

control loop. Wang et al in [8, 9], studied in the first paper 

the vibration control of the smart piezoelectric composite 

plates using the classical negative velocity feedback control 

method, but in the second one the dynamic stability of the 

negative velocity feedback control of the composite plate is 

investigated, so the Lyapunov's energy functional based on 

the derived general governing equation of motion with ac-

tive damping is used to carry out the stability analysis. Ang 

et al [10] propose the use of the total weighted energy 

method to select the weighting matrices of the linear quad-

ratic regulator (LQR) used to vibration control of smart pi-

ezoelectric composite plates. Also Narwal [11] proposed the 

LQR controller to attenuate the global structural vibration 

for a simple supported plate structure, and settling time for 

each different location of piezoelectric patch location was 

observed which was then followed by an interpretation for 

the optimal location for piezoelectric patch for maximizing 

the vibration control. In [12], Bendine et al studied the mod-

eling and active vibration control of a functionally graded 

(FGM) plate with upper and lower surface bonded piezoe-

lectric layers using the software ANSYS. 

Zhang et al in [13], an electro-mechanically cou-

pled finite element (FE) model of smart structures is devel-

oped, and considering the vibrations generated by various 

disturbances, which include free and forced vibrations, a 

PID control is implemented to damp both the free and forced 

vibrations. Additionally, an LQR control is applied for com-

parison, where only total piezoelectric layers are used. 

Hence exploring patches (partial recovery of piezoelectric 

layers) and their optimal positions is an important aspect, 

object of the present paper. The PSO (Particle Swarm Opti-

mization) algorithm to optimize the LQR's parameters is 

also conducted in this work. 

A static deflection control of clamped composite 

plate by applying various voltages on the actuators is under-

taken, and the active control analysis using LQR and PID 

controllers for attenuating free and forced vibrations has 

been studied and compared as well. 

2. Theoretical formulation  

 

Let us consider a thick composite plate equipped 

with a piezoelectric layer as show in Fig.1. The composite 

plate of thickness h and composed of n arbitrarily layers, in 

which each lamina may be oriented at an angle θ with re-

spect to the x-axis of the coordinate system. 

The displacement filed corresponding to Mindlin's 

hypotheses as a first order shear deformation (FOSD), as 

follows: 
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where: u, ν and w denote the mid-plane displacements, θx 

and θy denote the rotations along the x and y axis, respec-

tively. 
 

 
 

Fig. 1 Description of laminate plate equipped with a piezo-

electric element 

 

For a piezoelectric material polarized in the direc-

tion of thickness (z), the behavior laws are: 

The direct effect of the piezoelectric is done: 

 

         ,
T

D e d E= +  (2) 

 

where:  D  is the vector of electric displacements,    is 

the deformation vector,  E  is the vector of electric fields, 

 e  is the matrix of piezoelectric constants and  d  is the 

electrical permittivity matrix. 

For the converse effect of the piezoelectric: 

 

         ,
T

C e E = −  (3) 

 

where:    is the constraints vector and  C  is the elastic 

constants matrix.  

The electrical field E is the gradient of the electrical 

potential  . E is constant along the thickness ph  of the pi-

ezoelectric layer: 
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The kinetic energy has the same form of a purely 

elastic layer:  
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However, the potential energy has two additional 

terms: 
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3. Finite element discretization 

 

A quadratic finite element with 9 nodes is used. 

Each node has five degrees of freedom (u, ν, w, Ɵx, Ɵy) in 

addition to an electrical degree of freedom ( ) . Where: 

 

    ,uu N u=  (7) 

 

   .N  =    (8) 

 

where: u  and    are the vectors of nodal displacements 

and nodal potentials, respectively. uN    and N
 
   are the 

interpolation matrices of displacements and electric poten-

tials. 

For a piezoelectric multilayer plate, the elementary 

mass matrix is:  

 

    .
T

e uue s
i

M m N dsN   =       (9) 

 

And, the elementary stiffness matrix is:  
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With 
i

z  is the position of the average plane of the 

iime layer. 
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where: 
T

u ue e
K K 
   =     is the component of the elementary 

stiffness matrix due to the piezo-mechanical coupling. 

While the component of the dielectric matrix is: 
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The equation of motion of a piezoelectric plate is 

obtained by assembly of the elementary equations: 
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where:       , ,M K F  and  Q  are the mass matrix, stiff-

ness matrix, vector of mechanical loads and vector of elec-

tric loads, respectively. 

The structural Rayleigh damping is used: 
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where: α and β are the Rayleigh coefficients. 

Equation (13) can be written as:  
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where: a and s are, actuator and sensor index, respectively. 

 

4. Active vibration control 

 

4.1. Reduced model 

 

Since our interest is only the first modes of vibra-

tions, a reduced model is used for the first (r) modes, and the 

modal displacement vector becomes: 

 

      ,
T

r r
q V u=  (16) 

 

where:  V  is the matrix of eigenvectors.  

Substituting Eq. (16) in (15), we obtain the follow-

ing decoupled system: 
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4.2. State space representation  

 

The equation of the decoupled system (17) and (18) 

can be written in terms of state space as follows: 

 

( )   ( )    ( ) 

( )    ( ) 
,

X t A X t B u t

Y t A X t

• 
= + 

 
 =

 (19) 

 

where: ( ) X t , ( ) Y t  and ( ) u t  are the state vector, 

measure vector (output) and the control vector (input). With: 
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 A ,  B and  C are the matrix of the system, the 

matrix of the control and the matrix of output, respectively. 
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  0 .uC K K V 
 = −   (23) 

4.3. Linear Quadratic Regulator (LQR)  
 

The optimal input is reached by minimizing a cost 

function using the optimal control LQR: 
 

( )
1

,
2

T T

LQRJ X Q X u R u dt= +  (24) 

 

where: Q, R are the weighting matrix (output) and the con-

trol vector (input), respectively.  

The control law optimizing J function is given by: 
 

( ) ( ) ,u t K X t= −  (25) 

 
1 ,TK R B P−=  (26) 

 

where: K and P are the gain matrix of the optimal control 

and solution matrix of the Riccati equation, respectively. 

The Riccati equation is: 
 

0,T T TA P P A Q PBRB P+ + − =  (27) 

 

with: R R=  and 
TQ C Q C= . 

So, closed loop of the LQR controller becomes: 

 

( ) .X A BK X

Y C X

• = −


=

 (28) 

 

The LQR controller is shown in Fig. 2. 
 

 

 

Fig. 2 LQR controller 
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4.4. Integral-Derived Proportional Regulator (PID) 

 

The PID strategy is to define the control vector u(t) 

as a summation of the proportional, integral and derivative 

of the vector of the output error e(t) by: 

 

( ) ( ) ( )
( )

,p i d

de t
u t K e t K e t dt K

dt
= + +  (29) 

 

where, the vector of the output error e(t) is given by: 

 

( ) ( ) ( ).e t Y t C X t= − = −  (30) 

 

In Eq. (29) ,p i dK K et K  are the proportional gain, 

the integral gain and the derivative gain, respectively.  

The PID controller is shown in Fig. 3. 
 

 
 

Fig. 3 PID controller by retroaction 

5. Numerical results and discussions 

 

In this section, a cantilevered piezolaminated com-

posite plate is studied. 

 

5.1. Verification of numerical model  

 

For this propose, a comparative survey is under-

taken in order to check the correctness of the results of the 

developed program by comparing them with those of the lit-

erature. 

Table 1 

Materials properties 
 

 PZTG1195N T300/976 

Young's Moduli (GPa) 

E11 

E11= E33 

 

63.0 

63.0 

 

150 

9 

Poisson's ratio 

ν23 

ν12= ν13 

 

0.3 

0.3 

 

0.3 

0.3 

Shear moduli (GPa) 

G23 

G12=G13 

 

24.2 

24.2 

 

7.1 

2.5 

Density ρ(kg/m3) 7600 1600 

Piezoelectric constants (m/V) 

d31=d32 

 

254 10-12 

 

 

Electrical permittivity (F/m) 

ɛ11= ɛ22 

ɛ33 

 

15.3 10-9 

15.0 10-9 

 

In this section, a sandwich plate 200x200 mm, in 

which the master layer is made of graphite/epoxy composite 

(T300/ 976). The configuration of the composite plate is 

[- 45/45-45/45], with a total thickness of 1 mm, which is sit-

uated between two piezoelectric layers (PZT G1195 N) of 

0.1mm each. This structure was proposed by LAM et al [6]. 

The properties of the materials are given in Ta-

ble. 1. 

The first five eigenfrequencies are calculated and 

presented in Table 2.  

Table 2 

The first five eigenfrequencies (rad/s) 

Mode LAM  et al 

[6] 

Present Discrepancy 

(%) 
1 21.4657 21.4308 0.16 

2 63.3491 63.0758 0.43 

3 130.8221 129.1594 1.27 

4 182.4224 182.1370 0.15 

5 218.2750 216.7596 0.69 

 

As one can see from table 2, that the present results 

compare well with those presented by LAM et al. 

 

5.2. Static deflection control  

 

In this case, all the piezoceramics on the upper and 

lower surfaces on the plate are used as actuators. 

In first, the two piezoelectric layers completely 

cover the top and bottom surfaces. 

It is noted that the plate is initially exposed to a me-

chanically uniformly distributed load of 100 Pa.  

The deflection of the center line for different po-

tential values is shown in Fig. 4.  
 

 
 

Fig. 4 Deflection of the central line 

 

From Fig. 4, it can be seen that for the control of 

the deflection, different values of voltages are applied on the 

actuators. The attenuation is obtained until the desired tol-

erance for voltage value at 50 V. 

Secondly, the same structure is used, but the piezo-

electric layers are taken as a patches recovering third of the 

total surface of the plate (1/3). So to analyze the influence 

of the position of the patches (actuators) on the control, we 

test three configurations of patches positions A, B, and C 

(Fig. 5). 
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Fig. 5 Patches position A, B, and C 

 

For the same loading condition of 100Pa, the actu-

ators are at 0 v and at 80 v. The deflection w of the central 

line is shown in Fig. 6. 
 

 
 

Fig. 6 Deflection of the central line (Patches) 

 

We notice, from Fig.6, that the configuration C has 

a better results compared to other configurations A and B, 

but needs more power (80V instead of 50V) to have the 

same level of attenuation as that of total piezoelectric layer 

(see Fig.4). Then, the configuration C will be used for the 

active control in the following section. 

 

5.3. Active control 

 

The control concerns the same structure, but the 

upper piezoelectric layer acts as a sensor, while the lower 

one as actuator. Two algorithms LQR and PID for different 

parameters are used to control vibrations. 

In this case the two piezoelectric layers completely 

cover the upper and lower surfaces of the plate. The struc-

ture is excited by a mechanical loading of a step force of 1 

N at the P point starting from 0.1 s (P is on the free side of 

the central line). 

For this step, to test the influence of the control pa-

rameters on the LQR and PID controller’s performance, we 

used parameters find in article [13] (Table 3). These param-

eters are optimized by PSO (Particle Swarm Optimization) 

algorithm to use them in the next application. 

Table 3  

Control parameters 
 

Control type Q  R  

LQR 1 1/5/5 1/8.8/8.5 

LQR 2 1/5/5 1/70/70 

Control type 
pK  iK  dK  

PID 1 2 100 0.01 

PID 2 2 400 0.03 

The sensor and actuator signal as well as deflec-

tion of P point are shown in Figs. 7, a, b and c. 
 

 
a 

 
b 

 

c 

Fig. 7 Dynamic response by LQR and PID controllers 

under step force excitation 

 

From Fig. 7, we notice that the LQR1 and LQR2 

controllers attenuates the free vibrations, but only LQR2 

suppress slightly the forced vibrations. Also, one can see 

that the PID1 and PID2 controllers damp also the free vibra-

tions, and decrease forced vibrations more than LQR2. 

However, one can remark that PID2 give fast suppression of 

vibration in short period than the PID1. 
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In the second application, we take the patches of 

the configuration C which gave the best results with respect 

to A and B for the static control (Fig. 6). 

The mechanical loading is also a step force of 1 N 

applied at point P. The PID and LQR controllers are used 

for active control of forced vibrations, and the control pa-

rameters are optimized using PSO algorithm to improve per-

formance of LQR controller. Obtained results are shown in 

Fig. 8.  
 

 
 

a 
 

 
 

b 

 
 

c 
 

Fig. 8 Dynamic response by LQR and PID controllers under 

step force excitation (Patches) 

 

The parameters of LQR2 and PID2 are given in Ta-

ble 3, while those of LQR-PSO are calculated by the PSO 

algorithm: 

 

Q =1.528914266394741e-001,  

R =2.373296423061706e-005. 

 

From Fig. 8, one can see that:  

(i) The same observations are made concerning the 

successful attenuation of free and forced vibrations using 

patches compared to those using total piezoelectric layers. 

(ii) We also notice that the performances of the 

patches in configuration C are almost as good as those of the 

case of total piezoelectric layers despite a ratio of the sur-

faces patches which is 1/3, but use more power for the con-

trol (40 V) compared with (20 V). 

(iii) The PID2 controller attenuate the forced vibra-

tions better than the LQR2, but using the LQR's parameters 

(LQR-PSO) optimized by PSO algorithm has given the 

same performances compared to those of the PID2 control-

ler. 

 

6. Conclusion 

 

A composite plate incorporating piezoelectric ele-

ments has been tested for static and dynamic vibration con-

trol using finite element model. 

Firstly, a static analysis exploiting the actuators for 

the attenuation of the vibrations is conducted. Then different 

configurations of patches A, B and C were tested to obtained 

the optimal patch location.  

Secondly, the active control with the LQR and PID 

controllers was studied. The two types of controllers (LQR 

and PID) suppress the free vibrations with success but with 

the ascendant of the second (PID) over the period of the at-

tenuation.  

On the other hand, for the forced vibrations the per-

formances of PID are best compared to the LQR, but the 

optimized LQR's parameters using PSO algorithm can give 

the same performances as the PID controller. We also notice 

that the performances of the patches in configuration C are 

almost as good as those of the total piezoelectric layers de-

spite a ratio of the surfaces patches which is 1/3, but the con-

figuration C use more power for the control. 
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M. Ezzraimi, R. Tiberkak, A. Melbous, S. Rechak 

LQR AND PID ALGORITHMS FOR VIBRATION  

CONTROL OF PIEZOELECTRIC COMPOSITE 

PLATES 

S u m m a r y 

In this paper, a formulation of a sandwich plate in-

tegrating an elastic central layer (isotropic or composite) be-

tween two piezoelectric layers (actuators and/or sensors), 

which can be taken as a smart (intelligent) structure and al-

lowing active control vibrations is presented. A 9-node fi-

nite element quadratic plate element with 5 degrees of free-

dom per node is used which takes into account the effect of 

transverse shear with an additional degree of freedom for 

each node of the piezoelectric layer. 

At first, the static control of the deflection by tak-

ing the two piezoelectric layers as actuators with two con-

figurations of the total piezoelectric layer and patches is un-

dertaken. Thus, the influence of patches position, for the 

second configuration, on the attenuation of vibrations is an-

alyzed. 

In a second step, the active vibration control using 

two types of LQR and PID controllers with different control 

parameters is tested and compared for the two configura-

tions (total piezoelectric layer and patches). It is demon-

strated throughout the present results that the performances 

of the patches are almost as good as those of the total layer 

despite a ratio of the surfaces patches which is 1/3. It is also 

noticed that the PID controller is more efficient than the 

LQR controller. But, if using the PSO (Particle Swarm Op-

timization) algorithm, the LQR's parameters are optimized 

and give almost the same performances as those of the PID 

controller. 

Key words: finite element method, composite plates, vibra-

tions, piezoelectric, active control, LQR, PID, PSO. 
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