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1. Introduction

Currently in the European Union social integra-

tion of visually disabled persons into society is an im-

portant problem. For this integration of blind people devic-

es with Braille elements in their control blocks are de-

signed and produced. Some types of Braille elements expe-

rience wear under the influence of small amplitude high 

frequency vibrations. Also reading of the text represented 

by Braille elements under the influence of vibrations caus-

es problems and unexperienced readers may not always 

fully understand the represented text. 

In this paper the use of elastic foundation to re-

duce the vibrations of the elastic structure with Braille el-

ements with the purpose of increasing the durability and 

decreasing of wear of elements of the control block for 

various mechanical devices is investigated. 

For this purpose, vibrations of a plate on elastic 

foundation of Winkler type are investigated. A two-

dimensional element having six nodal degrees of freedom 

(three displacements of the lower surface and three dis-

placements of the upper surface) is used. Elastic founda-

tion of Winkler type on the lower surface has been used in 

the investigation. Eigenmodes are calculated. 

Experimental investigations of related problems 

of analysis of vibrations were presented in [1, 2]. The nu-

merical procedure is based on the material described in [3, 

4]. Experimental and numerical investigations of dynamics 

of similar structures are presented in [5 – 42]. 

In the previous papers of the authors vibrations of 

a plate with Braille elements were investigated in detail. 

As noted there using the results of performed experimental 

investigations Braille elements do not have substantial 

effect to the shape of the eigenmodes. Because of this fact 

numerical investigations of vibrations of the elastic struc-

ture without Braille elements is performed. Recommenda-

tions for location of Braille elements on a vibrating struc-

ture are provided. 

The purpose of this investigation is to determine 

how vibrations influence the dynamics of an elastic struc-

ture on the elastic foundation with Braille elements and to 

determine the places of the elastic structure in which the 

wear of Braille elements is greatest. 

2. Numerical model for the analysis of vibrations of a

plate on elastic foundation of Winkler type

x, y and z denote the axes of coordinates and u, v 

and w denote the corresponding displacements. Displace-

ments in the finite element are represented as: 

    , 
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where: H is the thickness of the plate,   is the vector of 

nodal displacements and: 
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where: N1, N2, …, N9 are the shape functions of the two-

dimensional Lagrange quadratic finite element. 

The strains are represented as: 
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where: 
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The following integrals are used in the expres-

sions of element matrixes: 
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The mass matrix has the form: 
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where:   is the density of material of the investigated 

elastic structure. 

The stiffness matrix has the form: 
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where: μ is the stiffness of the elastic foundation of Win-

kler type for plane motion and μz is the stiffness of the elas-

tic foundation of Winkler type for motion in the direction 

of the z axis and: 
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where: 
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 where: E is modulus 

of elasticity and ν is Poisson’s ratio. 

 

3. Eigenmodes of vibrations of the plate with elastic 

foundation of Winkler type 

 

The structure is a circle with internal radius 

0.02 m and external radius 0.04 m. Thickness of the struc-

ture 0.004 m.H   The following parameters are assumed: 



434 

modulus of elasticity 8
6 10  Pa,E    Poisson’s ratio 

0.3,   density of the material 
3

kg
785 .

m
   Elastic 

foundation is assumed on the lower surface of the structure 

for the elements located in the region from the internal 

radius of the structure up to the average radius of the struc-

ture with the parameters 
3

10000 ,
m

N
   

3
400000 .

m
z

N
   

The first eigenmode is presented in Fig. 1, the 

second eigenmode is presented in Fig. 2, …, the eighth 

eigenmode is presented in Fig. 8. When the motion of the 

lower surface and the motion of the upper surface are very 

similar, then only the motion of the upper surface is pre-

sented. For the investigated eigenmodes out of plane mo-

tions of the upper and lower surfaces are very similar, 

while plane motions of the upper and lower surfaces are 

very similar only for the first eigenmode. 

 

       
      

a                                                                        b 
 

Fig. 1 The first eigenmode: a - out of plane motion of the upper surface, b - plane motion of the upper surface 
 

 
 

                                   a                                                             b                                                                c 
 

Fig. 2 The second eigenmode: a - out of plane motion of the upper surface, b - plane motion of the lower surface, c - plane 

motion of the upper surface 
 

 
 

                                   a                                                             b                                                              c 
 

Fig. 3 The third eigenmode: a - out of plane motion of the upper surface, b - plane motion of the lower surface, c - plane 

motion of the upper surface 
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                                a                                                                 b                                                           c 
 

Fig. 4 The fourth eigenmode: a - out of plane motion of the upper surface, b -plane motion of the lower surface, c - plane 

motion of the upper surface 
 

 
 

                                  a                                                              b                                                               c 
 

Fig. 5 The fifth eigenmode: a - out of plane motion of the upper surface, b - plane motion of the lower surface, c - plane 

motion of the upper surface 
 

 
 

                                  a                                                              b                                                               c 
 

Fig. 6 The sixth eigenmode: a - out of plane motion of the upper surface, b - plane motion of the lower surface, c - plane 

motion of the upper surface 
 

 
 

                                  a                                                              b                                                               c 
 

Fig. 7 The seventh eigenmode: a - out of plane motion of the upper surface, b - plane motion of the lower surface, c - plane 

motion of the upper surface 
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                                  a                                                              b                                                               c 
 

Fig. 8 The eighth eigenmode: a - out of plane motion of the upper surface, b - plane motion of the lower surface, c - plane 

motion of the upper surface 

 

From the presented results the out of plane and 

plane motions of the structure are clearly seen. In many of 

the investigated eigenmodes motions of the lower and up-

per surfaces are very similar, but there are eigenmodes 

where the motions of the surfaces differ. 

Using the presented results places for recom-

mended locations of Braille elements are determined. It is 

recommended to locate them at the places were the ampli-

tude of vibrations is smallest. 

 

4. Results of experimental study of vibrations of the 

plate with elastic foundation 

 

Experimental investigation of vibrations of the 

investigated elastic structure was performed by using the 

vibrometer Polytec PSV – 500. Structural scheme of exper-

imental setup is presented in Fig. 9. 
 

 
 

Fig. 9 Structural scheme of experimental setup: 1 – exciter 

of vibrations, 2 – scanning heads, 3 – vibrometer 

Polytec PSV-500, 4 – personal computer, 5 – elastic 

structure with Braille elements 

 

Some of the obtained results of quantitative inves-

tigations of vibrations of the elastic structure on elastic 

foundation with Braille elements for frequency of vibra-

tions equal to 20 Hz and for various moments of time are 

presented in Fig. 10. In the numerical results presented 

earlier the eigenfrequencies are indicated in the figures of 

the eigenmodes. As seen from the presented results the 

frequency which is near to 20 Hz is observed in the fourth 

eigenmode (see Fig. 4). It is not possible to expect very 

precise correspondence of experimental and numerical 

results because of the simplified model of elastic founda-

tion of Winkler type used in the numerical calculations. In 

order to obtain more precise correspondence of experi-

mental and numerical results more complicated model of 

elastic foundation must be used in the numerical model. 

From the obtained experimental results places for 

recommended locations of Braille elements as well as 

stiffness parameters of the elastic foundation are deter-

mined. The stiffness parameters of the elastic foundation 

must be chosen in such a way that enables to shift the ei-

genfrequencies of the elastic structure from the excitation 

frequencies of the investigated mechanical device. It is 

recommended to locate Braille elements at the places were 

the amplitude of vibrations is smallest. 
 

 

a 

 

b 

 

c 

Fig. 10 Results of experimental investigations of vibrations 

of elastic structure on elastic foundation with 

Braille elements by using the vibrometer: a - 20 

Hz, 279.7 ms, b - 20 Hz, 280.9 ms, c - 20 Hz, 

297.3 ms 

 

5. Conclusions 

 

Vibrations of a plate on elastic foundation of 

Winkler type are investigated. A two-dimensional element 
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having six nodal degrees of freedom (three displacements 

of the lower surface and three displacements of the upper 

surface) is used. Elastic foundation of Winkler type on the 

lower surface is used in the numerical model. Eigenmodes 

are calculated. 

From the presented results the out of plane and 

plane motions of the structure are clearly seen. In many of 

the eigenmodes motions of the lower and upper surfaces 

are very similar, but there are eigenmodes where the mo-

tions of the surfaces differ. 

Experimental investigations of vibrations of the 

investigated elastic structure have been performed. Using 

the presented results places for recommended locations of 

Braille elements are determined. It is recommended to lo-

cate them at the places were the amplitude of vibrations is 

smallest. 

Results of the performed investigations enabled to 

determine the regions for location of Braille elements 

where the intensity of vibrations has smallest influence 

into the effect of wear of Braille elements. 

The stiffness parameters of the elastic foundation 

must be chosen in such a way that enables to shift the ei-

genfrequencies of the elastic structure from the excitation 

frequencies of the investigated mechanical device. 

The obtained results are used in the process of de-

sign of elastic vibrating structures in devices with Braille 

elements. 
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MEASUREMENT OF VIBRATIONS OF A PLATE ON 

ELASTIC FOUNDATION 

 

S u m m a r y 

 

Vibrations of a plate on elastic foundation of 

Winkler type are investigated. A two-dimensional element 

having six nodal degrees of freedom (three displacements 

of the lower surface and three displacements of the upper 

surface) is used. Elastic foundation of Winkler type on the 

lower surface is used in the numerical model. Eigenmodes 

are calculated. Experimental investigations of vibrations 

were performed using a special experimental setup and 

typical experimental results are presented. Using the pre-

sented results places for recommended locations of Braille 

elements are determined. It is recommended to locate them 

at the places were the amplitude of vibrations is smallest. 

The stiffness parameters of the elastic foundation must be 

chosen in such a way that enables to shift the eigenfre-

quencies of the elastic structure from the excitation fre-

quencies of the investigated mechanical device. 
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