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1. Introduction 

To date, soil application of mineral fertilizers is 

one of the key factors in increasing the yield [1-3]. This 

leads to higher requirements to the mineral fertilizers, which 

are aimed at obtaining the maximum number of agricultural 

products, as well as compliance with environmental safety 

[4, 5]. For soils prone to erosion, almost the only way to 

carry out intensive farming will be tilter-free plowing. This 

practice significantly reduces the risk of soil erosion, but 

there are problems with other agricultural technicians, as it 

is fertilizing, sowing material, etc. historically optimized for 

widely used dump plowing and in the case of application of 

soilless - lead to unproductive fertilizer consumption and 

sowing material.  

One of the advanced technology in modern agri-

culture is the intra soil differentiated (precisely) fertilization 

- the introduction of exact amounts of fertilizer directly to 

the roots of plants (or in the furrow at seeding). A common 

feature of the machines for this type of fertilizer is that the 

fertilizer is fed from a mine hopper to multiple tines (work-

ing bodies), which put it into the soil. Studies have shown 

that to realize maximal effect of this method it will be nec-

essary that all the tines uniformly feed the same amount of 

fertilizer. Improving the uniformity of fertilizing increases 

yields of cereals to 15 – 20% [6, 7].  

Among the existing systems for feeding (sowing) 

the material (fertilizer, seeds) in the soil most attention de-

serve the pneumatic ones, in which a flexible pipe takes the 

material to the working bodies [8-10]. The advantages of 

this apparatus are: the high frequency oscillations make to 

the seeding system resistant to external factors, created a 

major force capable to destroy any connection between the 

individual elements of the body [11-13]. The main problem 

with them is uniform submission of the material to any pipe-

line of the system. The basis of the solution of this problem 

is to design a dosing device which provides uniform deliv-

ery of fertilizer to all working bodies.  

There are different designs of dosing devices for 

granular bulk material, and as a rule they do not provide a 

uniform density of the material flow in the whole section 

because it was not necessary in the cases for which they 

were designed [14-15].  

The object of this study is a dosing device which is 

being developed by young scientists from Kazakhstan [16].  

The purpose of this research is to build a dynamic 

model to describe the behaviour of a hopper under forced 

vibration. Since a dosing hopper operates under forced os-

cillations (vibration) to achieve a uniform distribution of the 

sown material, oscillations that take place in particular units 

and in the mechanisms cannot be neglected. This is why this 

work – a model describing the behaviour of a dynamic sys-

tem, and a system in general, with vibrations at different fre-

quencies – is needed. One of the goals set was to investigate 

unit performance at frequencies of vibration that are close 

to resonant frequency. If the system does not enter into res-

onance in any of operating modes that give a uniform ferti-

lizer/seed application, dynamic system design will be as-

sumed successful.  

 
 

 
 

Fig. 1 Design of the dosing device 

 

The design of the dosing device is shown in Fig. 1.  

The material at the bottom of the hopper 1 is loos-

ened by 2 and entering the chamber 4, wherein the vibrating 

plate 5 provides to fill the entire cross section and uniformly 

distributes of the material on the conveyor belt 6. An equal-

izer 7 and relief of the belt 8 contribute to improving the 

uniformity of the flow. 

2. Method 

A dynamic model of the dosing device is shown in 

Fig. 2. 

Body 1 (hopper) is set to 4 elastic damping sup-

ports (shown on corners of lower part of hopper) - makes 

small-amplitude movements along the axes of the coordi-

nate system O1x1y1z1 and small-amplitude rotations about 

the same axis. It has 6 degrees of freedom. Body 2 (rod) 

makes small-amplitude movements along the axis O2x2 - 
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translation relative to body 1 due to the prismatic connection 

between the two bodies. 

 
 

Fig. 2 Dynamic model of the dosing device 

 

There is a linear-elastic damping element between 

body 1 and body 2. Forced vibrations are excited by electro-

magnet, acting on the axis O2x2 on body 2. The mechanical 

system is with 7 degrees of freedom. 

 

2.1. Kinematics 

 

To determine the kinetic and potential energy, en-

ergy of dissipation, and generalized forces, kinematics of 

the mechanical system must first be studied - positions of 

points (mass centers) and speed - angular of the bodies and 

linear of the points [14].  

A vector of generalized coordinates that define the 

position of the mechanical system of bodies in space is: 

 
T
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.

x y z
x y z x     q  (1) 

 

Matrices of transformation through which the vec-

tors are projected in reference coordinate system are: 

- for body 1: 
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- for body 2: 
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Vectors of the position of the mass centers of the 

bodies projected in the reference coordinate system are: 

- for body 1: 
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- for body 2: 
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Vectors of absolute linear velocity of the mass cen-

ters projected in reference coordinate system are: 

- for body 1: 
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- for body 2:  
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Vectors of absolute angular velocity of bodies pro-

jected in local coordinate systems (they are necessary to cal-

culate the kinetic energy of the mechanical system) are: 

- for body 1: 
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- for body 2: 
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2.2. Dynamics  

 

The kinetic energy of the mechanical system, the 

potential energy of deformation of the elastic elements are 

calculated as well as from the weights of the bodies the en-

ergy of dispersion of the damping elements was calculated 

[14]. From kinetic energy through differentiation in gener-

alized speeds are obtained matrix of mass-inertial properties 

of the mechanical system. From potential energy by differ-

entiating a generalized coordinate are obtained matrix of 

elastic properties of the mechanical system. From the energy 

of dispersion by differentiation in generalized speeds are ob-

tained matrix of the damping properties of the mechanical 

system. Generalized forces are calculated taking into ac-

count the forces that excite vibrations and their applied 

points. 

Using the Lagrange’s equation of 2nd kind, a sys-

tem differential equations is compiled which describes the 

forced small-amplitude oscillations of the mechanical sys-

tem. 

 

2.3. Kinetic energy 

 

The kinetic energy of the system is the sum of ki-

netic energies of the two bodies: 
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Matrix of mass and inertial properties: 
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2.4. Potential energy 

 

The potential energy of the mechanical system is 

the sum of the potential energies of deformation of any flex-

ible elements and the weights of the two bodies: 
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A matrix of elastic properties is: 
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2.5. Energy of dissipation 

 

The energy dissipation of the mechanical system is 

the sum of the energies of dissipation of all damping ele-

ments:  
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where: 
P

b  is damping coefficient; ij

N
V is speed of defor-

mation of the elastic element. 

A matrix of damping properties is: 

 

[ ]; .
q. q

ij ij

R
b b


 

 
B  (19)  

 

Generalized forces.  

A vector of generalized forces is: 
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3. Results 

Differential equations describing the forced vibra-

tions of the mechanical system. 

A system of differential equations which describes 

the forced small-amplitude oscillations of the mechanical 

system is: 

 

7 7 7 1 7 7 7 1 7 7 7 1 7 1
. . . .

      
  M q B q C q Q  (21) 

 



 801 

Solution of the differential equations.  

Finding general solutions of the system (21) is re-

lated to the determination of the initial conditions of motion 

q(0) and q (0), which depend on the movement of the sys-

tem. 

In harmonic kind of disturbing forces and initial 

conditions    0 0
0, 0 , 0t q q q q   , general system solu-

tions of differential equations written in matrix form are: 
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where: Q is the vector of generalized external forces;  and other symbols are: 
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As an example, a small model of a real fertilizer 

hopper is solved, developed in Kazakhstan Agro Technical 

University, Astana, Republic of Kazakhstan (Fig. 3). 
 

 
 

Fig. 3 Small model of a real fertilizer hopper 1 together with 

chamber 4 from Fig. 1 

4. Discussion 

 

As an example, for the calculation, there is consid-

ered a mechanical system with investigated coulter scatter-

ers of the fertilizer and accepted real constructive parame-

ters.  

In Table 1, parameters of the small model of the 

fertilizer hopper are given as Input data (verification was 

performed on a reduced large-scale copy of a real hopper; 

calculations were made using data obtained with a scaled 

model to compare the results): masses; mass inertial mo-

ments, geometrical parameters, elastic and damping charac-

teristics of elastic-damping elements and exciting forces. 

The reference coordinate system coincides with the coordi-

nate system of body 1.  

 

Table 1  

Parameters of the small model of studied fertilizer hopper 

 m, kg Jxx, kg∙m2 Jyy, kg∙m2 Jzz, kg∙m2 Jxy, kg∙m2 Jxz, kg∙m2 Jyz, kg∙m2 

Body 1 25.13 1.727 1.6575 1.7261 0 0 0 

Body 2 0.1068 0.000006 0.000056 0.000056 0 0 0 

 cx, N/m cy, N/m cz, N/m bx, N∙s/m by, N∙s/m bz, N∙s/m p. lkx, m lky, m lkz, m 

Body 1 35∙103 35∙103 80∙103 98 67 47 

1 0.110 0.260 -0.173 

2 0.110 -0.260 -0.173 

3 -0.109 0.260 -0.173 

4 -0.109 -0.260 -0.173 

Body 2 5∙103  

Fix, N Fiy, N Fiz, N Mix, N∙m Miy, N∙m Miz, N∙m lPx, m lPy, m lPz, m 

50sin(50t) 0 0 0 0 0 0.054 0 -0.267 

Coordinates in m of the centre of coordinate sys-

tem of body 2 are as follow:  
1
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Numerical and graphical results for free, damped 

and forced vibrations of the mechanical system (mentioned 

mechanical system shown on Fig. 2): 

Natural frequencies, Hz: 
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Natural forms (relative units): 
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0 0 0 0 0.02 0 -0.99

0 -0.09 0 -0.99 0 -0.01 0

0.01 0 -0.99 0 -0.08 0 0.01
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Fig. 4 shows 3D graphic of generalized coordi-

nates, natural frequencies and natural forms of the mechan-

ical system.  

In Fig. 5 the diagrams of free damped vibra-

tions of the system at all generalized coordinates are given.  

In Fig. 6 the diagrams of forced vibrations of the 

system at all generalized coordinates are given. 

In Fig. 7 the diagrams of amplitude-frequency 

characteristics of the system at all generalized coordinates 

are given. 
 

 
 

Fig. 4 Generalized coordinates, natural frequencies and 

natural forms of the mechanical system 

 
 

 
 

Fig. 5 Diagrams of free damped vibrations of the system at all generalized coordinates 
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Fig. 6 Diagrams of forced vibrations of the system at all generalized coordinates 
 

 
 

Fig. 7 Diagrams of amplitude-frequency characteristics of the system at all generalized coordinates 

 

The obtained results show that the study design of 

the small model of fertilizer hopper will work outside the 

resonance frequencies (7.96 Hz). The properties of the elas-

tic-damping elements are selected so that free vibrations are 

damped within 1 s. Figs. 5, 6 and 7 depict the major achieve-

ment of this work. These graphs show that free oscillations 

decrease over a limited period of time, which is about 1 s. 

This really facilitates the avoiding of resonant zones. Forced 
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uniform oscillations are reproduced in time, and do not ex-

perience the influence of free oscillations. Such a result falls 

within the set goal. These computational results are in tune 

with the results of modelling that showed a scaled model not 

entering into resonance at any frequency from the broad 

range of frequencies of the electromagnetic actuator. In or-

der to improve the operation of the hopper elasticity coeffi-

cients of elastic elements may be changed [16]. Thus reso-

nant zones of operation are avoided should any change in 

operating frequency of the electromagnet become neces-

sary. 

 

5. Conclusion 

 

A methodology for dynamic analysis of the hopper 

of a fertilizer applying machine is proposed.  

After the design development of the hopper, spe-

cific values for the masses, mass moments of inertia, geom-

etry, elastic and damping characteristics of elastic-damping 

elements exciting forces will be received.  

With these input data using the developed method-

ology numerical and graphical results for forced vibrations 

of the device can be obtained. These will provide for the op-

timization of the design in order to avoid resonance of the 

system. 

Thus, the wear of the apparatus will decrease while 

improving the quality of his work. The results of this article 

can be used to further improve the quality of the point of 

fertilization in the application of forced vibration of the hop-

per car. 
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FORCED VIBRATIONS OF THE HOPPER OF 

FERTILIZER APPLYING MACHINE 

 

S u m m a r y 

 

The cultivation of crops is not only an important 

part of the economic sector of the state, but also the condi-

tion of food security of citizens. A key method of increasing 

yields is fertilizer in the soil. However, most machines can-

not efficiently allocate and apply the fertilizer in the soil. In 

this regard, a dynamic model of the hopper of fertilizer ap-

plying machine is created. A methodology for determination 

of the natural frequencies of the mechanic system is pro-

posed. Using matrix mechanics, equations for determining 

the kinetic and potential energy are derived. In the paper dif-

ferential equations for description of forced small-amplitude 

vibrations of the system are composed and solved. Thanks 

to them the natural frequencies of the system are deter-

mined. The results are intended for research and optimiza-

tion of a real machine, developed in KazATU – Astana, Re-

public of Kazakhstan. 

 

Keywords: dosing device, dynamic model, fertilizing ma-

chine, vibrations, mechanical system. 
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