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Nomenclature 

xν is spool servo valve displacement; Cd is discharge coeffi-

cient; W is spool servo valve area gradient; βe is effective 

bulk modulus; K is spring stiffness coefficient; f is external 

disturbance force; Q1, Q2 is cylinder chamber flow; ps is sup-

ply pressure; p1, p2 is pressure of chamber; ρ is fluid density; 

m is load mass; B is viscous damping coefficient; A1, A2 is 

piston wording area; Ct is total leakage coefficient; u is con-

trol input signal; x is displacement of piston; V1, V2 is cylin-

der chamber volume. 

 

1. Introduction 

 

The electrohydraulic servo system was widely 

used in the industrial field because it can provide large 

power [1]. But the hydraulic system shows highly inherent 

nonlinear characteristics which pose challenge to control de-

sign. The position control is relatively simple. But some in-

dustrial applications require force control, e.g. robots. How-

ever, the force control is more difficult than the position con-

trol for hydraulic system in the presence of uncertainties and 

strong nonlinearities.  

This issue could be solved by the following two as-

pects. On the one hand, the hydraulic systems need be im-

proved, including the development of advanced hydraulic 

servo valve. On the other hand, some advanced control al-

gorithms were needed for force control of electrohydraulic 

systems. At this aspect, a lot of researchers have proposed 

some advanced algorithms. e.g. Wang proposed an output 

feedback domination approach for force control of an elec-

trohydraulic actuator in the literature [2]. Alleyne and Zhu 

presented an adaptive approach to force control for electro-

hydraulic systems in the literature [3] and [4], respectively. 

Marusak presented a model predictive force control algo-

rithms of an electrohydraulic actuator in the literature [5].  

The sliding mode control is an effective method to 

design controller for nonlinear system. And it is robust to 

uncertainties [6]. In addition, the neural network technique 

is especially suitable for dealing with uncertain control is-

sues [7]. To obtain accurate control, the neural network is 

employed to compensate the external disturbances because 

of its strong approximation ability for the unknown real 

functions [8]. Some researchers had combined the sliding 

mode control and neural network to resolve the issues of 

nonlinear control [9–11].  

In this paper, the dynamics of hydraulic servo sys-

tem is analyzed and a sliding mode controller with RBF neu-

ral network compensation is presented for the force tracking 

issue of electrohydraulic servo system. Because some state 

variables are needed in the controller, a state observer is de-

signed to estimate the derivative and acceleration of force.  

The remainder of this paper is organized as follows. 

The parameters meaning is presented in Section 1. The dy-

namics of electrohydraulic servo system is established in 

Section 2. The design of state observer is presented in Sec-

tion 3. The sliding mode controller with RBF neural network 

compensation based on the Lyapunov method is addressed 

in Section 4. The experimental results of the force tracking 

performance are shown and analyzed in Section 5. The con-

clusion is drawn in Section 6. 

2. Dynamics of hydraulic servo system 

In this section, the dynamics of the hydraulic sys-

tem is obtained that is a fundamental work of controller de-

sign. The hydraulic system that consists of a single-rod cyl-

inder and an electro-hydraulic servo valve is shown in Fig. 1. 

The load is the combination of the inertia load and the elastic 

load.
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Fig. 1 Electro-hydraulic servo system 

 

Q1, Q2 is the function of xν, they are presented as 

follows. 

When xν>0, servo valve flow equation is expressed 
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as follows: 
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When xν<0, servo valve flow equation is expressed 

as follows: 
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In order to reduce the difficulty of controller design, 

above equations must be simplified. We define the function 

as follows [12]. 

 

 
1,  * 0

* .
0,  * 0

if

if
s


 


 (5) 

 

Then the Eqs. (1–4) can be simplified and ex-

pressed uniformly as follows: 
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Where: 
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Where, α is the positive coefficient and u is the con-

trol input. 

Then, Eqs. (6) and (7) is transformed to: 
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The cylinder flow continuity equation is given by 

[13]: 
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The dynamics of the load can be described by: 
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Where, d is the external disturbances and some un-

modeled dynamics. 

The force of the spring is F kx , then F kx and

F kx . 

By combining Eq. (11–13), and F , F and are cho-

sen as state variables, that implies the state variables is
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equation as follows: 
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The simplified state equation is expressed as fol-

lows: 
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3 The design of state observer  

 

The value of the force F can be obtained directly 

via the s-type force sensor. But F cannot be directly obtained 

by differentiating the force signal because of the large 

amount of noises. In order to acquire relatively accurate val-

ues for the 

 

F

 

and

 

F , we design an observer to evaluate 

the

 

values. The observer is defined as follows [14]: 
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Where:
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spectively.  

Then, the error equations of the observer are writ-

ten as follows: 
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4. Control design 

 
4.1. Sliding mode controller 

 

A sliding mode force controller with RBF neural 

network compensation is presented in this section. As 

shown in Fig. 2 The controller is composed of a sliding 

mode controller as the primary controller and a RBF neural 

network controller which is employed to compensate the er-

rors of model uncertainties and external disturbances.  
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Fig. 2 Schematic of control architecture

  

Define force tracking error is: 
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Where xd 
is the desired force. 

The sliding hyperplane is defined as follows [15]:
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Differentiating the Eq. (19) and combining the 

Eq. (15), then following equation is obtained: 
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The candidate Laypunov function is defined as: 
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When the control input is defined as follows: 
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According to Eqs. (20–22), the following inequality 

is obtained: 
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4.2. RBF neural network compensation 

 

The d(t) is uncertain in Eq. (22), we can’t get the 

accurate value in control input. The RBF neural network is 

used to get the estimate value of d(t) due to the excellent 

approximation performance.

 The jth neuron output in RBF neural network is [17]: 
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Where: [ , ]
T

x F F  is the neural network input, cj 

is the central vector and bj is the base width vector.  

The network weight vector is: 
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Where: m is the number of neural network nodes. 

RBF network output is: 
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For any given real continuous function f(x), on a 

compact set 
n

R  there exists a RBF network in the form 

of (26) such that
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The approximation errors are expressed as follows: 
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The performance of RBF is set: 
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The gradient descent method is adopted to adjust 
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the weights of the network. 
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Where: η is the learning factor.  

The network weight adjustment is as follows: 
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Where: α
 
is the momentum factor and k is the iter-

ative step.  

When the control input is revised as follows: 
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Where: Kd>0 and K>ef .  

According to Eqs. (20–21) and (32), the following 

inequality is obtained: 
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This implies that the system is globally asymptoti-

cally stable. 

 

5. Experiment 

 

5.1. Experimental setup 

 

As shown in Fig.3, the experimental platform is 

composed of a cylinder, a servo valve, a s-type force sensor, 

a spring, a hydraulic working station and two industrial con-

trol computers. The load is elastic load which is measured 

by the force sensor. In order to ensure the control algorithms 

are implemented in real-time, they are run in Matlab/Sim-

ulink Real-time Workshop environment. 

 

Force sensorSpring Cylinder Servo valve

 
 

Fig. 3 Experimental platform 

 

Two industrial personal computers communicate 

via the Ethernet, where one is the host computer which is 

used to compile the control algorithm easily and the other 

one is the target computer which is utilized to execute the 

control algorithm in real-time. A PCL-726 module which is 

installed in the target computer is employed to output con-

trol voltage between -5V-5V. The load force is directly 

measured by the sensor and acquired by a PCL-812PG mod-

ule which is manufactured by Advantech Corporation. 

 

 

5.2. parameters values 

Table 2 

The parameters of hydraulic servo system 

Symbols Value 

ps 5 Mpa 

A1 4.9×10-4 m2 

A2 2.9×10-4 m2 

m 4.19 Kg 

A1 =A2 4.5×10-5 m3 

βe  800 Mpa 

ρ 850 kg/m3 

Ct  5×10-13 m3/Pa 

W 1.2×10-2  

Cd 0.8 

k
 

500 N/m 

 

5.3. Experiment results 

 

To validate the effectiveness of the proposed slid-

ing mode force control with BRF neural network compen-

sation approach, the comparison of control performance of 

force tracking between the proposed control method and 

PID control is shown in Figs.4 to 9. Especially, the tracking 

performance experiments with the proposed algorithms ver-

ify its superiority to PID control when the disturbances are 

uncertain. 

In the force tracking experiments of electrohydrau-

lic system, the desired trajectory is set as a sine function

80 32 ( / 3)y sin t  . As shown in Fig. 4, the good track-

ing results can be obtained with well-tuned PID and the slid-

ing mode control with RBF compensation algorithm with-

out external disturbances. Fig. 5 shows the force tracking 

errors. However, the sliding mode control with RBF com-

pensation algorithm can obtain better tracking performance 

and relatively small errors occur compared with PID under 

uncertain disturbances as shown in Figs.6 and 7 shows the 

force tracking errors of the proposed algorithms and PID 

control. As shown in the Figs.6 and 7, the PID is most sen-

sitive to the disturbances, but the proposed algorithm is ro-

bust to uncertain disturbances. 

A sine function with variable frequency and ampli-

tude was also chosen as the reference trajectory to further 

validate the performance of the proposed algorithms. As 

shown in Fig. 8, the reference trajectories are 

y=80+32sin(πt/3) before 12 s and y=80+48sin(πt/4) at the 

rest time, respectively.  
 

 
 

Fig. 4 The force tracking without external disturbances 
 

Even the change of the frequency and amplitude, 

the proposed algorithm can always get good tracking perfor-

mance. The errors of PID algorithm are larger than the errors 

of the proposed algorithm. 
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Fig. 5 The force tracking errors without external disturb-

ances 
 

 
 

Fig. 6 The force tracking with uncertain disturbances 
 

 
 

Fig. 7 The force tracking errors with uncertain disturbances 
 

 
 

Fig. 8 The force tracking at the variable frequency and am-

plitude 
 

 
 

Fig. 9 The force tracking errors at the variable frequency 

and amplitude 

 

6. Conclusion 

 

In this paper, the dynamics of an electrohydraulic 

servo system is analyzed. Then, a sliding mode control ap-

proach with RBF neural network compensation was ad-

dressed for the force tracking control. The algorithm is glob-

ally asymptotically stable under the Lyapunov meaning. The 

experiments demonstrate the algorithms are effective and 

have better performances than the PID control. The algo-

rithms also show the robustness in the presence of uncer-

tainties and strong nonlinearities. 
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SLIDING MODE FORCE CONTROL OF AN ELEC-

TROHYDRAULIC SERVO SYSTEM WITH RBF  

NEURAL NETWORK COMPENSATION 

S u m m a r y 

In this paper, the dynamics of an electrohydraulic 

servo system is analyzed. It is difficult to achieve the precise 

force tracking control due to its high nonlinearities and pa-

rameter uncertainties. For the accurate force tracking con-

trol, a sliding mode control algorithm with radial basis func-

tion (RBF) neural network compensation was proposed. The 

theory verifies that the algorithm is globally asymptotically 

stable. The experimental results show that the proposed al-

gorithm is not only effective and better than the PID control 

in the force tracking control, but also robust to external un-

certain disturbances. 

Key words: electrohydraulic, RBF, neural network, sliding 

mode, compensation control, trajectory tracking. 
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