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1. Introduction 

Gaudi’s affirmation that „there are no straight 

lines or sharp corners in nature” [1-2], is one of the most 

direct and succinct expression of the fact that the world we 

are living in is a nonlinear one. The development of math-

ematics is known starting 5000 years ago with the Assyri-

ans, but only relatively recently, ideas such as replacing the 

arch of a curve, in the vicinity of a point from the curve, 

with a fragment of the tangent passing through the consid-

ered point, were accepted. This lead to the independent 

invention, by Newton and Leibniz, of differential calculus 

[3], one of the most powerful instruments of investigation 

of the phenomena of the world. Not long after, Newton 

stipulates the renowned second law, [4] this being the first 

differential equation. Thus appears, a new domain of 

mathematics where the unknowns are the derivatives of 

functions, appear. Newton, then Bernoulli and other emi-

nent mathematicians offer methods of solving particular 

cases of differential equations. From the requirement of 

modeling the surrounding world, the theory of differential 

equations develops rapidly and nowadays is a self-

determining branch of mathematics [3], [5]. At the same 

time with the development of differential equations theory, 

the conclusion that there are few situations when an analyt-

ical solution can be found was reached. Furthermore, ma-

jor difficulties occur when the differential equation is not a 

linear combination of its derivatives and thus the most im-

portant criterion of classification of differential equations 

was also set. Newton’s second law and the observation 

made by Gaudi point to the conclusion that it is expected 

that the equations describing mechanical phenomena are 

nonlinear differential equations. The particular case when 

linear differential equations describe a phenomenon is, 

under a more rigorous analysis, the effect of an approxima-

tion, applicable for a narrow domain of investigation. To 

support this affirmation one can give examples such as: the 

constant gravitational acceleration, the relation for the cur-

vature of a bended bean etc. [6]. This procedure of lineari-

zation of a nonlinear differential equation (NoDE) in the 

vicinity of a point is a technique frequently met in the 

study of NoDE. Fidlin [7] analyses the causes producing 

nonlinear effects in mechanical applications and firstly 

identifies the dry friction contacts and collisions. Another 

source of nonlinearities discovered by Fidlin is an unbal-

anced part in rotation motion, present in all types of crank 

mechanisms. The importance of the problem is also under-

lined in a variety of applications [8-13]. The present paper 

presents a nonlinear dynamic system where both dry fric-

tion and a rotating unbalanced part are present. The un-

known parameters are identified and the equations of mo-

tion are deduced and afterwards numerically integrated. 

Experimental tests were carried out using a laboratory de-

vice and the results are compared to the theoretical ones.  

2. Theoretical model. Obtaining the equations of mo-

tion and their integration. Discussions 

A body having the mass M  and the moment of 

inertia with respect to the center of mass  GzJ  performs a 

rotation around an axis parallel to the central axis of inertia 

(the distance between the two axes is  ), as in Fig. 1. 
 

 
 

Fig. 1 Eccentric rotor 

 

The rotation pair is obtained using a spindle of r  

radius and the coefficient of dry friction from the spindle-

base contact is  . The motion of the rotor is desired con-

sidering that the initial angular velocity of the rotation mo-

tion is 
0

 . The hypothesis of rigid actuating shaft is ac-

cepted and it results that the motion of the rotor is a plan 

parallel one. Thus, three scalar equations are available: two 
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resulting from the theorem of the motion of the center of 

mass and one from the moment of momentum theorem.  

The unknowns of the problem are: the angle   

that specifies the position of the center of mass, the values 

of the normal reaction N  and of the friction force T (tan-

gent to the surface of the spindle) with the mention that the 

Amontons-Coulomb friction law [14] gives the relation 

between the last two:   

 

NT  . (1) 

 

In order to identify the friction force, it must be 

considered that in the rotation pair there is actually a sur-

face contact and the normal reaction N  is in fact the re-

sultant of a system of elementary pressure forces whose 

reduction conducts to a force N  characterized by magni-

tude and direction. The last unknown is a parameter re-

quired to characterize the orientation of the normal reac-

tion; the angle made by the direction of the normal N  

with the positive semi-axis Ox  is chosen to be this param-

eter. The versor of this direction id denoted u  and is ex-

pressed as function of the versors i , j  and k  of the im-

mobile system, using the relations:  

 

.cos sin  u i j  (2) 

 

The versor of the tangent force T  denoted v  is 

defined as: 

 

.sin cos     v k u i j  (3) 

 

The versors of the system attached to the rigid, 'i  

and 'j  are expressed using similar relations: 

 

 sincos jii ' ;  (4) 

 

 cossin jij ' . (5) 

 

The center of mass of the rotor has the position 

vector expressed by: 

 

 sincosG jiir  ' . (6) 

 

The theorem of motion of the center of mass [15] 

is written as: 

 

GTNr GM  ,  (7) 

 

and explicitly: 

vuir  sgnTNMgM G  . (8) 

In the relation (8), xsgn  represents the signum 

function and it was introduced with the purpose to consider 

the friction force opposing to the relative motion between 

the contacting surfaces. The moment of momentum theo-

rem [15] written with respect to the center of mass has the 

following vector form:  

 

)sgn( vuk   TNGCJG  ,  (9) 

where GC  is the position vector of the point C  - the so 

called point of application of the normal, with respect to 

the center of mass G . From Fig. 1 it is noticed that:  

 

ui rGC  ' . (10) 

 

Considering all the previous relations and making 

the calculus, the following system of scalar equations is 

obtained: 

 
2

2

( )

,

( ) ,

{[ ( ) ( )]

} .

z

M sin cos Mg Mg sgn sin

Ncos

M cos sin N cos sgn N sin

J cos sgn sin

r sgn

       



        

       

 

    





   
     

  


 (11) 

 

The system (11) has as unknowns the parameters 

 ,   and  . The system is linear with respect to the first 

two unknowns but, considering the angle  , the solution 

will be expressed using the function  xatan , which is a 

multiform function. To avoid this, two supplementary un-

knowns, xN  and yN  are considered:  

 

.;  sinNNcosNN yx   (12) 

 

Now, the system (11) takes the form:  
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

   

 (13) 

 

The first two equations of the system (13) are lin-

ear with respect to xN  and yN . After finding xN  and 

yN  from the first two equations and replacing them into 

the last equation, the following results: 
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The Eq. (14) is an irrational equation with respect 

to   [16]. To solve it, the radical term is passed into the 

right member and the equation is raised to the power of 

two and an equation of second degree is obtained. Raising 

at power introduces strange roots and therefore, after solv-

ing the equation of second degree the solution must be 

chosen by direct verification. The next notations are intro-

duced: 
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and the solution of equation (14) is one of the solutions of 

the equation: 

 

0
2

 CBA   ,  (16) 

 

having the well-known solutions: 

 

2

1,2
.B B AC A     

  
 (17) 

 

It is obvious that by replacing the relations (15) 

into the solutions (17), two nonlinear ordinary differential 

equations of second order are obtained. The attempt to 

apply for a given case, a numerical procedure for obtaining 

the solutions of the two equations, lead to disappointment 

each time. Practically, the algorithm stopped for values of 

the integration interval smaller than 1sec , which contra-

dicts the physical reality. A more detailed analysis of the 

results underlines the correct solution of the equation (16) 

as: 

 

2

1,2
.B B AC sgn A     

  
 (18) 

 

The error was caused by raising the equation (14) 

to the power of two when: 

 

1
2

xsgn , (19) 

 

relation that obviously is not reciprocal. With the law of 

variation of the position angle   known, the components 

xN  and yN  of the normal reaction are found from the 

first two equations of the system (13):  
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(20) 

 

and afterwards, the angle   is obtained:  

),( yx NNangle . (21) 

The angle(x, y) function is the function that re-

turns the angle form the domain [0,2 π) made by the vector 

radius of the point of coordinates (x, y) with the positive 

Ox semi-axis. For a set of values of the parameters from 

the coefficients A, B and C from relations (15) convenient-

ly chosen, the equation (18) was integrated numerically 

using the Runge-Kutta 4, [17] with constant step-size 

method. Afterwards, using the equation (21), the angle Ɵ 

and the size of the normal reaction N were found. The an-

gular velocities of the rotor and of the direction of normal 

reaction are presented in Fig. 2. As expected, in a first 

stage of the motion, the rotor performs a continuous rota-

tion motion, after which it performs an oscillatory motion 

with linearly decreasing amplitude, characteristic to dry 

friction. The normal reaction also has a continuous rotation 

at the beginning of the motion and at a certain instant, it 

turns into oscillation motion. It is noted that the moments 

when the two rotation motions change into oscillation mo-

tions doesn’t coincide, but at the instant of the transfor-

mation, both motions have the highest amplitude of the 

entire process.  
 

 
 

Fig. 2 Angular velocity of the rotor (blue) and angular ve-

locity of the direction of normal reaction (red) 

The variations of the dimensionless normal reac-

tion (obtained by dividing to the weight of the rotor) and of 

the dimensionless angular velocity of the direction of nor-

mal reaction (obtained by dividing to the initial angular 

velocity 
0

 ) are presented in Fig. 3. An interesting conclu-

sion results from the plot: the size of the normal reaction is 

minimum at the moment when the motion of the normal 

turns from rotation to oscillation motion. 
 

 
 

Fig. 3 Dimensionless variation of size of the normal reac-

tion and of the angular velocity of its direction  

 

3. Experimental device: description, running and re-

sults 

 

A simple device, of schematic shown in Fig. 4, is 

proposed to carry out tests in order to validate experimen-
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0
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tally the theoretical results obtained above. A steel disc of 

radius 
2

r , mass 
2

m  and central moment of inertia 
2G

J  is 

mounted coaxially to a brass bushing of negligible mass, 

into which a cylindrical hole of radius r  is made. Two 

holes, diametrically opposed are made into the disc, with 

the centers at a distance 
0

r  from the axis of the disc. Two 

discs of mass 
1

m , radius 
1
r  and central moment of inertia 

1G
J  are mounted with screws into the two holes, as shown 

in Fig. 4: first, both into the same hole to obtain an unbal-

anced rotor, as in Fig. 4a, and secondly, as in Fig. 4, b, 

corresponding to a symmetric rotor.  
 

 

 
                       a                                               b 

Fig. 4 The principle of obtaining the balanced rotor (a) and 

the unbalanced rotor (b) 

The entire assembly can rotate about a rigid steel 

shaft, mounted horizontally on the working table, as shown 

in Fig. 5, a, where the general view of the experimental 

set-up is presented. 
 

  

                       a                                               b 

Fig. 5 Experimental set-up: (a) general view; (b) detail for 

finding the law of motion from table data  

For the unbalanced rotor as in Fig. 4a, the follow-

ing characteristics are found: 

- the mass M : 

2 1
2M m m  ; (22) 

- the position of the center of mass with respect to 

Oxy  frame: 

 1 0 1 2
2 2m r / m m   ; (23) 

- the moment of inertia with respect to the center of 

mass: 

2 2

2 2 1 0
2[ 2( ) ]

z G G
J J m J r      . (24) 

For the balanced rotor, the mass is found using 

the relation (22), the center of mass is coincident with the 

center of the disc and the moment of inertia is: 

1

2

2 1 0
2( )

z G G
J J J m r   . (25) 

Table 1 presents the constructive and inertial 

characteristics of the rotor in a concise manner.  

Table 1 

Constructive and inertial parameters 

Notation Value Units 

r  0.005 [m]  

0r  0.080 [m]  

1m  0.300 [kg]  

1r  0.025 [m]  

1GJ  9.375·10-5 2
[kg m ]  

2m  1.100 [kg]  

2r  0.095 [m]  

2GJ  4.96·10-3 2
[kg m ]  

M  1.700 [kg]  

  0.028 [m]  

zunbalancedJ  7.64·10-3 2
[kg m ]  

zbalancedJ  8.99·10-3 2
[kg m ]  

 

The motion of the assembly is initiated by hand. 

In order to establish the motion of the rotor, a disc with 

twelve marks angularly equidistant is applied on the frontal 

face of the steel disc. The motion is filmed using a high 

speed camera that captures 480 frames / sec  and afterwards 

the footage is split into frames. The time required for a 

radius to change the orientation with a stipulated angular 

position is found. Initially, a non-contact digital tachometer 

is utilized for establishing the law of motion. But for short 

intervals of motion (of order 3-5 sec) and reduced number 

of rotations, the tachometer does not accurately describe 

the variation of the signal. regarding the assembly accord-

ing to the schematics from Fig. 4, b, it is intended to test 

the hypothesis of constant friction torque accepted in the 

case of dry friction pairs for the symmetrical rotor; if the 

assumption is confirmed, it allows for finding the coeffi-

cient of sliding friction from the rotation pair, parameter 

required for the simulation of the asymmetric rotor motion. 

The experimental data obtained for the two cases proposed 

in Fig. 4 are presented in Fig. 6. For the unbalanced rotor, 

the angular step considered for the instants of recording the 

position of the radius is o
60 . For the time interval with 

oscillatory motion, the position and instant corresponding 

to convenient positions of the rotor were established. For 

the balanced rotor, the moments consequent to a series of 

complete rotations were found. The experimental data for 

the cases from Fig. 4, presented in graphical form in Fig. 6, 

confirm that the friction torque is constant for the balanced 

rotor (the straight line shape of the plot) while for the un-

1m  

2r  
2m  

1m  

  0r  

  

1G  

G  

2G  

1r  

02 G  
0r  

  
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balanced rotor, the shape of the plot can be compared to 

the one from Fig. 2.   
 

 
 

Fig. 6 Experimental data for the symmetric and asymmet-

ric rotor 

 

The moment of momentum theorem written for 

the balanced rotor is written: 

MgrJ z   , (26) 

resulting in an equation from which the coefficient of slid-

ing friction may be found. The numerical value obtained 

for the slope of the interpolation line 3.008rad / sec   , 

leads to a value of the coefficient of sliding friction in the 

bearing μ=0.325 which is in agreement to the values pre-

sented in technical literature [14], [18]. Since the initial 

angular velocity cannot be ensured constant through manu-

al launching, a straight line, parallel to the plot of the 

symmetric rotor, is traced through the first point of the 

graph of the unbalanced rotor. This corresponds to the var-

iation of the angular velocity of a symmetrical rotor 

launched at the same initial velocity as the asymmetrical 

rotor. Therefore, a comparison can be made between the 

types of speed variation for the two situations, resulting in 

the observation that for the eccentric rotor, the angular 

velocity decreases more rapid than for the balanced rotor.  

In Fig. 7 there are presented side by side the ex-

perimental data and the theoretical solution for the motion 

of the unbalanced rotor.  

The excellent concordance between experimental 

and theoretical results for the rotational phase of the mo-

tion is noted. During the oscillation phase, a delay appears 

at a certain time between the model and the experiment; a 

possible cause may be the change of rotation sense. Thus, a 

more complex model is necessary for considering both 

static friction and dynamic friction (the static coefficient of 

friction being greater than the dynamic coefficient of fric-

tion [19]).  

Another aspect of practical significance concerns 

the energy. For a body in rotation motion about a fixed 

axis, the loss coefficient   defined as the ratio between 

the variation of kinetic energy and the initial kinetic ener-

gy, 
0

/
c C

E E  can be expressed by the relation: 

 
0

2 2 2

0 0C C
E / E /        . (27 

The evolutions of the loss coefficient for the two 

solutions from Fig. 4, for the same initial angular velocity, 

are presented comparatively in Fig. 8. 
 

 
 

Fig. 7 Theoretical data and experimental results for the 

motion of the unbalanced rotor  
 

 
 

Fig. 8 The loss coefficient for the two types of rotor 

Fig. 8 illustrates that for the unbalanced rotor, the 

energy dissipation is quicker. Using the relation (18) it is 

proven that the tendency of energy dissipation intensifies 

significantly with increased launching velocity.  

4. Conclusions 

The paper presents the theoretical and experi-

mental study of an unbalanced rotor, running in dry fric-

tion conditions. Both the dry friction and the centrifugal 

forces induced by the eccentricity of the rotor are sources 

of nonlinearity of the motion of the rotor.  

In the first part of the paper, the unknowns of the 

problem are identified: the law of motion, the normal force 

from the pair, and its orientation. The equations of motion 

are deduced next. In order to obtain the explicit from of the 

law of motion of the rotor, two new variables are intro-

duced: the projections of the reaction force from the pair 

on the axis of the fixed system. Thus, the second derivative 

with respect to the angle of position of the rotor appears in 

an irrational equation. The explicit form of the differential 

equation of motion is sought, for which it is necessary to 

solve the irrational equation, and to choose from the solu-

tions the one that describes the actual motion of the rotor. 

The nonlinear differential equation of motion is numerical-

unbalanced rotor rotation 

balanced 

rotor 

unbalanced rotor oscillation 

theoretical         

experimental 

balanced rotor 

unbalanced rotor 
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ly integrated for a set of parameters conveniently chosen 

and it is observed that the motion of the rotor has two stag-

es: first, a continuous rotation, and secondly, an oscillatory 

motion with linear amplitude attenuation till motionless 

phase. The same remark can be made concerning the direc-

tion of normal reaction from the joint of the rotor, with the 

mention that the instants when the regime changes differ 

for the rotor and for the normal reaction, the oscillations of 

the normal reaction start earlier than the oscillations of the 

rotor. It must also be mentioned that at the instants when 

the change from the rotation to oscillation regime happens, 

the amplitudes of the angular velocity of the rotor and of 

the direction of normal reaction attain a maximum. In addi-

tion, the moment when the regime of motion of the direc-

tion of normal reaction is changing coincides to the mo-

ment when the value of the reaction attains a minimum.  

For the experimental validation of the theoretical 

results, a simple device is used, consisting in a disc that 

can rotate in a vertical plane, about a cantilever shaft. Two 

identical parts can be attached to the disc either in the same 

position, to obtain an unbalanced rotor, or diametrically 

opposed, to form a balanced rotor. The rotor is launched 

into rotation motion by hand, the motion is recorded using 

a high speed camera (480 frames/sec) and after splitting 

the footage into frames, the rotation versus time dependen-

cy values are displayed in a table.   

For the case of the balanced rotor, the decrease of 

angular velocity is linear, which confirms a constant angu-

lar acceleration, resulting from a constant friction torque in 

the bushing. This allows finding the coefficient of sliding 

friction from the bushing of the rotor - a parameter re-

quired for the theoretical study of the unbalanced rotor. 

The experimental data lead to the conclusion that the de-

crease of angular velocity is more rapid for the eccentric 

rotor than for the balanced rotor.  

There is full agreement between experimental and 

theoretical results and thus the correctness of the theoreti-

cal model is proved.  

References 

1. Niemann, M. 2015. Constructive Generation Methods 

for Dungeons. Seminar-Thesis in Procedural Content 

Generation for Games. Westfalische Wilhelms Univer-

sitat Munster. 32 p. 

2. Lorenzi, M. G.; Francaviglia, M. 2010. Art & Math-

ematics in Antoni Gaudi’s architecture: “La Sagrada 

Família”, Aplimat-Journal of Applied Mathematics 31: 

125-146. 

3. Merzbach, U. C.; Boyer, C. B. 2011. A History of 

Mathematics (3rd ed.), New York: Wiley. 688 p.  

4. Newton, I. Translated into English by Motte A. 1846. 

The Mathematical Principles of Natural Philosophy. 

Published by Daniel Adee [Accessed 02.05.2018]. 

http://redlightrobber.com/red/links_pdf/Isaac-Newton-

Principia-English-1846.pdf. 

5. Sasser, J. E. 1992. History of ordinary differential 

equations: the first hundred years, Proceedings of the 

Midwest Mathematics History Society. 1 2p. 

6. Frisch-Fay, R. 1962. Flexible bars. London. Butter-

worths. 228 p.  

7. Fidlin, A. 2006. Nonlinear Oscillations in Mechanical 

Engineering. Berlin Heidelberg: Springer Verlag. 358p. 

8. Flores, P.; Lankarani, H. M. 2016. Contact Force 

Models for Multibody Dynamics. Springer. 171 p. 

9. Jonusas, R.; Juzenas, E.; Juzenas, K.; Meslinas, N. 
2012. Modelling of rotor dynamics caused by of de-

grading bearings, Mechanika. 18(4): 438-441. 

10. Padgurskas J.; Rukuiža, R.; Bansevičius, R.; Jūrė-

nas, V.; Bubulis, A. 2015. Impact of the tribological 

characteristics on the dynamics of the ultrasonic piezo-

electric motor, Mechanika. 21(1): 51-55. 

11. Dzhilavdari, I. Z.; Riznookaya, N. N. 2008. Studies 

of the dynamics of free microoscillations of a pendu-

lum supported by two balls, Journal of Friction and 

Wear 29(1): 1–6.  

12. Song, Z.; Ma, Z. 2010. Nonlinear vibration analysis of 

an eccentric rotor with unbalance magnetic pull, IOP 

Conf. Series: Earth and Environmental Science 12. 

012110  

http://dx.doi.org/10.1088/1755-1315/12/1/012110. 

13. Wan, C. J.; Bernstein, D. S.; Coppola, V. S. 1996. 

Global stabilization of the oscillating eccentric rotor, 

Nonlinear Dynamics 10: 49-62. 

14. Stachowiak, G. W.; Batchelor, A. W. 2005. Engineer-

ing Tribology. Butterworth Heinemann. 832 p. 

15. Pytel, A.; Kiusalaas J. 2016. Engineering Mechanics: 

Dynamics. CL Engineering Publishing. 672 p.  

16. Tussy, A. E.; Gustafson, R.D. 2006. Elementary and 

Intermediate Algebra, Updated Media Edition. Cen-

gage Learning. 1176 p.  

17. Celia, M. A.; Gray, W. G. 1991. Numerical Methods 

for Differential Equations: Fundamental Concepts for 

Scientific & Engineering Appl. Prentice Hall. 464 p.  

18. Bhushan, B.; Gupta, B. K. 1991. Handbook of tribol-

ogy. McGraw Hill. 1168 p.  

19. Marques, P. F. L.; Flores, P; Claro, J. C. P.; Lanka-

rani, H. M. 2016. A survey and comparison of several 

friction force models for dynamic analysis of multi-

body mechanical systems, Nonlinear Dynamics 86(3): 

1407-1443.  

http://dx.doi.org/10.1007/s11071-016-2999-3. 

 

S. Alaci, C. Bujoreanu, F. C. Ciornei, D. Fodorcan  

THEORETICAL AND EXPERIMENTAL ASPECTS 

REGARDING NONLINEAR EFFECTS OF DRY 

FRICTION AND UNBALANCED ROTATIONAL 

MASS IN A DYNAMICAL SYSTEM 

S u m m a r y 

The paper presents a theoretical analysis of a non-

linear system with dry friction and unbalanced rotational 

mass. The equations of motion are deduced and integrated 

numerically. Then, the size and orientation of the normal 

reaction force can be obtained. The model predicts a rota-

tion motion phase followed by an oscillation one. The ex-

perimental results obtained using a laboratory set-up are in 

very good agreement to the predictions of the theoretical 

model. 

Keywords: nonlinear dynamics, dry friction, unbalanced 

rotor. 
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