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Nomenclature 

 
A - amplitude of oscillation; xa , za  - acceleration compo-

nents of ground motion; b - tank width; c - wave speed;  

d - distance between instantaneous water; g - acceleration 

of gravity; H - initial water depth in the tank; h - ins-

tantaneous water depth; fsp  - fluid pressure at surface cell; 

sp  - interpolated fluid pressure at surface cell; q - flux at 

cell face; T - period of oscillation; t - time; u, w - velocity 

components of fluid; su , sw  - surface velocities; α - dis-

placement of the tank;   - del operator; Δt - computa-

tional time step; Δx - mesh size;   - diffusion coefficient; 

μ - dynamic viscosity;   - kinematic viscosity;   - volu-

me. 

 
1. Introduction 

 

Flow with a free surface includes a wide step of 

flows in the nature and industry. Among them are the flow 

through channels and rivers feeding the oceans and dam 

break flow. Kačeniauskas [1] performed the dam break 

flow simulation by the finite elements and the pseudo-

concentration method. One of the issues related to the flow 

with the free surface is the "slosh" phenomenon. Liquid 

oscillation due to forced excitation is called sloshing. Liq-

uid oscillation in a partially filled tank which is associated 

with various engineering problems. The violent sloshing of 

liquid creates highly localized impact pressure on the con-

tainer walls, which may in turn cause structural damages 

and may even create sufficient moment to destabilize the 

vessel that carries the liquid container. In order to simulate 

the fluid flow phenomena with satisfactory resolution in 

space and time domains, the Navier-Stokes equations are 

solved numerically using a suitable discretization tech-

nique such as finite difference, finite volume, or finite ele-

ment methods. The finite volume method is widely used in 

computational fluid dynamics (CFD) applications due to 

the advantages of integrated equations to enforce conserva-

tion of physical quantities in arbitrary control volumes. 

Free surface simulation became a popular research area 

with the rapid development of computing power. There are 

several methods to track the free surface position such as 

Marker-And-Cell (MAC) method [2], volume of fluid 

(VOF) [3], and level set methods [4], smoothed particle 

hydrodynamics (SPH) [5]. The MAC method described by 

Harlow and Welch [2] was the first to track the free surface 

on a discretized domain. This method uses mass less mark-

er particles, which are used to indicate the fluid configura-

tion showing which region is occupied by fluid and which 

region is empty. The marker particles are moved to new 

positions using local fluid velocities. Chan and Street de-

veloped the SUMMAC method [6], which is a modifica-

tion of the MAC method, using an interpolation technique 

for free surface velocity instead of solving the continuity 

equation on the free surface. Level-set methods, originally 

introduced by [4], have been applied to a wide variety of 

immiscible interfacial problems. Kačeniauskas [7] de-

scribed the development of the mass correction technique 

for viscous incompressible moving interface flows by in-

terfaces capturing approach. These methods use a level 

function   with the 0 contour level defining the material 

interface, much the same as the fractional volume function 

c in the VOF method, to indicate the shortest distance to 

the interface. The VOF method [3, 8] is a popular interface 

tracking algorithm that has proven to be a useful and ro-

bust tool since its development decades ago. However, 

these methods are convenient for large domain computa-

tions since they are easy to implement, computationally 

efficient, and require minimum memory storage. Exact 

volume conservation is not guaranteed in the above meth-

ods and it can be difficult to preserve the total fluid volume 

in the computational domain for long simulation durations. 

Free surface tracking methods used in the simulation of 

free surface flows may produce sources or sinks during the 

computations, causing the total fluid volume to change 

over time Such observations have been reported by Wang 

et al. [9]. After some numerical tests it was recognized that 

there may be two sources of error causing variations in 

total fluid volume in the computational domain. One 

source of the error is due to inappropriate boundary condi-

tions applied at the far field of a large domain extending to 

infinity. The second source of error may originate from the 

free surface tracking algorithms. The motivation behind 

the present study was to investigate the conditions of satis-

fying exact volume conservation in a numerical numerical 

simulation of incompressible free surface flows so that the 

total fluid volume in the computational domain remains the 

same throughout the simulation time. The main aim of the 

study is to develop a computer code for unsteady free sur-

face flows suitable for large spatial domains such as dam 

reservoirs and sloshing liquid in the container. The numer-

ical methods adopted in the present simulations are based 

on Hirt and Nichols VOF method [3] coupled with Youngs 

piecewise linear interface calculation (PLIC) scheme [10], 

Brack_bills continuum surface force (CSF) model [11], 

and solved by algebraic multigrid (AMG) solver [12], as 
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well as k-e turbulence model [13], and the pressure-

implicit with splitting of operators (PISO) scheme for pres-

sure–velocity coupling [14]. 

 

2. Governing equations 

 

Mass conservation is expressed as volume con-

servation for incompressible flows considered in this 

study. The equations of motion for 2-dimensional in com-

pressible flows in a vertical plane are given as 
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where x and z are coordinate axes in horizontal and vertical 

directions, respectively, xa  and za  are ground accelera-

tions, V  is the velocity vector, p  is pressure,   is fluid 

density.  

Ground accelerations are included to represent 

earthquake excitations or accelerations due to shaking of 

experimental tanks. The computational domain is assumed 

to move with the ground. To obtain finite volume formula-

tion of free surface flow, Eqs. (1), (2), and (3) are integrat-

ed applying Gauss divergence theorem. 

 

3. Mathematical formulation 
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where Δt is the time step, Δx and Δz are mesh sizes and Dif 

and Con represent diffusive and convective fluxes.  

Respectively to utilize the advantage of the stag-

gered grid system, convenient control volumes are selected 

for each equation as shown in Figs. 1 and 2. First order 

derivatives in diffusive fluxes are discretized using second 

order polynomial approximation on a variable mesh. Con-

vective fluxes are evaluated by first order upwind (FOU) 

and by quadratic upstream interpolation for convective 

kinetics (QUICK) approximation using a 3-point upstream-

weighted quadratic interpolation for cell face values. The 

code can switch between FOU and QUICK, depending on 

user preferences. Detailed descriptions on temporal and 

spatial l discretizations can be found in Li and Baldacchino 

[15]. Pressure solution is obtained from the Poisson equa-

tion for pressure. The discretized form of the Poisson equa-

tion for pressure is obtained by substituting Eqs. (7) and 

(8) into (11). 
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The momentum Eqs. (7) and (8) and the pressure 

Poisson Eq. (12) are solved by sequential iterations. A 

computer code in Matlab software developed by the au-

thors to perform the computations. In the numerical solu-

tion, location of the free surface must be followed by an 

appropriate algorithm identifying the computational cells 

as fluid cell (F) when it is completely filled by fluid, empty 

cell (E) when there is no fluid, surface cell (S) when the 

cell is partially filled, and boundary cell (B) on the solid 

boundaries (Fig. 3). 
 

 
Fig. 1 Grids and control volumes: vertical discretization 

 

 
Fig. 2 Grids and control volumes: horizontal discretization 

 

 
Fig. 3 Computational cells and labelling 

 

When applying any numerical procedure on a 

computational cell, 4 neighbours, namely, east, west, north, 

(12) 
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and south contiguous cells, must be identified. Integration 

and interpolation practices depend on the type of neigh-

bouring cells. A standard solution procedure is applicable 

for F cells when the neighbours are also composed of F or 

S cells. Special procedures are required to obtain velocity 

and pressure when E cells appear as neighbours. A com-

mon approach used to calculate the velocity components at 

the interfaces of E and F cells is extrapolation of the veloc-

ity components from the closest available velocities ob-

tained from momentum solutiotailed description of the 

extrapolation procedure can be found in Armenio [16]. 
The pressure equation is solved in F cells, the hor-

izontal momentum equation is solved at F-F, F-S, and S-S 

interfaces, and the vertical momentum equation is solved at 

F-F and F-S interfaces. Pressure on the free surface in S 

cells is computed from the free surface stress conditions 

given by Batchelor [17]. A nonzero pressure just on the 

free surface is evaluated from 

2fs
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Then, the pressure at the centre of the surface cell 

is calculated by linear interpolation (Fig. 4) 

ffsf PPP )1(      (14) 

where d/h .  

A detailed description of free surface boundary 

conditions can be found in Chen et al [18]. A detailed de-

scription of free surface boundary conditions can be found 

in Chen et al., Kleefsman [7], Griebel [19]. 

 

 
 

Fig. 4 Pressure interpolation in a surface cell 

 

The momentum equations, pressure equation, and 

free surface equation are solved by sequential iterations 

using an explicit procedure. In order to ensure computa-

tional stability of the numerical algorithm, a combined 

stability condition is imposed on the time step based on the 

convection and diffusion processes (Chan and Street) [20] 
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were CFL is the Courant-Friedrichs-Lewy number, which 

is fixed as 0.5 throughout this study, and c is the surface 

wave celerity.  

The pressure Eq. (12) is solved by the Point Suc-

cessive-Over-Relaxation (PSOR) method. 

3.1. Review of VOF method 
 

The primary works conducted on the VOF meth-

od [3] are related to the early 1970. Three methods of 

tracking the volume were introduced which included Debar 

method [21], and SLIC method (simple-line-interface) pre-

sented by Woodward and Noah [22], and VOF method 

which became well-known by Donar-acceptor method of 

Hirt and Nicholas [3]. The main development in surface 

tracing was resulted under the Youngs method as a method 

entitled Piece Linear Schemes of Youngs [23]. Much of 

the improvements and developments in the work of Young 

have been made after his work. These versions are known 

as PLIC methods. In this paper, the PLIC method has been 

used for constructing and tracing the free surface because 

of if its higher precision and applicability in complex flows 

compared to other methods such as donar-acceptor and the 

Euler-explicit plan and implicit plan. 

 

3. 2. Governing equations 

 

In VOF method, the movement of the interface 

surface between several immiscible fluids with different 

density and viscosity is tracked by function of volume of 

fraction and interface surface is obtained through the fol-

lowing three conditions 
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With respect to the local values of kC , the appro-

priate and relevant variables and properties for each con-

trol volume inside the domain are determined. The volume 

of fraction function is obtained by the volume fraction 

equation 
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where U is the velocity vector of the fluid.  

The two-phase flows are modeled through the 

Navier-Stokes equation 
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where g  is the gravity vector and P describes pressure.  

The velocity field of the incompressible flow fol-

lows the following limitation 

0U

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In two-phase systems, the properties which exist 

in the momentum equation are controlled through deter-

mining the components of the phases in each cell volume. 

The average values of density and viscosity are obtained 

through the following formula [24] 
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The sum of the fraction volumes 
,i jC  in each cell is equal 

to the unit. So by substituting the average values of above 

properties in the Navier–Stokes and Volume fraction Equa-

tions the magnitude of the volume fraction ,i jC  at each cell 

in the interface were defined and by applying this property 

in the free surface reconstruction algorithm we can predict 

the free surface shape. A VOF geometric reconstruction 

scheme is divided into two parts a construction step and a 

propagation step. The key part of the reconstruction step is 

the determination of the orientation of the segment. This is 

equivalent to the determination of the unit normal vector n 

to the segment. Then the normal vector j,iN  and the vol-

ume fraction j,iC  uniquely determine a straight line. Once 

the interface has been reconstructed, its motion by the un-

derlying flow field must be modelled by a suitable algo-

rithm. 

 

3.3. The fluid advection algorithm 

 

During the advection step, the volume of fraction 

ijC  is truncated by the formula at the (n+1) time step 

, ,1, ( ,0)f

i j i jC min max C       (22) 

Once the interface is reconstructed, the velocity at 

the interface is interpolated linearly and the new position 

of the interface is calculated by the following formula 
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The new j,iC  field is obtained according to the 

local velocity field, and fluxes DC at each cell are deter-

mined by algebraic or geometric approaches. Here, the 

simplest operator split advection (geometric) algorithm is 

used as proposed by 
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where jiji CuF ,2/1,2/1 )(   denotes the horizontal flux of 

the (i, j) cell, and is 2/1,,2/1 )(   jiji CvG  the vertical flux of 

the cell. That is volume fractions are updated at time level 

n from n

jiC ,  to 

jiC ,  with an x sweep in then updated 

from


jiC ,  to 1

,

n

jiC  with a y sweep. 

 
4. Numerical analysis 

 

In this paper, we have examined the fluid flow in 

a reservoir with motive bottom surface in two-dimensional 

case. The reservoir used in this study is 1 1 meters and 

the numbers of meshes are 200 200 and 400×400. We 

have studied different regimes, laminar and turbulent states 

in a reservoir and then analyzed the stream line contours in 

different time steps. We have specified the position and 

location of the vortexes. Then we have compared the re-

sults obtained from excited the reservoir in harmonic con-

dition with code and experimental results, which indicate 

the high precision of the analysis.  

 

4.1. Liquid sloshing in an oscillating rectangular  

 

In this state we consider a reservoir with 1m×1m 

dimensions and with 100 100 and 300 300 grids. Liquid 

sloshing inside a partially filled rectangular tank is one of 

the well known test cases for unsteady free surface flows. 

The tank (Fig. 5) is oscillated along the horizontal axis by 

a sinusoidal excitation. Horizontal displacement α of the 

container is given by (2 / )Asin T   where A is the am-

plitude of horizontal displacement and T is the period of 

oscillation Eq. (25) is differentiated twice to obtain the 

horizontal acceleration. The parameters of oscillation se-

lected are the same as those in the experiments reported by 

Okamoto and Kawahara [25] (A= 0.93 cm,  T  =1.183 s, 

 b  = m, H = 0.5 m) to compare the free surface computa-

tions with the experimental data. This test case was defined 

such that the frequency of oscillation was equal to the nat-

ural frequency of the tank to observe possible resonating 

free surface oscillations. The boundary conditions defined 

as stationary asymptotic walls and motive bottom surface 

having variable velocity and upper surface with pressure 

outlet condition, and the reservoir is filled in half by liquid 

which has viscosity  = 0.001 kg/ms and density 

 =1000 3kg/m  in other words the Reynolds number 

610Re  . The free surface profile obtained from computer 

code by VOF method at t = 1.2 sec compared to experi-

mental measurements given by Okamoto and Kawahara 

[25] in Fig. 6 and shows high precision of the computer 

code. 

 

 
 

Fig. 5 Definition of geometric parameters in an oscillating 

 
Different grid distributions are used to investigate 

the mesh size effect on the free surface computations. Grid 

clustering in the vertical direction is applied around the 

free surface to reduce possible truncation errors due to par-

tially filled surface cells. Two uniform grids arrangements, 

100 100, 300 300, are used to obtain the free surface 

profiles at t = 1.2 s. Free surface profiles obtained by VOF 

compared to experimental data of Okamoto and Kawahara 

[25] are shown in Fig. 6. VOF solutions exhibit small os-

cillations but volume conservation is satisfied exactly at all 

time steps. The spatial and temporal agreement between 

the computations and the experiment clearly indicates the 

accuracy achieved by computational developments and the 

adequacy of the grid arrangement (300 300) selected in 
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the solution. Another test for volume conservation was 

performed by observing the diminishing of surface defor-

mations when the tank oscillation is stopped. The tank is 

oscillated for the first 12 s and then stopped. 

 

 
 

Fig. 6 Comparison of the free surface profiles obtained by 

VOF method with experimental [25] in different 

grid arrangements (100 100 and 300 300) at 

time = 1.2  

 

Computations are continued with no excitation 

until the kinetic energy of the oscillating fluid volume is 

dissipated totally and the free surface becomes nearly hori-

zontal. Water level at the left wall is shown as a function of 

simulation time in Fig. 7. During the first 16 s, the surface 

waves are amplified, reaching a maximum wave height of 

approximately 0.4 m, and then start to decrease when the 

tank oscillations are stopped. It takes about 300 s for the 

surface waves to be reduced to negligible amplitude. 

It is observed that the steady-state water depth at 

the end of computations is the same as the initial water 

depth, indicating no leaks or sources of fluid volume after 

1000 seconds of simulation. 

 

 
 

Fig. 7 Water level at the left wall of the oscillating tank as 

a function of time 

 

4.2. Simulating the laminar flow in the rectangular reser-

voir with motive bottom surface 

 

We consider a cavity as 1×1meters with 300×300 

meshes and boundary conditions defined as having station-

ary asymptotic walls and motive bottom wall with 1 m/s 

velocity and upper surface with Pressure Outlet conditions, 

and then fill half of it with a liquid having kinematical vis-

cosity (μ = 0.09 kg/ms) and density (ρ = 450 3kg/m ) or in 

other words, the Reynolds number Re = 5000. A time 

step = 0.1 was applied to solve the unsteady state laminar 

flow. After passing a time of about 30.01 seconds the flow 

reaches to the steady state Fig. 10, a. Numerical simulation 

was applied for different times Figs. 8 and 9. In order to 

achieve this aim a CPU time = 186500 seconds was 

passed. In the simulation of multiphase flows the VOF 

method for tracking the surface and the PISO solution con-

trol method has been used. 

 

4.3. Simulating the turbulent flow in the liquid reservoir 

with motive bottom surface 

 
For solving the flow in turbulent state, we consid-

er the physics of the problem just like the laminar state 

except that the liquid used in this state is a liquid with 

μ = 0.001 and  ρ = 998, or in other words, Re = 610 . It must 

be noted that the size number of grids in this state is ap-

propriate for the turbulent state, and the (κ-ε) turbulent 

model has been used. The momentum equations, the vol-

ume of fraction equations, and the disturbing loss and ki-

netic energy equations have been solved by second-order 

up wind method. We see that the unsteady state turns to the 

steady state after passing 127.7 seconds Fig. 11, b.  
 

 
 

a                                         b 
 

Fig. 8 Comparison of stream line contours at time step 

1.1 sec: a - laminar; b - turbulent 

 

 
 

a                                         b 
 

Fig. 9 Comparison of stream line contours at time step 

3.6 sec: a - laminar; b – turbulent 

 

As we can see from Fig. 10, a the obtained results, 

the free surface in the upper right corner has raised, the 

circulation has approached the right corner, and the flow 

surface is completely concave in the middle part. 

In Fig. 10, a after passing a time of about 30.01 

seconds the flow reaches the steady state and no change is 

observed in the circulation 

It can be seen in Fig. 11, b that the circulation at 

the end of the 127.7 sec remains unchanged near the right 

corner. The right corner rises but the notch in middle of the 
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profile is not enough obvious. In Fig. 12 the horizontal 

component of velocity distribution graph in the middle of 

the reservoir with motive bottom surface at the steady state 

condition (time = 30.1 for Lam and time = 127.7 for Turb) 

has been shown. Regarding to the Fig. 12 it can be found 

out that velocity changes near the bottom surface in the 

laminar state and it is more uniform and in the same height 

(near the wall) the velocity magnitude is more than turbu-

lent one. This may the reason of more sharpness of the 

bottom right corner of the wall and its closeness to the wall 

in the laminar state. 

 

      
 

a                                         b 
 

Fig. 10 Comparison of stream line contours at time step 

30.1 sec: a - laminar; b – turbulent 

 

    
 

a                                                   b 
 

Fig. 11 Turbulent stream line contours at time steps:  

a - 80 sec; b - 127.7 sec 

 

 

 
 

Fig. 12 Illustrates x-component of velocity vector in term 

of y-position of the reservoir on the line in the 

middle of the reservoir at steady state condition 

 

In Fig. 13 shear stress magnitude is shown in term 

of position in turbulent and laminar states on the reservoir 

moving wall at the steady state condition. It illustrates that 

in turbulent state shear stress magnitude is much more than 

laminar state in the same position, that is because of turbu-

lent features. 

 
Fig. 13 Illustrate the shear stress magnitude on the reser-

voir moving wall in term of x-position of the reser-

voir  

 

Fig. 14 shows skin friction coefficient in term of 

the x-position of reservoir on the moving wall in the lami-

nar and turbulent states at the steady state condition. 

 

 
Fig. 14 Illustrates the skin friction coefficient on the reser-

voir moving wall in term of x- position of reservoir  

 

 
 

a                                               b 
 

Fig. 15 Free surface profile at the steady state condition:  

a - laminar; b - turbulent 

 

Fig. 15 illustrates free surface profiles of the li-

quid at the different regimes at the steady state condition. 

For laminar state at 30.1 sec and for turbulent state at 

127.7 sec the flow becomes steady and the free surface 

profile never changes. 

 

5. Conclusion 

 

A computational model for simulating 2-dimen-

sional unsteady free surface flows is developed. The model 
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solves Navier-Stokes equations using a finite volume tech-

nique. The free surface tracking is accomplished by VOF 

method to investigate total volume conservativeness of the 

formulations. The model has been tested in sloshing in an 

oscillating tank. The following conclusions are drawn from 

this study: 

1. The VOF method produces free surface profiles 

satisfying mass conservation exactly. The algorithm deve-

loped here can deal with steep surface slopes, such as dam-

break, without computational problems. Accuracy in pre-

dicting local water depths may deteriorate due to extrapo-

lations in the free surface computation when a coarse grid 

is used. However, total volume conservation is always sa-

tisfied. 

2. Total volume conserving property and compu-

tational accuracy are independent of the dimensions of the 

computational domain. This feature of the model makes it 

suitable for computations in large spatial domains. 

3. Use of FOU or QUICK for convection terms 

has no effect on volume conservation in the VOF solution.       

By comparing the answers of the steady states we find that 

in laminar state (Fig. 10, a) the resulted circulation is clos-

er to the right wall and the flow in the bottom right corner 

is sharper. The resulted circulation in the laminar flow is 

more symmetric, this is resulted from the velocity horizon-

tal component distribution graphs in Fig. 12. 

4. As it was expected, the laminar flow reaches 

the steady state sooner (30.1 sec) (Fig. 10, a), while the 

turbulent flow, at the same time (30.1 sec), is in the middle 

part. By solving the laminar flow in unsteady state and 

with time step = 0.1, after passing a time of about 30.01 

seconds the flow reaches the steady state and no change is 

observed in the circulation. In order to achieve to this pur-

pose, a time equal to CPU time = 186500 s should be 

passed. Turbulence state after a time of 127.7 seconds the 

flow reaches the steady state and no change is observed in 

the circulation it obvious that the problem in laminar state 

takes shorter time to reach the steady state condition than 

turbulent state. 
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A. Kh. Poorfar, M. M. Shahmardan, M. Sedighi 

SKYSTŲJŲ ATLIEKŲ LAIKYMO IŠ DALIES 

PRIPILDYTUOSE KONTEINERIUOSE BENDRAS 

TŪRINIS SKAITINIS MODELIAVIMAS 

R e z i u m ė 

Sukurtas skaitinis neslegiamo plokščio, nestabi-

laus, laisvo paviršinio teliūskavimosi modelis bendroms 

atliekų laikymo sąlygoms tirti. Nestabilaus laisvo pavirši-

nio teliūskavimosi skaitinį modeliavimą galima panaudoti 

bendram skysčio kiekiui skaitinėje erdvėje papildyti arba 

sumažinti. Modelis remiasi Novjė ir Stokso lygčių, jun-

giančių judesio kiekį ir masės apsaugą, baigtinių tūrių disk-

retizavimu. Laisvas paviršinis teliūskavimasis yra traktuo-

jamas taikant skysčio tūrio metodą. Aprašytos laisvo nenu-

trūkstamo paviršinio teliūskavimosi elementų konfigūraci-

jos skaičiavimo problemos. Modeliuojamas skystųjų atlie-

kų teliūskavimasis stačiakampiuose iš dalies pripildytuose 

konteineriuose. Pateikti skaičiavimai, įvertinantys bendrą 

tūrį. Apskaičiuoti laisvo paviršinio tekėjimo profiliai lygi-

nami su gautais eksperimentiškai. Novjė ir Stokso lygybės 

naudojamos skysčio teliūskavimuisi skaičiuoti ir yra iš-

spręstos skaitiniais metodais, naudojant dviejų matmenų 

tinklelį, nes dinaminių efektų idealiose dujose nebuvo pai-

soma. Visi sūkuriai, susidarę teliūskavimosi metu, buvo 

modeliuojami ir analizuojami skaitiniais metodais. Skai-

čiavimo rezultatus palyginus su tiksliais sprendiniais, pasi-

rodė, kad šis metodas yra labai tikslus ir efektyvus, o rezul-

tatai gaunami minimaliomis pastangomis. 
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TOTAL VOLUME CONSERVATION IN NUMERICAL 

SIMULATION OF LIQUID SLOSHING PHENOMENA 

IN PARTIALLY FILLED CONTAINERS  

 

S u m m a r y 

 

A computational model is developed for incom-

pressible, 2-dimensional, unsteady free surface flows to 

study the conditions of total volume conservation. Free 

surface tracking methods used in the numerical simulation 

of unsteady free surface flows may introduce sources or 

sinks resulting in changes in total fluid volume in the com-

putational domain. The model is based on finite volume 

discretization of the Navier-Stokes equations coupling 

momentum and mass conservation. Free surface position is 

tracked using VOF method. Possible free surface cell con-

figurations and a solution procedure for continuity are de-

scribed. Liquid sloshing in a partially filled rectangular 

containers are simulated. Numerical solutions preserving 

total volume are presented. Computed free surface profiles 

are verified by experimental. The Navier-Stokes equations 

are assumed to hold in the liquid domain and have been 

solved numerically in developed two-dimensional grids, 

while the dynamical effects in the ideal gas are disregard-

ed. Also all of the vortexes generated in the flow have been 

modelled and analyzed numerically. Comparisons of the 

computed results with exact solutions showed that the 

method is capable of achieving high accuracy and efficien-

cy with minimal computational effort. 

 

Keywords: total volume conservation, numerical simula-

tion, liquid sloshing phenomena, partially filled containers.  
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