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1. Introduction 

Heavy-duty machines, in particular cranes, carry 

out the tasks of transporting goods from one place to an-

other. When moving loads, operators are often forced to by-

pass obstacles on the way. Operational mechanisms and 

high operating speeds cause unbalance of the load from the 

equilibrium position. Information about the dynamics of the 

load while transportation, play an important role in the con-

text of its positioning and control of mechanisms [1, 2]. At 

the same time, the limitation of the swing has a decisive ef-

fect on the manoeuvrability, thus minimizing the effect of 

cargo collision with fixed obstacles [3-5]. From a theoretical 

point of view, the dynamics of the load is most easily repro-

duced through the mathematical pendulum model [6-8]. 

This approach is only a certain approximation of the actual 

conditions, and taking into account the vibrations of the 

load-carrying crane structure or rope susceptibility, causes 

that the model receives a strongly non-linear character. The 

published results of model tests have shown the possibility 

of chaotic vibrations in such a system if the system is acti-

vated by excitation with sufficiently high amplitude values 

of external load [8].  

To evaluate the dynamic properties of nonlinear 

systems, a variety of tools may be used. The most effective 

and the most frequently used are numerical methods that al-

low estimation of the largest Lyapunov exponent [9], bifur-

cation diagrams [10], Fast Fourier Transform [11] and Poin-

care cross-sections [12]. In general terms Lyapunov expo-

nents are defined by means of numerical coefficients, which 

characterize the increase of the distance measured between 

trajectories initially located in close proximity, observed on 

the phase plane. Through them, it is possible to determine 

the average rate of convergence or divergence of numerical 

solutions of differential equations. They are therefore a 

measure of the sensitivity of the solution to the initial con-

ditions set. If the phase trajectories converge over time, then 

all exponents take values less than zero. The value of the 

exponents has a significant effect on the rate of transient 

damping, the smaller they are the faster the phenomenon 

goes [13]. If in the fixed motion of one Lyapunov exponent 

assumes a zero value, then the system is steady. Chaotic mo-

tion takes place when at least one of the exponents is posi-

tive. Bifurcation diagrams provide quantitative and qualita-

tive information on period doubling. In this place, it is worth 

mentioning that the term bifurcations in chaos theory is un-

derstood as a division of the path of solutions [9]. Fourier 

transform is one of the most popular tools for analysing lin-

ear and nonlinear dynamic systems. Its basic purpose is 

spectral analysis, which consists in estimating the parame-

ters and properties of the time sequence by spreading it to 

the harmonics of the amplitude-frequency spectrum. At the 

same time, this transformation is based on a mathematical 

apparatus, trigonometric or complex Fourier series, and its 

complete transformation. When transforming the time-to-

frequency signal, the Parseval theorem says that the energy 

contained in the temporal representation is equal to the en-

ergy in the frequency domain. The amplitude-frequency 

spectra of the chaotic behaviour of the system take on a con-

tinuous form, i.e., the whole series of harmonics is excited. 

Poincare maps are created when the trajectory passes 

through a fixed plane at regular intervals. The reference 

plane is determined in such a way as to provide as much 

information as possible about the solutions of the analysed 

equations of motion. In the case of periodic oscillations on 

the Poincare cross-section points are obtained, that can be 

located in different areas of the phase plane. Based on the 

number of points in the Poincare section, it is possible to 

identify the nature of the solution. In case of one-period os-

cillations in the plane one point is visible, while two points 

indicate the two-period oscillations. Chaotic vibrations on 

Poincare map appear as a set of points whose graphical im-

age is composed of shapes called attractors. 

2. Formulation of a mathematical model 

When formulating a computational model, the fol-

lowing simplification assumptions were adopted. The influ-

ence of mechanical vibration of the overhead travelling 

crane structure was mapped by the harmonic kinematic 

force acting on the joint point of the rope to the drum „O”. 

Whereas the element moving in the guides, depicting the 

movement of the crane bridge, was treated as a massless. In 

addition, large oscillations in the plane of load fluctuations 

and energy losses at the rope attachment point were as-

sumed. However, the susceptibility of the rope on which the 

transported load is suspended was omitted. A schematic rep-

resentation of the examined phenomenological model is pre-

sented in the Fig. 1. 

Based on the formulated dynamic load motion 

model (Fig. 1), the differential equations of motion are de-

rived and take the form: 
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After entering the dimensionless time, the equation 
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of motion of the analysed system takes the form: 
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Fig. 1 The phenomenological model of the overhead travelling crane 

 

To illustrate the course of a field line on a phase 

plane, the nonlinear second order equation of motion is 

transformed into a system of two first order equations: 
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On the other hand, the position of the load at any 

moment of time is determined by the equations of the con-

straints: 
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In the case when the impact of crane vibrations is 

omitted, the mathematical model (1) is reduced to the form: 
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Bearing in mind such model assumptions, it is also 

necessary to take into account the factor that causes the 

movement. In the case under consideration, the pendulum 

was forced to move by means of a harmonic moment 

( ).M p cos w  Such a method of forcing the movement 

of the load can be accomplished by appropriate control of 

the hoisting mechanism winch. In the further part of the pub-

lication, the results of computer simulations, which allow 

the assessment of the impact of the mathematical models ac-

cepted for research on the motion of the transported load, 

are illustrated in the form of time-course graphs, multi-col-

ored maps of the maximum Lyapunov exponent, bifurcation 

diagrams, and Poincare cross-sections. 

 

3. Results of model simulations 

The results of computer simulations included in 

this chapter were obtained for two characteristic models rep-

resenting the dynamics of the crane load movement. In order 

to illustrate the complex non-linear dynamics of the load 

movement, research tools enabling determination of chaotic 

motion zones were used. The effect of damping on the 

structure of the Poincare cross section and the largest Lya-

punov exponent was also examined. The simulations were 

performed assuming a mass (crane lifting capacity) of 12.5t 

and length of the rope (hoisting height) 10m and zero initial 

conditions defining the speed  (0)=0. In the generalized 

coordinate, the initial angular displacement was assumed as 

φ(0)=1°. 

3.1. Results of the model without crane structure vibrations 

included 

Influence of nonlinear model parameters on its dy-

namics is depicted in the form of multi-coloured map of 

largest Lyapunov exponent (Fig. 2). Based on them, it is 

possible to determine the zones in which the movement of 

the transported load is chaotic. Sample bifurcation diagrams 

are shown in Fig. 3. 

The influence of the dimensionless external ampli-

tude on the drawn image of the attractor is shown in the di-

agram (Fig. 4, a). Analogous tests were performed with re-

spect to the dimensionless damping factor (Fig. 4, b). Hav-

ing in view of obtaining an acceptable resolution, 160000 

simulations were performed, which mapped the different 

conditions of input function affecting the load to the ana-

lyzed model. On the other hand, in relation to maps and 

graphs of the largest Lyapunov exponent, the graphic im-

ages were obtained assuming a constant distance  = 0,0001, 

between the conditions characterizing the displacement and 

the initial velocity. 
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                                                   a                                                                                              b 

Fig. 2 Largest Lyapunov exponent maps: a) β = 0.7, b) β = 0.1 

           

          

                         

                                                       a                                                                                              b 

Fig. 3 Diagrams assuming the following parameters β = 0.7,  = 0.5, a) bifurcation diagrams, b) largest Lyapunov exponent 
 

                               

                                                 a                                                                                                    b 

Fig. 4 Graphical representations of attractors based on the assumption of the following parameters: a) β = 0.7,  = 0.5, b)  

p = 1.275,  = 0.5
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3.2. Results of the model with crane structure vibrations in-

cluded 

Based on the analytical relationships presented, 

computer simulations were conducted, the main purpose of 

which was to evaluate the influence of particular parameters 

of the mathematical model on the dynamics of the trans-

ported load. In the first stage of model research, areas where 

the system may behave chaotically are defined. For this pur-

pose, a multi-coloured map of the distribution of largest 

Lyapunov exponents was generated (Fig. 5). 

When the model is forced by harmonic kinematic 

force: p = 1.63,  = 1.48 and dimensionless damping factor 

value is β = 0.628, there are two stable orbits on the phase 

plane. Orbits were assigned to the corresponding basins of 

attraction (Fig. 6).  

The blue areas represent the collection of initial con-

ditions for the orbit in red. Even though both orbits have a 

geometrical similarity, their corresponding trajectories of 

motion in the x-y plane are different. 

 

 

 

 

a 

 

b 

 

c d 

Fig. 5 Results of model tests: a) bifurcation diagram  = 0.5, b) bifurcation diagram  = 1.5, c) bifurcation diagram  = 

2.5, d) Multi-coloured map of the largest Lyapunov exponent distribution β = 0.5 
 

               

                                        a                                                                                                  b 

Fig. 6 Results of model tests p = 1.63,  = 1.48, β = 0.628: a) basins of attraction, b) trajectories of load movement in x-y 

plane
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The results of numerical calculations illustrating 

the chaotic behaviour of the studied system are presented in 

the following part of the paper. The impact of the parameter 

p on the structure of the Poincare cross-section was investi-

gated (Fig. 7, Fig. 8).  

During the sensitivity testing of the system due to 

the initial conditions, a fixed distance  = 0.0001 in moment 

τ[0] was assumed, between two trajectories. Attractor of the 

Poincare shape resembles the symbol of Chinese philosophy 

Yin and Yang (Figs. 7, a and 8, a). 

4. Conclusions 

On the basis of computer simulations, it is possible 

to formulate the following conclusions: 

1. There is no chaotic phenomenon in the model taken 

into the study if the operator properly and in accordance 

with the manufacturer's guidelines operate the crane. 

2. The increase in the damping coefficient representing 

the loss of energy in the structural node in which the rope 

connects to the drum has a significant effect on the "areas" 

of the dynamic excitation parameters values in which phe-

nomena with chaotic nature may occur (Fig. 2).  
 

 

a 

 

b 

 

c 

Fig. 7 Results of model tests p = 1.68,  = 0.5, β = 0.1: a) 

Poincare cross-section, b) timeline showing sensitiv-

ity to initial conditions, c) amplitude-frequency spec-

trum 

3. Limiting the damping coefficient causes the Poincare 

cross-section, seen in the phase plane, to adopt a complex 

structure (Fig. 4, b). 

4. The increase in the dimensionless amplitude of the 

kinematic excitation p results in higher harmonics in the fre-

quency-amplitude spectrum (Figs. 7, c and 8, c), and Poin-

care cross-section shows a more complex structure. 

5. The system is sensitive to initial conditions. The 

proximity of initial conditions can lead to different stable 

orbits, as shown in the graphs (Fig. 6, a). At the same time, 

the parameters of the mathematical model have a significant 

influence on the shape of the basins of attraction. On the 

other hand, plotted trajectories in the x-y plane of motion are 

mirrored (Fig. 6, b). 
 

 

a 

 

b 

 

c 

Fig. 8 Results of model tests p = 3,  = 0.5, β = 0.1: a) 

Poincare cross-section, b) timeline showing sensitiv-

ity to initial conditions, c) amplitude-frequency spec-

trum 
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NUMERICAL STUDIES OF THE OVERHEAD 

TRAVELLING CRANES LOAD MOTION 

S u m m a r y 

The paper presents the results of numerical inves-

tigations of the overhead travelling cranes load motion. The 

model studies assume that the load is suspended on the in-

extensible rope. Conversely, its motion is triggered by an 

external moment. In addition, energy losses in the construc-

tion node connecting the rope to the drum are included. At 

the same time these losses were mapped through a linear 

viscous damper. The main objective was to evaluate the im-

pact of individual mathematical model parameters on the 

dynamics of the transported load. The results were com-

pared between two models: with/without crane structure vi-

brations included. The results were illustrated by multi-col-

ored maps of the largest Lyapunov exponent, bifurcation di-

agrams, and Poincare cross-sections. 
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