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1. Introduction 

Deterministic simulations are insufficient to repre-

sent the whole physics of the vehicle–track coupled system, 

which contains several kinds of variabilities, i.e., variability 

of mechanical parameters related to the vehicle mass, stiff-

ness and damping of different suspensions, variability of 

contact parameters of the wheel-rail interaction and varia-

bility of the track design and quality [1]. Those variabilities 

play an important role in the safety, ride quality, and assess-

ment criteria of running trains. When using the simulation 

for assessment purposes, it is therefore crucial to consider 

those uncertain variabilities and utilize uncertainty quantifi-

cation to investigate uncertainties in dynamical systems.  

In past decades, generalized polynomial chaos the-

ory, a kind of uncertainty quantification, has been widely 

adopted to model complex nonlinear dynamic systems op-

erating in the presence of parametric and external uncertain-

ties [2, 3]. For road vehicles, Kewlani et. al. [4] presented 

polynomial chaos approaches explicitly considering para-

metric uncertainty during the model formulation. Wu et. al. 

[5, 6] proposed a Polynomial-Chaos-Chebyshev Interval 

method for vehicle dynamics involving hybrid uncertainty 

parameters and a flexible multibody system with uncertain 

material properties was considered as well. 

With regard to the railway system, full-scale meas-

urements have shown that stochastic variations in the track 

structure is inevitable [7, 8]. For example, railway track 

stiffness variations were found and studied [9]. As for the 

source of uncertainties, Funfschilling et. al. [1, 10] ad-

dressed that the mechanical characteristics can be different 

among vehicles, due to difference in numbers of passengers 

or mass of goods, process uncertainties and the components. 

By considering the random distribution of the vehicle and 

track parameters, some papers focused on the uncertainty 

qualification in the vehicle–track coupled system. Bigoni et. 

al. [11] paid attention to the critical speed of a bogie and its 

sensitivity analysis. 

In addition, uncertainties of operation environ-

ment for railway vehicles (called external uncertainties) are 

essential factors for stochastic dynamic behaviors. Perrin et. 

al. [12] built a stochastic model for track geometry based on 

a spatial and statistical decomposition and analyzed the in-

fluence of the track geometry variability on the train dynam-

ics. To visualize the long-term evolution of the stability and 

the comfort of the train, Lestoille et. al. [13] formulated a 

stochastic model of the track geometry to identify track ir-

regularities for dynamics of high-speed trains. Recently, Xu 

and Zhai [14, 15] proposed a computational model to ana-

lyze the temporal–spatial stochastic vibrations of vehicle–

track systems and applied the probability density evolution 

method to solve the de-livery problem of probabilities be-

tween excitation inputs and response outputs. 

Previous studies have indicated that uncertainties 

lead to a significant influence on the dynamic behavior of a 

simple or complex system. However, current outcomes on 

how uncertainties in railway vehicle–track system per-form 

in terms of vehicle performance assessment is still limited. 

In order to shed light on uncertainties in the vehicle–track 

system, this paper begins by outlining the uncertainty qual-

ification methods, including Sampling-based method, sto-

chastic Gelerkin method and stochastic Collocation method 

in Section 2. The following sections set out the applications 

of uncertainty quantification methods in railway vehicle dy-

namics with parametric uncertainties in detail. Uncertainties 

are modelled as independent random inputs with Gaussian 

distributions. A comparison of three methods is carried out 

in terms of the computational accuracy and efficiency in 

Section 3, where an SDOF wheel model with two random 

parameters is established. Then, a simplified TDOF bogie 

model with three suspension parameters is constructed in 

Section 4 to analyze the critical speed through SCM and 

LHS. At last, the focus of Section 5 is to investigate the un-

certainties on the impact behavior under a rail defect and 

dynamic response under a track irregularity by using a ver-

tical vehicle–track coupled model with parametric uncer-

tainties on the basis of SCM. 

2. Uncertainty qualification method 

To illustrate how to evaluate the uncertainty quali-

fication of dynamic systems with random input parameters, 

a simple single-degree-of-freedom system (SDOF) is firstly 

taken as an example. For this purpose, the equation of mo-

tion for a simple SDOF system is formulated directly by ex-

pressing the equilibrium of all forces acting on the mass ac-

cording to the d’Alembert’s principle, which is found to be: 
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where: y(t) means the time-varying displacement. In general, 

Ai is constant for a deterministic system. If random parame-

ters are considered, Eq. (1) becomes a stochastic differential 

equation, in which Ai represents a function of a random vec-

tor x defined as, 
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= ( ), 1~i i if nA x , (2) 

where: x = (x1,…,xd) is an random vector with d dimensions. 

The stochastic solution of the SODF system is now 

assumed to be y = g(t, x). Hence, the mean and the variance 

of this solution can be defined by:  

( ) [ ] ( , ) )( ()
d

t E y g t dt 


   x x x , (3) 

2 2( ) [ ] [ ( , ) ( )] ( )( )
d

t V y g t tt d  


   x x x , (4) 

where: ( ) x  is the probability density function (PDF) of 

the random vector x and the integrals are computed over its 

domain integration      1 1 1, , ... ,d d

i i i d da b a b a b      ; 

E(·) and V(·) are the expectation and variance operators re-

spectively; σ represents the standard deviation (Std); σ/μ de-

notes the coefficient of variation (CoV), which is commonly 

used to assess the dispersion degree of samples. Similarly, 

the method is also applicable for a multi-degree-of-freedom 

system. 

In the following sections, three common methods 

to realize the stochastic analysis are discussed in detail, i.e., 

sampling-based method, stochastic Galerkin method and 

stochastic Collocation method. 

1. Sampling-based method. 

A straightforward technique is to estimation the in-

tegral in Eqs. (3) and (4). Final expressions are shown as 
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where: xj is sample data, which are generally acquired based 

on Monte Carlo method (MC) and Latin Hypercube Sam-

pling (LHS). 

2. Stochastic Galerkin method. 

The so-called stochastic Galerkin method (SGM) 

[16, 17] is a kind of classical polynomial chaos, where or-

thogonal polynomials are used to represent solutions. For 

Gaussian random variables, Probabilists’ Hermite polyno-

mial is an orthogonal system with respect to the measure ρ 

defined by the standard normal distribution
2
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The above orthogonality relations should hold: 
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where: δmn is the Kronecker delta function, herewith δmn = 0 

if m ≠ n and δmn = 1 if m = n; and γn is a positive constant 

often termed by a normalization constant, i.e., γn = n!. 

Thus, the considered set of basis  ( )
N

k k
Z , 

where k  is a multi-index based on graded lexicographic or-

dering. Then the random input parameters and the solution 

can be reformed as:  
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The Galerkin procedure results in: 
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where: ,
ˆ

iA k  and ĝk  are the expansion coefficients for the 

random inputs and outcomes respectively. Hence, the mean 

and Std are solved as: 

0
ˆ( ) ( )t g t  , (13) 

2 2

0

ˆ( ) ( )
N

t g t 


  k k

k

. (14) 

3. Stochastic Collocation method. 

Collocation method [16] is the so-called pseudo 

spectral approach [17], which consists in the construction of 

a discrete projection of the quantity of interest. To get the 

solution of Eq. (11), a simple tensor product structured 

Gauss cubature rules [11] is used to define points and 

weights. The d-dimensional Gauss quadrature points and 

weights are denoted by 
1

,
M

j j

j
x w . Then expansion coeffi-

cients can be refined as: 
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Substituting Eq. (15) into Eqs. (13) and (14), the 

mean and Std can be obtained. 

3. SODF wheel model 

In this section, a SODF wheel model in Fig. 1 is 

given as an example to illustrate how to realize the solution 

of dynamics equations by means of SGM. 

The equation of motion of the SDOF wheel model 

is built as follows: 

=0mq Cq Kq  , (16) 
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where: m, K and C represent the wheel mass, spring stiffness 

and damping coefficient respectively. Among those, K and 

C are two random input parameters distributed normally ac-

cording to 2( , )s sK N    and 2( , )c cC N   . The corre-

sponding Galerkin basis will be the Probabilists’ Hermite 

polynomials. Then, approximations of random input param-

eters can be expressed as: 
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Similarly, the solutions of the displacement, veloc-

ity and acceleration for the single wheel can be formulated 

as: 
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where: i is a multi-index, i = (i1, i2) with |i| = i1 + i2. Then 2-

variate Galerkin basis functions are the products of the uni-

variate polynomials, i.e.,
1 21 2 1 2( , ) ( ) ( )i iH x x H x H xi

.The 

Galerkin procedure results in: 
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where: k = 0,…, N. 

Upon substituting Eqs. (17)-(21) in Eq. (22), Eq. 

(22) can be rewritten as:  
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where: 
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Above parameters in Eq. (23) are constants evalu-

ated in advance before the computation of the model.  

m

K C

 
 

Fig. 1 SODF wheel model 

 

As mentioned above, the SGM procedure for the 

SDOF wheel model is formulated. In addition, further vali-

dation for solutions is proceeded by LHS and SCM. In terms 

of LHS, 1000, 10,000 and 50,000 points are tested respec-

tively, while for the simulation process of SCM, two-dimen-

sional nodes (6 nodes in each dimension) are generated 

based on the Gauss quadrature rule.  

The parameters of the SDOF wheel system refer to: 

m = 10 kg; K ~ N (100 N/m, 102 (N/m)2); C ~ N (20 N·s/m, 

22 (N·s/m)2); y(0) = 0.1 m. The numerical results solved by 

SGM with a polynomial order of N = 6 is shown in Fig. 2, 

where stochastic responses of the vertical displacement var-

ying with time are illustrated. In Fig. 2 a, the solid line rep-

resents the mean of the vertical displacement and the other  
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Fig. 2 Stochastic responses of the vertical displacement in 

the case of initial displacement of 0.1m: (a) probable 

boundary region and (b) PDF evolution of vertical 

displacement varying with time 
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two dashed lines donate values of μ+3σ and μ-3σ respec-

tively. The zone between two dashed lines is the possible 

range of the vertical displacement. The relatively large 

range demonstrates that the random input indeed obviously 

influences the vertical wheel displacement. In the other 

words, an obvious uncertainty of the vertical wheel dis-

placement is caused by the random input parameters. In ad-

dition, PDF evolution of the displacement is given in Fig. 2 

b, where the probability of the displacement at each time t 

can be observed. The area labelled in yellow indicates the 

largest probability of the displacement locating. 

Furthermore, comparisons of result differences be-

tween LHS and SGM are shown in Fig. 3 respectively, in 

terms of mean and Std. As for those dash lines, it is evident 

that the more tested points of LHS are, the smaller differ-

ence is, both in Figs. 3 a and b. Thus, the results with larger 

amount of sample inputs in LHS are more similar with the 

results computed by SGM. However, it should be noted that 

larger amount of sample data inevitably leads to the increase 

of computational cost. Therefore, SGM shows its strength 

in terms of efficiency and computational cost. On the other 

hand, it is difficult and cumbersome for Galerkin method to 

deal with a simple or complex system since this method 

needs to be derived in detail in spite of the existing well-

built model. Conversely, the SCM can be easily adopted to 

solve the complexity or nonlinearity of the original problem, 

once a reliable deterministic solver is developed. To this end, 

the difference between the results of SGM and SCM are also 

compared. As mentioned above, 36 nodes are tested in SCM. 

It can be obviously seen that differences can be negligible 

and results of SGM and SCM are in a quit good agreement. 
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Fig. 3 Differences between SGM and LHS/SCM: (a) mean 

and (b) Std 

4. TDOF Bogie Model 

In this section, a two-degree-of-freedom model 

(TDOF) for a railway bogie is established to study the criti-

cal speed with random input. As shown in Fig. 4, the 

Cooperrider bogie model [18] is adopted, where only lateral 

and yaw motions are considered. 
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Fig. 4 Sketch of the bogie model 

 

The equation of motion of the bogie can be defined 

by: 
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where: Yb and φb are the lateral and yaw motions respec-

tively; mb and Ib represent the mass and moment of inertia 

of the bogie respectively; Ksy and Csy denote the stiffness and 

damping of the secondary suspension respectively; Kφ is the 

anti-yaw stiffness; h means half of wheelbase; a is half of 

gauge; Fyi and Fxi mean the lateral and longitudinal wheel-

rail creep forces and FT is the flange force. The specific 

equations of the wheel-rail force and the flange force can be 

found in [18]. 

In this TDOF bogie model, three suspension pa-

rameters, Ksy, Csy and Kφ are considered to be random. The 

nominal values of those parameters in this model are listed 

in Table 1 and CoVs of the random parameters are set to be 

10%. Their Gaussian distributions and approximations can 

be expressed as: 
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In order to acquire the critical speed, the speed is 

decreased with time t in the process of the simulation. It can 

be defined by:  

 

0 / ,V V t f    (29) 

 

where: △f is a threshold value, herein △f = 10. 
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Table 1 

Parameters of the TDOF bogie model 

Notation Designation Value 

mb Bogie mass/kg 4,963 

Ib Moment of inertia of bogie/kg·m2 8,135 

h Half of wheelbase/m 1.5 

a Half of gauge/m 0.7175 

Ksy Lateral stiffness of secondary suspen-

sion/MN/m 

0.1823 

Csy Lateral damping of secondary suspen-

sion/kN·s/m 

29.2 

Kφ Anti-yaw stiffness / MN/m 2.71 

 

It is difficult to build a stochastic model by SGM 

due to the uncorrelation between the critical speed and the 

time. Hence, SCM and LHS are more suitable for the sto-

chastic investigation of the critical speed. The numerical re-

sult without considering random parameters is given in Fig. 

5 a. It can be seen that the lateral displacement of the bogie 

converges to a value of 0 mm when the running speed de-

clines to 64.82 m/s, which is the so-called critical speed. 

When the random parameters are involved, the values of the 

critical speeds display a distribution instead of a determin-

istic value. Results from SCM with 2 nodes in each dimen-

sion and LHS with 500 and 20,000 samples are shown in 

Fig. 5 b respectively. Results show that SCM could acquire 

a good result which is in line with the result of LHS with 

20,000 samples, while the result of LHS with 500 samples 

is the worst result. It strengths the conclusion that SCM ex-

hibits the higher efficiency and accuracy than LHS. 
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Fig. 5 Lateral displacement of the bogie varying with the 

running speed (a) and comparison of PDF of critical 

speeds between SCM and LHS (b) 

A benchmark of LHS is made to further demon-

strate the accuracy of SCM, in Fig. 6, in terms of means and 

Stds of critical speeds. It can be observed that both means 

and Stds of critical speeds show a quite stable state even 

though the number of nodes in SCM is small, while they 

vary clearly with the increase of samples in LHS. Actually, 

only LHS with a large number of samples can get a stable 

result. It is proved that the performance of SCM is prior to 

LHS.  
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Fig. 6 Comparison of (a) means and (b) Stds of critical 

speeds between SCM and LHS 

5. MDOF vehicle–track coupled model 

As analysed in section 4, SCM has high efficiency 

and accuracy in the solving process of models. In this sec-

tion, SCM is used in a sophisticated multi-degree-of-free-

dom (MDOF) vehicle–track coupled model. The determin-

istic MDOF vehicle–track coupled dynamics model [19~21] 

shown in Figure 7 includes a vehicle subsystem, a track sub-

system and a nonlinear wheel–rail contact. 

5.1. Vertical vehicle–track coupled model 

Based on the structure of vehicles, the vehicle sub-

system is treated as a 10-DOF multi-body submodel. The 

vehicle body takes vertical motion Zc and pitching motion 

βc into account, and the bogie considers vertical motion Zt 

and pitching motion βt, while the wheelset only considers 

the vertical motion Zw. Thus, the equation of motion for the 

vehicle model can be defined by: 
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v v v v v v v+ + = ,M u C u K u F  (30) 

 

where: Mv, Kv and Cv are matrices of generalized mass, 

stiffness and damping of vehicles respectively; Fv denotes 

the force vector of the vehicle subsystem; uv means the dis-

placement vector of vehicles. Corresponding parameters are 

listed in Table 2. 

 

c c t1 t1 t2 t2 w1 w2 w3 w4[ , , , , , , , , ], .v Z Z Z Z Z Z Z  u  (31) 

 Table 2 

Nominal values of the vehicle–track couple system 

Symbol Designation Mean 

Mc Car body mass/kg 46,060 

Mt Bogie mass/kg 2,235 

Mw Wheelset mass/kg 1,457 

Jc Moment of inertia of car body/×106kg·m2 1.95 

Jt Moment of inertia of bogie/kg·m2 1,238 

Kpz Stiffness of primary suspension/MN/m 1.773 

Ksz Stiffness of secondary suspension/MN/m 0.8 

Cpz Damping of primary suspension/kN·s/m 20 

Csz 
Damping of secondary suspension/ 

kN·s/m 
120 

Lc Half of length between truck centres/m 8.6875 

Lt Half of wheelbase/m 1.25 

g Acceleration of gravity/m·s-2 9.8 

v Vehicle speed/km/h 300 

mr Rail mass per meter/kg 60.64 

Ms Half of Sleeper mass /kg 125.5 

Mb Ballast mass/kg 310 

Kp Rail pad stiffness/kN/mm 60 

Cp Rail pad damping/kN·s/m 75 

Kb Ballast stiffness/kN/mm 150 

Cb Ballast damping/kN·s/m 60 

Kf Subgrade elastic stiffness/kN/mm 70 

Cf Subgrade damping/kN·s/m 100 

Ls Sleeper space/m 0.6 

EI Flexural rigidity of rails/MN·m2 6.6 

 

Fig. 7 Side view of the MDOF vehicle–track coupled model 

 

In generally, the ballasted track consists of three 

components, i.e., the rail, sleepers and ballast. The rail is 

modelled as finite Euler-Bernoulli beams. Only vertical vi-

brations are taken into account for all components. The 

equations of motion of the track subsystem are expressed as: 

 

t t t t t t t+ + = ,M u K u C u F  (32) 

 

where: Mt, Kt and Ct are matrices of generalized mass, stiff-

ness and damping of track subsystem respectively; Ft is the 

vector of force of track subsystem; and ut is the vector of 

displacement of track subsystem. The track parameters used 

in this part are listed in Table 2. 
It is assumed that suspension parameters of vehi-

cles are provided with a certain level of working tolerance 

fitting different distributions. In detail, Gaussian distribu-

tions with zero correlation are independent and CoVs are 

below 15%. In this stochastic model, the random parameters 

are generated as samples for the vehicle–track system. In 

this way, a stochastic model is expressed as: 

 

v v v t v v v t v v v t v

t t v t t t v t t t v t t

( , , )+ ( , , )+ ( , , )=
,

( , , )+ ( , , )+ ( , , )=

t t t

t t t





M u Z Z K u Z Z C u Z Z F

M u Z Z K u Z Z C u Z Z F
 (33) 

 

where: Zv and Zt represent the random variables of vehicles 

and track respectively. 

5.2. Uncertainty quantification analysis of dynamic re-

sponses under a track irregularity 

In addition to rail defects, track irregularities are 

common excitations for the vehicle–track system. Accord-

ingly, the influence of the random parameters on the vehicle 

dynamics under a track irregularity is discussed in this sec-

tion.  

A ballasted track spectrum of the vertical irregular-

ity for high-speed railway lines has been defined as power 

functions by China Railway Corporation. Specific coeffi-

cients of power functions are shown in Fig. 8. A sample of 

the vertical irregularity can be acquired by the inverse trans-

formation of the track spectrum. In this study, only the sus-

pension parameters are set to be random in the stochastic 

analysis. To be specific, four random parameters, i.e., Kpz, 

Cpz, Ksz, and Csz, are considered to follow Gaussian distribu-

tions with CoVs of 10 %, 20 % and 30 %. SCM is employed 

to carry out the uncertainty quantification analysis for the 

stochastic vehicle–track coupled model. 
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Fig. 8 Ballasted track spectrum 

 

The qualification of interest is limited to the verti-

cal acceleration of vehicle body and the Sperling index, 

which are important assessment criteria for the running 

quality. As an example, Fig. 9 gives the PDF evolution of 

vehicle body acceleration with respect to time in the case of 

CoV = 10%, where the peaks refer to the probabilities of 

accelerations. 
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Fig. 9 PDF evolution of vertical vehicle body acceleration in time 

domain 

 

The Sperling index can be used to assess the riding 

performance, which is defined by: 

 
0.1

3

7.08 ( ) ,
A

W F f
f

 
  

 
 (34) 

where: A is the vehicle body acceleration amplitude at the 

frequency f; F(f) is a weighted coefficient depending on the 

frequency f. There are three levels of riding performance for 

high speed trains, i.e., first level: W < 2.5; second level:  

2.5 ≤ W < 2.75; and third level: 2.75 ≤ W < 3. Generally, the 

running quality of new vehicles should meet the require-

ment of the first level at least. 

Based on the limit standard of the first level, the 

influence of parametric uncertainties on Sperling index is 

studied. Fig. 10 shows the probability distributions of Sper-

ling index under the influence of the various CoVs. It can be 

seen that Sperling indices roughly fit Gaussian distributions 

and the dispersion degrees become larger with the rise of 

CoV. To be specific, with CoVs of input parameters increas-

ing from 10% to 30%, the corresponding Stds rise from 0.06 

to 0.16, and the probabilities of the over-limit for Sperling 

index (> 2.5) increase from 1.87% to 27.74%. It reflects the 

fact that the random parameters should be considered in the 

assessment of the riding performance. 
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Fig. 10 PDF of the Sperling index under different CoVs of random input parameters: CoV = 10% (a); CoV = 20% (b); and 

CoV = 30% (c) 

6. Conclusions 

This paper shows how uncertainties in railway ve-

hicle–track system influences the vehicle dynamics. Three 

approaches are to clarify the propagation of uncertainties 

during the whole process, beginning with the parameters in-

put in the vehicle–track mathematical model and ending 

with the results of running dynamics by means of SGM, 

SCM and LHS. Firstly, a stochastic SDOF wheel model has 

been built to illustrate the implements of SGM, SCM and 

LHS. Then, a simplified stochastic TDOF bogie model has 

been established to analyse the critical speed with three ran-

dom input parameters, where solving method adopts SCM 

and LHS respectively. At last, a stochastic vertical vehicle–

track model has been well-built based on SCM, where im-

pact behaviour of wheel-rail interaction under a rail defect 

is investigated and dynamic response of vehicles under a 

track irregularity is analysed in terms of the Sperling index. 

Through above analysis, following conclusions can be 

drawn:  

1. In terms of the efficiency and accuracy, the perfor-

mance of SCM is better than that of SGM and LHS, 

due to the easy implementation of SCM. 

2. In the TDOF bogie model, the uncertainties of sus-

pension parameters give rise to an obvious influence 

on the critical speed and should be attached enough 

importance in the design process of bogies. 

3. As for the running quality, a higher CoV of given 

distributions leads to a larger probability of the over-

limit (>2.5) for Sperling index. 
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D. Zhang, P. Xu, D. Bigoni 

APPLICATION AND COMPARISON OF 

UNCERTAINTY QUANTIFICATION METHODS FOR 

RAILWAY VEHICLE DYNAMICS WITH RANDOM 

MECHANICAL PARAMETERS 

S u m m a r y 

This paper aims to investigate uncertainties in rail-

way vehicle suspension components and the implement of 

uncertainty quantification methods in railway vehicle dy-

namics. The sampling-based method represented by Latin 

Hypercube Sampling (LHS) and generalized polynomial 

chaos approaches including the stochastic Galerkin and Col-

location methods (SGM and SCM) are employed to analyze 

the propagation of uncertainties from the parameters input 

in a vehicle–track mathematical model to the results of run-

ning dynamics. In order to illustrate the performance quali-

ties of SGM, SCM and LHS, a stochastic wheel model with 

uncertainties of the stiffness and damping is firstly formu-

lated to study the vertical displacement of wheel. Numerical 

results show that SCM, which can be easily implemented by 

means of the existing deterministic model, has explicit ad-

vantages over SGM and LHS in terms of the efficiency and 

accuracy. Furthermore, a simplified stochastic bogie model 

with three random suspension parameters is also established 

by means of SCM and LHS to analyze the critical speed, 

which is affected obviously by the parametric uncertainties. 

Finally, a stochastic vertical vehicle–track coupled model 

with parametric uncertainties is built comprehensively on 

the basis of SCM, by which the dynamic response of vehi-

cles under the track irregularity is explored in terms of the 

Sperling index. It concludes that the uncertainties of param-

eters have a significant influence on Sperling index from the 

view of the running quality. 

Keywords: uncertainty quantification; railway vehicle dy-

namics; sampling-based method; polynomial chaos. 
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