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1. Introduction

Uncertainties in material properties, geometric
dimensions, loads and other parameters are always un-
avoidable in engineering structural problems [1-4]. They
have played a more and more important role in the struc-
tural reliability analysis. In order to obtain the objective of
reliable design, the effects of the various uncertain parame-
ters should be rationally considered and treated. The pro-
babilistic models are widely used to describe the uncertain-
ties and they have been proved very effective in the struc-
tural reliability problems [5-7]. However, it is difficult to
estimate precise values of parameters to accurately define
the probability distributions because of inaccurate and in-
sufficient information. Once the assumption about the
probability distributions is not satisfied, the structural reli-
ability analysis seems doubtful and meaningless. More-
over, some researches [8-11] have also indicated that even
small deviations from the real probability distributions may
cause large errors in the reliability analysis.

The fuzzy set theory provides a useful comple-
ment of classic reliability theory, in which the probabilities
of the system elements can be not certain. Cai [12] pre-
sented different forms of "fuzzy reliability theories". In
some recent research, a general fuzzy multistate system
model and corresponding reliability evaluation technique -
fuzzy universal generating function were proposed in [13]
and [14], respectively, for dealing with the fuzziness of
engineering systems. Similar with the probabilistic models,
the membership functions of the uncertain parameters need
to be established before carrying out structural reliability
analysis with the fuzzy set theory. The nonprobabilistic
reliability method and set model can be another direction
for coping with the uncertain parameters. Although obtain-
ing the precise probability distributions or membership
functions of the uncertain parameters seems very difficult
in many cases, the ranges or bounds of the uncertain pa-
rameters can be established relatively easily. Nowadays,
there is not a precise method to find the precise intervals or
the precise bounds of the uncertain parameters. However,
one of the most feasible methods to find the approximate
precise intervals or bounds of the uncertain parameters is

“expert scoring method”. For example, for a system uncer-
tain variable X, several experts can given difference inter-
vals or bounds for the variable. Sometimes, these intervals
or bounds are not all the same, the method to handle these
intervals or bounds are “average arithmetic”. For example,
there are n intervals scoring by n experts for an uncer-

tainty variable x such as X', X}, X, X, . The result inter-

val of uncertainty variable Xx expressed as

1
X' :—(xl' +X + X +---+xn').
n

Some researcher such as Ben-Haim [10, 11] pro-
posed that it was more rational to describe the uncertain
parameters with the set models instead of the probability
models when the statistic information about the uncertain
parameters is insufficient. Based on this idea, the concept
of nonprobabilistic reliability based on the convex model
theory was proposed clearly by Ben-Haim in 1994 [11]. In
recent years, the nonprobabilistic reliability theory devel-
ops rapidly. Elishakoff [15] discussed the concept of non-
probabilistic reliability and pointed out that the reliability
of structures should belong to an interval rather than a cer-
tain value. Through interval analysis [16], a nonprobabilis-
tic model of structural reliability was proposed by Guo et
al [17] which the reliability was measured as the minimum
distance from the coordinate origin to the failure surface.
Based on the interval interference model of stress and
strength, Wang and Qiu [18] defined the nonprobabilistic
reliability index as the ratio of the volume of safe region to
the total volume of the region constructed by the basic in-
terval variables. In addition, the nonprobabilistic ap-
proaches have already been effectively applied to many
practical structure problems in presence of various uncer-
tainties. For example, they were used in the analysis of
shells with imperfections in [19, 20], stress concentration
at a nearly circular hole with uncertain irregularities in [21]
and sandwich plates subject to uncertain loads and initial
deflections in [22].

In this paper a new nonprobabilistic set model for
reliability assessment of structural system is proposed.
Interval variables are used to represent the parameter un-
certainty. The nonprobabilistic reliability of structure is



defined as the satisfaction degree between the stress-
interval and the strength-interval. The interval analysis
based on the first-order Taylor series is used to calculate
the corresponding reliability. The illustrative example is
presented to demonstrate the technique.

2. Interval variable and its operations

Before further discussion on the nonprobabilistic
set model of structural reliability, a brief view of the defi-
nitions of the interval variable and its operations is pro-
vided. Assume that X denotes an uncertain parameter in
the structural reliability problem, and it varies within a

closed interval x' =[x,X], then

xex' =[xX]

(1

is defined as an interval variable; X and X is the lower
bound and upper bound of the interval x', respectively.
Similar with the random variable, interval variable has its

own center X° and radius X', which can be defined as
follows

2

According to Eq. (2), interval X' and interval
variable X can be denoted in the following standardized
form

X'=x"+ XA, x=x"+x'8

(€)

where A' =[-11] is the standardized interval, SeA' is
the standardized interval variable.

Let xex' =[x,X] and yey' =[)_/,ﬂ be two

interval  variables, then the  operations  for
x'+y',x'—=y',x'-y' and x' /y' are obtained as [23]
X 4y =X, V=[x + Y, X +V] )
X' =y =[xX]-[y,V]=[x-V.X -] )
X y —[X,Y][X,y]—
[ min{xy, Xy, 7, %y}, max {xy, Xy, Xy, %y} | (6)
X' 1y =[xX1/[Y,Y1=[xX]-[1/ 7.1/ ] %

Supposed that | (R) denotes the sets of all closed
real intervals. X' € I(R), X €x'(1,2,---,n) are arbitrary

interval variables which are independent with each other.
The linear combination of these interval variables can be
formed as follows

Zn:aixi L i=12,

i=1

y= N ®)

where @, € R are arbitrary real numbers. Because y is the

86

linear combination of interval X, , y is also an interval
variable. If the center and radius of interval variables X;
are denoted with x,° and x;", then the center and radius of

interval variable y are

n n

=Y ax .,y Z|a|xI ,i=1,

i=1 i=1

2,---,n.

(€)

3. Satisfaction degree of the relation x' <y'

Different with the size relation of two real num-
bers, the size relation of two intervals is a kind of partial-
order relation [24] which is usually denoted with the satis-
faction degree of the two intervals. Here the concept of

satisfaction degree of the relation x' <y' is actually a

fuzzy set definition which represents the possibility that
one interval is larger or smaller than the other. It is often
used to compare intervals. Assumed that there are two in-

tervals X' =[x,X] and y' = [y,Y]. consider the related
rectangle in the (X, y ) - plane having the sides given by the

two intervals. There are five case between x' <y' which
is expressed in Fig. 1. The area value of the set

{(x,y):zﬁxﬁf,zéysy} can be computed as

a)(x' )o a)( y' ) . The area value of shadow part can express

as
ofx)eol(y)
o(x')en(y' —j:dxj;dy case?2
area(s) ={ (X' )a(y') case3  (10)
jjdxfdy case 4
0 cases

where area(e) denotes the area value of shadow part.

The satisfaction degree of the relation x' <y' or
reliability can be defined as

.\ area(e)
P(x' <y )_—a)(x')oa)(y') (11
Then
1 casel
jydxj dy
P(x' <y')= % case3  (12)
[of's
a)(x')-a)(y') case4
0 cases




where “P ” means possibility, a)(x' ) and co(y' ) denotes

the width of interval x' and y', respectively. That is [25]

(13)

It can be found according to Eq. (12) and Fig. 1

<<

<

that P(xI <y' ) is equal to 1 for case 1 as interval x' is
always smaller than interval y' . For case 5, P(XI <y' ) is

equal to 0 as interval x' is always larger than interval y'.

For case 2 to 4, the value of P(x' <y' ) is between [0,1]

as interval x' interferes with interval y' .

YA y =X
y
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o X X X o X X %
a b
A y =X Ya =X Ya y =X
y y y
y

y y y
o X X X 0 X XX 0 X XX

c d e

Fig. 1 Five cases for the relation x' < yI ta-casel;b-case2;c-case3;d-case4;e-case’s

To sum up, the satisfaction degree of interval
P(XI <y' ) has the following properties

(1) 0<P(x' <y')<1

@) P(X' <y')+P(x' 2y')=1

(3) if P(x' <y')=P(x' 2y'), then
P(x'<y')=P(x'2y')=05,and x' ="

(4) if x' <y', then P(x' <y')=1

(5) if x' 2 y', then P(x' <y')=0.

4. Nonprobabilistic set model of structural reliability

As described in the introduction, structural reli-
ability is subjected to many uncertain parameters. There-
fore, the stress S and strength R of the structure can be
denoted as the functions of these uncertain parameters

S =8(Xs) =S (X, X505 X)) (14)

R:R(XR):R(XRPXRz"”:XRm) (15)

where Xg ={xg}(i=12,---,1) is the parameter set im-

pacting on the stress S, such as concentration forces, dis-
tribution forces, bending moments and so on.
Xg ={Xg}(i=1,2,---,m) is the parameter set impacting

on the strength R, such as material properties, geometric
dimensions, surface cracks and so on. According to the
basic idea of nonprobabilistic reliability presented by Ben-
Haim, all the uncertain parameters are described with in-
terval variables in this paper, which are

(16)
(17)

Based on Egs. (2) and (3), the interval variables
Xs and Xy can be transformed into their standardized

forms. That is

(18)
(19)

Xg = Xg + %56, (i=1,2,---,1)

Xei = Xgi + X560, (i=1,2,---,m)

where Xg, and X are the center and radius of the interval

variables X ; X§, and X}, are the center and radius of the
interval variables Xy ;5 € A' =[-1,1] are the standardized

interval variables.



Because the stress S and strength R are func-
tions of these interval variables respectively, they will vary
within some closed intervals S' and R'. In order to obtain
the upper bounds and the lower bounds of the intervals S'
and R', Egs. (14) and (15) can be respectively expanded
at the center xg; and xg; of the uncertain interval variables

Xs and Xg by using the first-order Taylor series

S =5(Xg)=S(XsysXsp, 5 Xg ) =
~S(x XS e xcl)+ﬁ<x -x¢ )+
S1 S2 S 8X51 S1 S1
oS . 0S ¢
+6_(st_)(52)+"'+_()(5| _XSI) (20)
XSZ Sl
R= R(XR) = R(XRI’XRD'”’XRm) ~
¢ OR c
~ R(XRI’XRZ’ "’XRm)"'WR](XRl _XR1)+
OR ¢ oR ¢
+_(XR2_XR2)+"'+_(XRm_XRm) (21)
R2 Rm
0S . . . .
where —, (i=1,2,---,1) is the first-order partial deriva-

XSI

tive of the stress S at the center XS ; J(i=1,2,---,m)
Rm

is the first-order partial derivative of the strength R at the
center Xg; . Substituting Eqgs. (18) and (19) into Egs. (20)
and (21) respectively, Eqgs. (20) and Eq. (21) can be rewrit-
ten as follows

S =5(Xs)=S(Xss X555 Xg ) ®
¢ - 08 X5
~ S (X5, Xy, )+Za (22)
i=1
R=R(Xgz)=R(Xar>Xr2s""*» Xam ) =
¢ - OR XL
zR(XRU R2>T Rm)+za (23)

i=1 Ri

According to Egs. (8), (9) and (22), the center S°

and radius S" of the interval S' can be determined as
follows

$°=5(xg,, S X5 (24)

c c
st»‘”axsl)a

i=1
Therefore, stress-interval S' the of structure is
S I

~[8°-8", 8 +8"] (25)

According to Egs. (8), (9) and (23), the center R®

and radius R" of the interval R' can be determined as
follows

Cc C Cc Cc
R = R(XRI’XRD”"XRm) >

X (26)

| O
_;8
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Therefore, strength-interval R' of the structure is

R'~[R°—R",R*+R'] (27)

According to the stress-strength interference
model, the reliability criterion of structure design is that
the stress of the structure is less than or equal to the
strength of the structure. Therefore, based on the principle
of satisfaction degree of interval, a nonprobabilistic reli-
ability of the structure can be defined as the satisfaction
degree between the stress-interval S' and the strength-
interval R' . For the definition of the satisfaction degree of

the relation x' <y' in Eq. (11), there are also five cases
between S' <R' as same as the x' <y' which shown in

Fig. 2. The satisfaction degree of the relation S' <R' or
reliability becomes

1 casel
S S
——IB dSIB il case?2
a)(S' )-w(R')
P(S'<R')= % case3  (28)
R R
dS| dR
—L L case 4
a)(S' )-w(R')
0 cases

By the definition of the satisfaction degree of the
relation S' <R', the value of P(e) varies from 0 to 1.

When P(O) is equal to 1, it means that the stress-interval

S' is absolutely smaller than the strength-interval R' and
the structure is in the state of safety which is denoted by
case 1 in Fig. 2. When P (e) is equal to 0, it means that the

stress-interval S' is absolutely larger than the strength-
interval R' and the structure is in the state of failure which
is denoted by case 3 in Fig.2. When P(e) is equal to
it means that the stress-
interval S' interfered with the strength-interval R' and the
structure may be safety or may be failure.

some value between 0 and 1,

5. Hlustrative example

Gears are widely used in many practical engineer-
ing systems. The gear transmission system plays an impor-
tant role in modern industry. However, in the process of
gear meshing, contact stress will be produced which causes
pitting. Systems including gears meshing shocks with the
increase of the pitting, which will lead to the decrease of
the transmission efficiency and accuracy. Therefore, con-
tact fatigue analysis is necessary and important for increas-
ing the reliability of gear transmission. In this section, the
nonprobabilistic reliability of the contact fatigue of a pair
of spur gear meshing of a reducer is calculated. Main pa-
rameters of the gear pairs used in the example are de-
scribed as: modulus M =4 mm ; tooth number of two gear

are z, =14, z,=47; torques are T, =353Nm,
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T,=1180 Nm; rotation speed are n, =76.51/min, b=46 mm; material of the pinion: 20MnTiB,
n, =22.8 r/min; pitch diameters are d, =56.57 mm, HRC =56~62; material of the gear: 40Cr, HRC =50~56;
d, =189.89 mm respectively; width of the tooth life of the reducer: 1000 h.
R R=S Ra R=S
R R
R /
/ B 4
of s 5 5 of s s 3
a b
Ry R=S Ra R=S Ra /st
R R
R
R R / R
of s 5§ 0 s S5 0 s 5%
c d e
Fig. 2 Five cases for the relation S '"<R': a-casel;b-case2;c-case3;d-case4;e-case5
According to reference [26], the calculated con-
tact stress o,, is denoted by the formula _ 0w ZnZy 31)

K, Z
oy =2, \/F,KOKV K, —HZR (29)

bd, Z,

where Z. is an elastic coefficient; F, is the transmitted
tangential load; K, is the overload factor; K, is the dy-
namic factor; K is the size factor; K, is the load-
distribution factor; b is the width of the tooth; d, is the
pitch diameter of the pinion; Z is the surface condition
factor; Z, is the geometry factor.

According to the nonprobabilistic reliability
model presented in this paper, all the parameters in
Eq. (29) are described with interval variables.

By means of Eq. (23), the center and radius of the
calculated contact stress o,, are

oy, =1350.04 MPa, o}, =118.05 MPa (30)

According to reference [26], the contact fatigue
strength o, is denoted by the formula

o
HS S, Y,

where o, is the surface fatigue strength; S, is the
AGMA factor of safety; Z, is the stress cycle life factor;
Z,, is the hardness ratio factor; Y, is the temperature fac-

tor. Similarly, all the parameters in Eq. (31) are described
with interval variables.

The center and radius of interval variables in Egs.
(29) and (31) are expressed in Table [27].

By means of Eq. (26), the center and radius of the
contact fatigue strength o, are

o =1661.33 MPa, o/, = 207.67 MPa (32)

Thus, from the relation o), <o/s shown in

Fig. 3, the satisfaction degree of the relation o, <o/ or
the reliability of the contact fatigue is

Plc' <o V=1 fj:stH ;HstHS
(UH —UHS)_ _w(O'HI)°CU<UHs|)

=0.9989 (33)
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Table

Center and Radius of uncertain parameters

Uncertain parameters Center Radius

Z, (VMPa) 189.8 17.1

FN) 12480 1248

Ko 1 0.01

K, 1.04 0.04

Ks 1.00 0.01

Ky 1.496 0.40

b (mm) 46 0.01

d, (mm) 56.57 0.01

Z, 1.02 0.02

Z, 1.07 0.01

oy (VMPa) 1495.2 164.9

S, 1.35 0.03

Z, 1.5 0.04

Z, 1.00 0.02

Y, 1.00 0.01
bution. The nonprobabilistic method is more conservative
Ok than probabilistic method because there is no human as-

1468.1 sumption for system parameters distribution.
Gus =0y 6. Conclusions
1. For the structural reliability analysis, the stress
14537 o/ and strength are the function of several intervall vgrsiables.
The approximations S =S (xgl, XS5 ey Xg )+ D ——xi6
i=1 Si
C Cc Cc = aR r
and R= R(le’xm,...,me)+Z:a X0 for the stress
/ i=1 XRi
and strength are implemented with the first order Taylor
/ . . .
Y series to guarantee the computational efficiency and accu-
/ racy of the reliability analysis.

/ 2. Comparison of results between the proposed
1232.0 14681 > nonprobabilistic method and the probabilistic method has
) ) O shown that the reliability by using the proposed nonprob-

Fig. 3 The relation of &, < o/,

From Eq. (33), the satisfaction degree of the rela-
tion o, <o) or the reliability is very close to 1. It indi-

cates that the gear transmission of the reducer is very reli-
able. If all the parameters in the example are of uniform
distribution, for example, o, follows the uniform distri-

bution [1330.3, 1660.1], from the Monte Carlo simulation,

the reliability R~=1, Obviously, the nonprobabilistic reli-
ability is a little smaller than the probabilistic reliability
and it means that if the calculated result by nonprobabilis-
tic approach is thought to be reliable, the calculated result
by probabilistic approach is absolutely reliable. From the
result there is a conclusion that the method proposed in the
paper is not as same as the probabilistic reliability method
which assumes that all the variables are of uniform distri-

abilistic method (R =0.9989) is a little smaller than using
the probabilistic method (R=1). Hence it is reliable with
the proposed nonprobabilistic method.
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KONSTRUKCINIS NETIKIMYBINIS AIBES
PATIKIMUMO MODELIS PAGRISTAS PATIKIMU
INTERVALO DYDZIU

Reziumé

Inzinerinése konstrukcijose daugiausia susiduria-
ma su dviejy tipy neapibréztumu. PaZintinis neapibréztu-
mas atsiranda dél informacijos neiSsamumo arba jos igno-
ravimo, o rizikingas neapibréztumas — dél paveldéto nepa-
stovumo. Priklausomai nuo daugelio neapibréztumy ir ne-
aiSkumy jtakos gautai informacijai, visos atsitiktiniy dy-
dziy tikimybés arba tikimybiy pasiskirstymas yra arba tiks-
liai Zinomi, arba tiksliai jy nustatyti negalima. Sprendziant
daugeli konstrukcinio patikimumo problemy, triksta in-
formacijos apie neapibréztus parametrus. Intervalo kinta-
mojo parinkimas yra patogus ir efektyvus biidas apibuidi-
nant neapibréztuma. Remiantis $iuo metodu, straipsnyje
siilomas naujas netikimybinis konstrukcinio patikimumo
aibés modelis, paremtas patikimu intervalu ir jo analize.
Konstrukcijos netikimybinis patikimumas yra nustatytas
kaip leistinas dydis tarp jtempiy ir jégos intervaly. Siame
darbe aprasytas netikimybinio patikimumo modelis yra
panaudotas praktinei inzinerinei krumpliaratinés pavaros
kontaktinio nuovargio patikimumo analizei. Gauti patikimi
ir svarbils rezultatai.

H.-Z. Huang, Z. L. Wang, Y. F. Li, B. Huang, N. C. Xiao,
L. P.He

A NONPROBABILISTIC SET MODEL OF
STRUCTURAL RELIABILITY BASED ON
SATISFACTION DEGREE OF INTERVAL

Summary

In engineering structural systems, two types of
uncertainty exist in systems widely. Epistemic uncertainty
comes from incomplete information or ignorance while
aleatory uncertainty derives from inherent variations. Due
to the influence of many uncertainties and vagueness in the
available information, all probabilities or probability dis-
tributions of random variables are precise known or perfect
determination is impossible. For many structural reliability



problems lacking information of the uncertain parameters,
interval variable is a convenient and effective selection for
the uncertainty description. According to this method, this
paper suggests a new nonprobabilistic set model of struc-
tural reliability based on interval analysis and the satisfac-
tion degree of the interval. The nonprobabilistic reliability
of a structure is defined as the satisfaction degree between
the stress-interval and the strength-interval. With the non-
probabilistic reliability model presented in this paper, a
practical engineering example of the contact fatigue reli-
ability analysis for the gear transmission is calculated and
the result is reasonable and reliable.

X.-3. Xyasr, 3.J1. Barr, 1.®. JIu, b. Xyanr, H.11. Xwuao,
JLII. Xe

KOHCTPYKIIMOHHA I HEBEPOATHOCTHAA
MOJIEJIb HAAEXXHOCTU MHOXXECTBA,
OCHOBAHHA {1 HA HAJIEXKHOI BEJIMUYUHE
NHTEPBAJIA

Pes3omMme

B HMHXCHEPHBIX KOHCTPYKIHAX B OCHOBHOM
BCTPCHAIOTCA ABa TUIIA HEOIPCACICHHOCTHU. Pasnmuunrens-
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Hasl HEONpPEJENCHHOCTh IO3HAHUS MOSABISIETCS HM3-32 He-
HOJIHOM MH(OpManMy WM €€ WTHOPHUPOBAHHMS, a PUCKO-
BaHHAsg HEONPEJEIEHHOCTh — M3-3a HACIEICTBEHHOIO He-
MOCTOSTHCTBA. B 3aBUCHMOCTH OT BIIMSIHUSI MHOTUX HEOII-
peleneHHOCTed U HesICHOCTEeH Ha MOJy4eHHYyIo HH(popMa-
IIUI0 BCE BEPOSITHOCTH CITy4aWHBIX BEJIMYMH WM paclipe-
JIETICHNS] BEPOSITHOCTEHN SIBIIIOTCSI TOYHO M3BECTHBIMHU HITH
TOYHOE X OIpEeAeIeHHe HEBO3MOXKHO. [ MHOTHX Ipo-
OrleM KOHCTPYKIIMOHHOHM HAJEKHOCTH HETONHas HH]Op-
Manus W3-32 HEOoIpeAeneHHocTH mapamerpoB. Ilombop
MEpEeMEHHOIN MHTepBaia SBISIETCS MOAXOMIIINM H dhdek-
TUBHBIM BBIOOPOM JUI1 OMMCAaHHUA HEONPEJCICHHOCTH.
[TpumeHsist STOT METOJl, aBTOPHI IPEIaraloT HOBYIO HeBe-
POSITHOCTHYIO MOJENb KOHCTPYKTHBHOW HaJEKHOCTH
MHOXKECTBA, OCHOBaHHYIO Ha aHaJIW3€ W HaJIe)KHOCTH HH-
TepBasia. HeBeposTHOCTHas HaJIe)KHOCTh KOHCTPYKLIUH
OTIpeZIeTsIeTCs] Kak JOIyCTUMasl BETMYMHA MEXIy HHTep-
BaJIAMH HAIIPSHKCHUSI U CHIIBL. MoJienlb HeBEPOSTHOCTHOM
HaJIS)KHOCTH, TIPEUIOKEHHAs B JaHHOM paboTe, MpUMeEHs-
Jachk U IPAKTUYECKOTO MHXEHEPHOTO aHalIn3a KOHTAKT-
HOM ycTanocTH 3y0daroif mepenaun. [lomydeHsr gocToBep-
HBIE PE3YJIbTATHI.
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