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1. Introduction 

From more than one hundred years ago till now 

days, the flow around objects with circular and square cross 

sections has attracted the attention of many researchers. The 

subject of flow around these objects and the phenomenon of 

vortex shedding caused by that due to practical applications 

in engineering is of great importance. Among the practical 

applications of these types of streams, flows around chim-

neys, high rise buildings, marine structures, suspended 

bridges, and aircraft's wing, ship's propeller and masts, and 

many more can be mentioned. This type of flow often in-

volves complex phenomena such as flow separation, vortex 

flow and vortex shedding. The formation of a vortex behind 

a rigid fixed cylinder is a complex phenomenon, and despite 

all theoretical and laboratory studies, there are still many 

unknown aspects. In this research, we use the immersed in-

terface method to simulate the flow around the rigid cylin-

ders. In this method, the effect of the presence of a body 

immersed in a fluid by adding a term of force to the Navier-

Stokes equations is considered. An important advantage of 

this method is that there is no compulsion to adapt the points 

of the fluid mesh and the object mesh. Tatsutani et al. stud-

ied voluminous two-dimensional unsteady flow around two 

square cylinders in a channel with a 20% obstruction ratio 

in numerical and laboratory methods. They examined the ef-

fect of the gap between cylinders on flow behavior in Reyn-

olds numbers between 200 and 1600 [1]. Sohankar et al. [2] 

examined the fluid flow around the rectangular cylinders at 

various angles numerically. Their calculations are made for 

numbers Re≤200 and angles between zero and 90 degrees. 

They found that the behavior of all flow parameters at an-

gles of less than 20 degrees and more than 70 degrees had a 

clear difference with other angles. They [3] also numerically 

simulated and studied the non-stationary flow around a cir-

cular cylinder. His calculations were carried out in the range 

of numbers Re = 45-200. His numerical results showed that 

for Reynolds, less than 50 flows behind the cylinder are 

steady and, with increasing Reynolds number, takes on a un-

steady state. Patnike et al. [4] simulated the flow of a circu-

lar cylinder using finite element method. In the range of 

numbers Re = 41-200, they examined the flow through the 

effects of buoyancy. Bruno et al. [5] investigated the flow 

around the cylinder in the Reynolds 40000 by means of a 

finite volume dissociation method. While Lee and Bienkie-

wicz [6] applied a finite element method for simulating a 

large vortex flow through a square cylinder at 22,000 Reyn-

olds. The advantage of immersed interface method over 

other computational fluid dynamics methods is that there is 

no compulsion to adapt the computational grid with the im-

mersed boundaries. So, the flow field can be analyzed nu-

merically using a simple Cartesian mesh domain. In general, 

the grid points aren’t coincided to the immersed intersec-

tion. The main idea of this method (Immersed Interface 

Method) is solving the Navier-Stokes equations over the 

uniform Cartesian grids. The IIM is introduced by Le Veque 

and Li [7] to solve the elliptic equations. Then, this method 

was developed for Stokes flows with the elastic boundaries 

or surface tension [8]. This method (IIM) was extended to 

deal with the flexible border problems using the Navier-

Stokes equations [9]. The immersed interface method was 

developed further for the Navier–Stokes equations in [10, 

11]. The IIM was also used in [12-14] for solving the two-

dimensional stream function vorticity equations on irregular 

domains. Xu and Wang [15] have extended the IIM to the 

3D Na-vier–Stokes equation for simulating fluid–solid in-

teraction. In this research, using a common immersed inter-

face method, the flow around one and two rigid square cyl-

inders is simulated, and the effects of the blockage ratio and 

the distance between the cylinders on the formation of vor-

tices are examined.  

 

2. Governing equations 

 

Navier-Stokes equations for the incompressible 

flow are as follows: 

 

0,u    (1) 

 

2
,

u
u u p u F

t
 
 

         

 (2) 

 

with boundary and initial condition [16]: 
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where: u is the fluid velocity; p is the pressure; ρ is the den-

sity and μ the viscosity of the fluid. The force F which has 

the form: 
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 
( )

( , ) ( , ) ( , ) ,
r t

F x t f s t x X s t ds   (4) 

 

where: ( , )X s t is the arc-length parameterization of ( )t is 

the arc-length, x(x, y) is spatial position, and f(s, t) is the 

force density. Here, δ(x) is the Dirac function. The motion 

of the interfaces is shown as below formulation:  
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The force density using an expression of the form: 

 

 ( , ) ( ) ( , ) ,
e

f s t k X s X s t   (6) 

 

where: k is a constant, 1k , and 
e

X  is the arc-length pa-

rameterization of the required boundary position. The forc-

ing term in Eq. (6) is a particular case of the feedback forc-

ing formulation proposed by Goldstein et al. [17] with β=0. 

In [18], the force is expressed as: 

 

0

( , ) ( , ) ( , ),

t

f s t U s t dt U s t     (7) 

 

where: U is the velocity at the control points, and  and  

 are chosen to be negative and large enough so that U will 

stay close to zero. 

The Navier–Stokes equations are discretized using 

a standard finite difference method on a staggered Cartesian 

grid. Cartesian grid is used for solving interface problems or 

problems with sophisticated geometry have become popular 

recently. Existing Cartesian grid methods for interface prob-

lems can be classified into two general groups: methods that 

determine the jump conditions across the interface and in-

clude them into the finite difference scheme and our method 

which is based on the immersed interface method originally 

proposed by LeVeque and Li [18] falls into the first group. 

Other methods smooth out the singular force before it is ap-

plied to the fluid. When singular forces are applied on a ma-

terial interface, the solutions of the Navier–Stokes equations 

may be non-smooth or discontinuous across the interface. 

Let n and τ be the unit outward normal and tangential vec-

tors to the interface, respectively. The respective normal and 

tangential components of the force density 
1

( , )f f s t n   

and 
2

( , )f f s t    can be related to the jump conditions for 

pressure and velocity as follows [13]: 

 

2
0, , 0,u u f u          

     
 (8) 

 

  2 1

1
, , ,

f f
p f p p

s s
 

 
         

 (9) 

 

2

2 2
, ,

f
u kf u kf n     




      
    

 (10) 

 

.u u p u u n                      
 (11) 

The above equations were derived in [13] and here, 

we have used the same notation for clarity. The jump, [.], 

denotes the difference between the value of its argument 

outside and inside the interface, and (ζ, η) are the rectangular 

coordinates associated with the directions of n  and , re-

spectively. Also, k is the signed valued of the curvature of 

the interface. We assume that n k  = constant, so that n  

can point either towards, or outwards from, the center of 

curvature. We note that from above terms the values of the 

jumps of the first and second derivatives of velocity and 

pressure taken with respect to the (x, y) coordinates are 

achieved by a simple coordinate transformation. We con-

sider the below relations as a simple: 

 

1 1
,xu u n u        

     
 (12) 

 
2 2

2 2 2 2
2 ,yyu u n u n u

             
       

 (13) 

 

where: 
1 2

( , )n n n  and 
1 2

( , )    are the Cartesian com-

ponents of the normal and tangential vectors to the interface 

at the point considered. 

We employ a pressure- increment projection algo-

rithm for the discretization of the Navier-Stokes equations. 

The velocity field u and u are defined at the vertical edges 

and horizontal edges, respectively.  Given the velocity 
n

u , 

and the pressure 
1

2
n

p


, we compute the velocity 
1n

u


and 

pressure
1

2
n

p


, we compute the veloncity 
1n

u


and pressure 

1
2

n
p


in there steps. 

Step 1: compute an intermediate velocity field 
*

u

by solving: 
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Where, the advective term is extrapolated using the 

formula:  
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The diffusion term is approximated implicitly as: 
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And the pressure gradient term is given by: 
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The MAC gradient operators are defined as:  
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Step 2: Compute a pressure update 
1n 

  by solv-

ing the passion equation: 

 
*

2 1 1.
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n nu
n

t
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This is accomplished by solving the discrete sys-

tem: 
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Where the MAC divergence operator is defined as 

follows: 
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Step 3: Update pressure and velocity field accord-

ing to: 
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The operators h
  and 

2

h
  are the standard three point 

central difference operators and 1,...,5
i

C   are the correc-

tion terms which are only non-zero at the points near the 

interface and are calculated using generalized finite differ-

ence formulas of the type introduced in the previous section. 

This method requires solving two Helmholtz equations for 
*

u in Eq. (14) and ine poisson equation for 
1n 

  in Eq. (19).  

Having solved fir 
1n

u


 at the grid points, we now 

compute the velocity at the interface. The velocity at the 

control points, k
U  is interpolated from the velocity at the 

grid points. Thus, we can write: 
 

1
( ) ( ),

k n

k
U U X B u


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where: B is the bilinear interpolation operator which in-

cludes the appropriate correction terms which are required 

to guarantee second order accuracy when the derivatives of 

the velocity are discontinuous. 

In summary, the equations that need to be solved 

in order to calculate 
1n

u


 and k
U . can be written symboli-

cally as:  

Eq. (14) → 
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Eliminating * 1 1
,

n n
u u

 
  from the above equa-

tions, we can compute the velocity k
U  at the control points 

as follow:  
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For convenience, we can write the above equation 

as:  
 

,
o

k k
U U Af   (23) 

 

where: o

k
U  is simply the velocity at the control points ob-

tained by solving Eqs. (14) – (22) with f=0, given un and  
1

2
n

p A


 is a 22 2
b b

N N  matrix, where b
N  is the number 

of control points. The vector Af is the velocity at the con-

trol points obtained by solving the following equations: 
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With f being the singular force at the immersed 

boundary. Eq (23) can be used to determine the singular 

force if we know the prescribed velocity Up at the immersed 

boundary thus, the singular force at the control points can 

be computed by solving: 

 

.
o

p k
Af U U   (28) 

 

The matrix A is computed once and stored. We 

solve Eqs. (24) – (27) 2Nb times, I, e one for each column 

Each time, the force strength f is set to zero except for the 

entry in the column we want to calculate which is set to one. 

Once the matrix A has been calculated, only the right hand 

side
o

p k
U U . Needs to be computed at each timestep. The 

resulting small system of Eq. (28) is then solved at each 

timestep for the singular force f. Finally, we solve Eqs. (14) 

– (21) to obtain 
1

21
,

nn
u p
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3. Results and discussion 

3.1. Flow analysis around one square cylinders 

The problem geometry in this case is shown in 

Fig. 1, the path blocking ratio is equal to B=1/8=0.125 

( /B d H ). The channel length to obstacle. length ratio is 

25. ( / 25L d  ). All dimensions of the cylinders are dimen-

sionless by the length of the square obstacle. The length of 

the flow input (the distance between the front edge of the 

square cylinder and the channel entrance) is / 5L . The ve-

locity profile is uniform at the entrance and the boundary 

condition is non-slip on the walls. The Reynolds number is 

Re <300. 

Fig. 2 shows the flow lines for several different 

Reynolds numbers. Fig. 2, a shows the stream lines in  

Re = 1. In this case, due to the predominance of Viscose 

forces, a steady flow will be formed without any separation. 
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As the Reynolds number increases, separation of the flow 

occurs in the back of the barrier. The onset of the separation 

phenomenon and the formation of stationary vortices for the 

present problem is Re = 3 (Fig. 2, b). Zdravkovich [19] In 

his empirical observation, provided this value for a circular 

cylinder in the free flow with Re = 4.4. As can be seen, this 

value is for a square barrier smaller than the corresponding 

value for the flow around the circular cylinder. The reason 

for the smaller value of this value in the flow around the 

square barrier can be related to the existence of sharp edges 

in this problem. When the Reynolds number of the upstream 

flow reaches the critical Reynolds number, alternating un-

steady vortex phenomenon occurs. The critical Reynolds 

number for the studied issue is calculated with blockage ra-

tio of 0.125, about 55. To illustrate this, the stream lines are 

compared for Re = 50 and Re = 60 in Figs. 2, c and 2, d. 

References [20, 21] have provided 54 and 70 respectively 

for critical values of Reynolds. Fig. 2, e shows the stream 

lines for Re = 200. Since the flow in this case is unsteady, 

the shape of the stream lines is drawn in a special moment. 

Flow in Re = 200 In addition to the vortex flow behind the 

cylinder, smaller vortex flows will be formed adjacent to the 

lateral edges of the cylinder. In other words, the separation 

region from the back of the cylinder penetrates to the front 

edge. Based on the results of the calculations, the penetra-

tion phenomenon of the separation region to the front edge 

can be seen in the Reynolds range greater than 130. This 

phenomenon has significant effects on the flow characteris-

tics that will be addressed in the following sections. 

 

Fig. 1 Problem geometry of a square cylinder 

Fig. 3, a shows the variation in vortex region length 

(steady flow with symmetric vortices) versus Reynolds 

number. The calculations confirm the linear increase in vor-

tex region length in terms of Reynolds number increase. 

Fig. 3 shows the variation in the Drag coefficient in terms 

of Reynolds number in the Reynolds range below 55. In this 

figure, the results of the calculations are compared with the 

results of Breuer et al. [22]. In the lower Reynolds numbers, 

in the calculation of the drag force, the contribution of fric-

tional forces to pressure forces is greater.
 

   

                                            a                                                       b                                                    c 

   

                                                                           d                                                         e                                     

Fig. 2 The stream lines for a - Re = 1, b - Re = 3, c - Re = 50, d - Re = 60 and e - Re = 200 
 

    

                                                          a                                                                                   b 

Fig. 3 a - The vortex region length versus the Reynolds number in the permanent flow, b - The variation of the drag coeffi-

cient in terms of Reynolds number in the steady flow 

 

Fig. 4 shows the variation of the Strouhal number versus Reynolds number. The results are in good agreement 
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with the results of Breuer et al. [22]. In the range of 55<Re< 

140, with the increase of the Reynolds number, the number 

of strouhal also increases. When the Reynolds number 

reaches about 140, the graph will have a maximum point, 

and after that, the Strouhal number begins to decrease grad-

ually. the reason for that is an important change that occurs 

in the flow pattern as shown in Fig. 2, e. In the Reynolds 

range greater than 130, the flow separation point moves 

from the rear edge of the cylinder to the front edge and there-

fore vortex flows are formed with a smaller scale adjacent 

to the lateral edges. The occurrence of this phenomenon 

causes the fluctuating behavior of downstream flow to slow 

down. 

 

Fig. 4 Strouhal number changes versus Reynolds number 

 

In Fig. 5, the drag coefficient chart in the Reynolds 

range of less than 130 has a decreasing trend, which is re-

lated to the effects of the getting thin of boundary layer. The 

chart has a minimum point at Reynolds Point 130, and in 

larger Reynolds, the Drag coefficient increases. This is due 

to the penetration of the point of separation of the flow from 

the rear edge of the cylinder towards the front edge, result-

ing in an appreciable increase in the contribution of the pres-

sure drag force in calculating the drag coefficient. As noted 

above, the penetration of the separation region to the front 

edge in the Reynolds range greater than 130 has significant 

effects on the unsteady flow characteristics and plays a ma-

jor role in interpreting the changes chart in the Strouhal 

number and Drag coefficients. 

 

Fig. 5 Changes of the average drag coefficient versus Reyn-

olds number in the unsteady flow 

3.2. Flow analysis around two square cylinders 

 

The purpose of this section is numerical study of 

passing flow from two consecutive cylinders in order to find 

the effects of the change of Reynolds number, the ratio of 

blockage and the distance between the barriers on the flow 

characteristics. Boundary conditions and channel geometry 

are similar to the previous problem. The Reynolds number 

varies between 1 and 200. First, G  = 5 is considered con-

stant. 

 

Fig. 6 The geometry of two square-cylinder problem 

 

Fig. 7 shows variations in the coefficient of cylin-

der drag in the different blockage rates versus the increase 

in Reynolds number (G = 5). Reducing the blockage ratio 

reduces the drag coefficient and pressing drag coefficient. 

This is due to the reduction of the effective flow velocity 

around the cylinders and the strengthening of the pressure 

in the rotating area behind the cylinders. Increased pressure 

in the area wake cylinder reduces the pressing drag coeffi-

cient and since the large part of the drag coefficient of the 

cylinders is due to the pressing drag coefficient, the total 

drag coefficient decreases. With increasing Reynolds, the 

cylinder drag coefficient 1 (upstream) decreases and the cyl-

inder drag coefficient 2 (downstream) increases. However, 

by increasing Reynolds, there is a fluctuation in the drag co-

efficient of 2 that reduces the drag coefficient. 

 

Fig. 7 Changes in cylinder drag coefficient in the different  

obstruction rates versus increasing the Reynolds 

number 

 

For the distance between the cylinders G = 5, in the 

Reynolds number range less than 55, flow remain steady, 

while in the Reynolds number range greater than 55, un-

steady flow (periodic) are formed. The critical Reynolds 

number indicates the beginning of the vortex shedding from 

both cylinders, for the gap between the cylinder G = 5 in the 

Re = 55-60 range. In Fig. 8, the stream lines for Re = 100 

and the various cylindrical distances G = 1-5 are shown. For 

cylinder spacing G = 1, the flow around the cylinder up-

stream (cylinder 1) and the between two cylinders’ area is 

steady and the vortex shedding occurs only from the down-

stream cylinder (cylinder 2). As the distance between the 

two cylinders increases, the flow symmetry in the between 

two cylinders area fades out and the vortex shedding from 

both cylinders starts. For the Reynolds number 100, the gap 

the critical cylinder, which vortex shedding starts from cyl-

inder 1, lies within the range of G = 1-2. Reducing the gap 
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between cylinders will increase the critical Reynolds num-

ber. For example, for a gap between cylinders G = 2, the 

critical Reynolds number is within Re  <100, while for the 

cylindrical gap G = 1, the critical Reynolds is within the  

Re > 100 range. The critical Reynolds number is a Reynolds, 

in which the phenomenon of asymmetric vortices shedding 

(Von karman vortex street) starts from both cylinders. Crit-

ical Reynolds number can be an important parameter in the 

design of structures. In such a way that the structural de-

signer can predict the initiation of the vortex's diffusion and 

actually the application of oscillatory forces on the structure. 

 

     

                         a                                                               b                                                                       c 

   

                                                             d                                                                 e                                     

Fig. 8 The stream lines for Re = 100: a - G = 1, b - G = 2, C - G = 3, d - G = 4 and e - G = 5 

4. Conclusions 

In this research, the immersed interface method is 

used which is a non-conforming method to the boundary. 

Eulerian mesh is used for fluid field, and Lagrangian mesh 

for solid field. The connection between these two mesh is 

established by the Dirac Delta function. Considering the cyl-

inder as a rigid immersed boundary within the flow. First, 

simulation laminar flow around a square cylinder has been 

investigated. 1. In Reynolds less than 1, there is a steady 

creepage flow and no flow separation occurs. 2. In the Reyn-

olds larger than 3, the separation of the flow occurs and the 

steady flow is observed with symmetrical and stationary 

vortices behind the cylinder. 3. In the Reynolds larger than 

55 (critical Reynolds), the phenomenon of alternating dis-

charge of vortices (Von karman shedding Street) and un-

steady behavior of flow are observed. 4. In the Reynolds 

larger than 130, the vortex flow from the back of the cylin-

der penetrates to the front edge. The results of the calcula-

tions show that in the steady flow pattern with symmetric 

and stationary vortices behind the cylinders in the range  

3< Re < 55, with the increase of the Reynolds number, the 

length of the vortex region increases linearly. As the Reyn-

olds number increases, the process of changing the Strouhal 

number in the range below 140, incremental and in the 

Reynolds range between 140 and 300 is reduced. Also, with 

the Reynolds number increasing, the process of changing 

drag coefficient in the Reynolds range less than 130 declines 

and within the Reynolds range between 130 and 300 incre-

ments. The change in behavior in the process of changing 

the Strouhal number and the drag coefficient in the range of 

130< Re < 140 can be related to changing the pattern of flow 

in this range. The penetration of vortex flow from the back 

of the cylinder to the front edge is the main cause of this 

behavior change. In the second part of this study, the flow 

around the two cylinders has been analyzed. Studies have 

shown that for G = 5, the flow in the Reynolds range less 

than 55 is steady, while in the Reynolds range greater than 

55 unsteady. Passing from steady to unsteady state happens 

in the Re = 55-60 range (critical Reynolds number). Based 

on the location and flow separation, three different states are 

observed. 1. Begin separation of the flow from the escape 

edges of the cylinders in the range 1< Re < 2 for the up-

stream cylinder and 2< Re < 5 for the downstream cylinder. 

2. Starting the vortex shedding from the edges of the escape 

of the cylinders in the range of 55< Re <60. 3. Starting sep-

aration of the flow from the attack edges of the upstream 

cylinder in the range of 100< Re <125.  
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As’ad Alizadeh, Hussein Jebrail Zekri, S. Jafarmadar 

 

NUMERICAL SIMULATION OF THE FORMATION 

OF VORTICES AROUND RIGID CYLINDERS AS AN 

ISSUE OF FLUID-STRUCTURE INTERACTION 

USING IMMERSED INTERFACE METHOD 

S u m m a r y 

The numerical simulation of the flow of fluid 

through one or a set of objects that causes the flow to sepa-

rate from the surface of them has been the subject of interest 

by researchers over the past few decades. One of the most 

important types of these objects is those with a square cross 

section which have important and diverse applications in 

different industries. One of the practical applications of 

these types of streams is flow around chimneys, high-rise 

buildings, naval structures, suspended bridges, airplane 

wings, ship propellers and ducts. In this research, the im-

mersed interface method is used which is a non-conforming 

method to the boundary. Eulerian mesh for fluid field, and 

Lagrangian mesh for solid field is used. The connection of 

these two networks is established by the Dirac Delta func-

tion. Considering the cylinder as a rigid immersion bound-

ary within the flow. First, the flow around a square cylinder 

was simulated and we surveyed different flow patterns. The 

changes in the number of Strouhal and the Drag coefficient 

were investigated in different Reynolds. The flow around 

the two cylinders was simulated. It was observed that with 

the increase of Reynolds number and the gap between cyl-

inders, the vortex shedding (Strouhal number) would in-

crease. 

Keywords: vortex shedding, rigid cylinder, drag coeffi-

cient, immersed interface method. 
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