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1. Introduction 

 

The article continues to present the research work 

on the estimation of the circumferential stress () concen-

tration factors (Kt) of the curved members effected by the 

asymmetric shallow notches. Previous publications [1, 2] 

were focused on calculations of the Kt for the notched 

lifting hooks of trapezoidal cross-section. The present arti-

cle assumes the curved beam of the circular gross cross-

section under the transverse load. The method of the Kt 

calculation is the same as in the previous article [2] there-

fore, will not be discussed here. However, the results will 

be presented for the additional 92 cases of different cross-

section and notch geometry.  

The article also includes results of the notch effect 

on a stress triaxiality under the elastic stress state with the 

evolution to the increasing elastic-plastic deformation. The 

stress triaxiality is known as an important factor for the 

failure prediction of the components. 
 

 
Fig. 1 Applied loading scheme and geometry of a notched 

lifting hook 

 The geometry of the curved beams is shown in the 

Fig. 1. Diameter of the circular gross cross section (a 

height of the cross-section H) was 100, 80 and 50 mm. The 

beam curvature was defined by ratio rc/H = 1.0 for all 

cases. Here rc is a distance from the center of curvature to 

the geometrical center (centroid) of the cross-section. 

 The load (P) was applied at the ends of the curved 

beam with  = 90 (Fig. 1). Therefore, the circumferen-

tial stresses  were caused by the normal force N = P and 

the bending moment Mc = N rc. 

 

2. Finite element models  
 

 As it was demonstrated earlier [2], the finite ele-

ment analysis (FEA) is a suitable way to calculate both: the 

maximal circumferential stresses (max) and the nominal 

circumferential stresses (nom) needed to obtain the Kt. 

The finite element models were constructed employing 

symmetry boundary conditions (BC) that allowed to use 

1/4 of the geometry. The point C2 had an additional verti-

cal motion restraint to complete the model's BC definition. 

The models were meshed with tetrahedral second order 

finite elements (element type SOLID187 of ANSYS™). 

The Fig. 2 shows the generic model for the max calcula-

tion. 

 The max were calculated at the notch root (point 

C1 on the symmetry line of the notched cross section in 

Fig. 1). The nom were calculated at the same point, but in 

a curved beam of the consistent (uniform) cross section, 

i.e. the cross sections of the notched members at the notch 

root were equal to the cross sections of the members 

without a notch. Thus, the stress concentration effect  

 

 
 

Fig. 2 Illustration of a generic 3D finite element model of a 

notched curved beam 
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caused by the notch was separated from the stress concen-

tration caused by the curvature of the member or other 

factors. 

 Material properties were defined considering low 

carbon steel after the thermal normalization. Mechanical 

properties of this steel are presented in Table 1; only the 

Yong's modulus and Poison's ratio were used in the elastic 

stress analysis under quasi-static load. 

 

Table 1 

Mechanical properties of a low carbon steel 
 

Yong's 

modulus 

E, MPa 

Poison's 

ratio  

0.2% 

proof 

strength 

Rp0.2, 

MPa 

Tensile 

strength 

Rm, MPa 

Elongation 

after 

fracture 

A5, % 

Reduction 

in cross 

section on 

fracture Z, 

% 

210000 0.29 245 412 25 55 

 

3. Circumferential stress concentration factors  

and fitting curves  

 

 The results of t for the curved beams of gross 

diameters (H) 100, 80 and 50 mm are presented in Figs. 3-

5. The values of Kt obtained by the FEA were used to find 

the fitting coefficients of Eqs. (1)-(3), similarly as in the 

earlier presented work [2]. The fitting Eqs. here are of two 

forms: general (1) with the three fitting coefficients and 

simplified with only the one fitting coefficient ((2) and 

(3)): 

Kt = ab
+c (general form), (1) 

Kt = 20.5
+cf ,  if 0.5  cf  1.0 (2) 

Kt = (20.5
+0.5) df, if the fitted cf < 0.5 (Eq. (2))  (3) 

here a, b, c, cf and df are the fitting coefficients; df has val-

ues in a range from 0 to 1 and cf is in a range from 0.5 to 

1.0. The  is a geometry parameter  = t/, where t is a 

notch depth and  is a notch root radius (Fig. 1). 

 Solid lines (Figs. 3 - 5) show the fitting results of 

Eq. (1). The dashed curves present the results of Eq. (2) 

and the dash-dot curves show the fitting results of Eq. (3). 

Because of the small difference between the results of Eq. 

(1) and Eq. (2), and similarly between Eq. (1) and Eq. (3), 

the corresponding curves look almost coincident in  
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Fig. 3 Stress concentration factors Kt for the curved beam 

of circular cross section (H = 100 mm) 
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Fig. 4 Stress concentration factors Kt for the curved beam 

of circular cross section (H = 80 mm) 
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Fig. 5 Stress concentration factors Kt for the curved beam 

of circular cross section (H = 50 mm) 
 

Figs. 3-5. The maximum relative difference of the Kt cal-

culated by Eq. (1) was less than 1% and by Eqs. (2) and (3) 

it was less than 3% comparing to the FEA results. The val-

ues of fitted coefficients a, b, c, df and cf are presented in 

Table 2. 
 

Table 2 

Fitting data 
 

Geometry Fitted coefficients 

H t Eq. (1) Eqs. (2) and (3) 

a b c cf df 

100 1 2.09 0.466 0.716 0.806 – 

2 2.15 0.431 0.483 0.649 – 

4 2.00 0.437 0.331 – 0.944 

6 1.768 0.467 0.332 – 0.839 

8 1.512 0.515 0.401  0.762 

80 1 2.10 0.468 0.677 0.766 – 

2 2.11 0.435 0.437 0.582 – 

4 1.888 0.450 0.321 – 0.887 

6 1.570 0.506 0.387 – 0.779 

8 1.283 0.568 0.479 – 0.704 

50 2 2.00 0.438 0.332 – 0.944 

4 1.508 0.517 0.405 – 0.762 

6 1.082 0.633 0.560 – 0.659 
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 The final aim of this research was to find the uni-

versal relation that engineers could use for critical stress 

calculation. This relation should be simple and link the 

fitted coefficients cf and df to some geometric characteris-

tics of the component. As in the previous work, this char-

acteristic was chosen to be a ratio  = t/H and the relation 

to have a form of a second order polynomial. Fitted poly-

nomial to the results of cf and df from Table 2 versus the  

gave the following expressions:  

 cf = 145.22
 - 20.1 + 0.994 (4) 

 df= 25.02
 - 7.52 + 1.203 (5) 

Graphically the fitted polynomial curves are presented in 

Fig. 6 by continuous lines. The dotted lines present the 

earlier considered cases for lifting hooks of trapezoidal 

cross-section [2] for comparison. As it can be seen, the cf 

curves are not coincident, but close within relative differ-

rence not exceeding the 5%. The df curves are close to each 

other within the same range of the relative difference, ex-

cept when the  > 0.08. Therefore, the established relations 

are not universal, however still can be used as one for the 

evaluation of the Kt with the acceptable error.  
 

cf = 145.242 - 20.126 + 0.9937

R² = 0.9999

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04

cf


 

 

a 

 

df= 24.9612 - 7.5193 + 1.2032

R2 = 0.9996

0.5

0.6

0.7

0.8

0.9

1

1.1

0.02 0.04 0.06 0.08 0.1 0.12 0.14

df

  
 

b 

 

Fig. 6 Fitted coefficients cf (a) and df (b) vs. geometric pa-

rameter  

 

4. Evolution of the stress triaxiality 

 

The notch effects not only the circumferential 

stresses, but all components of the stress state, therefore, it 

effects the stress state multiaxiality. The stress multiaxiali-

ty causes the reduction of ductility of the material and in-

fluences the failure mode of the components. There are 

several approaches where this effect is accounted. 

One approach, initially proposed by Davis and 

Connely [3], uses the stress triaxiality factor (TF), to ac-

count the stress multiaxiality effect in calculation of strain 

based failure criteria. It is used in cases where the accumu-

lation of the plastic strains takes place: large quasistatic 

loads, creep, low cycle fatigue and impact. The expression 

of this factor is a ratio of the three times the hydrostatic 

pressure and the von Mises equivalent stress. Then the 

equivalent strain under the multiaxial stress state, or strain 

range in case of low cycle fatigue, is multiplied by multi-

axiality factor MF, which is related to TF and equated to 

the uniaxial critical strain e. g. maximum uniform strain at 

uniaxial tension. For many practical cases [4] the research 

work of Manjoine [5] is addressed and MF is defined as 

follows:  

MF = TF, if TF  2  (6) 

and  

MF = 2
TF-1

, if TF > 2  (7) 

Some sources prefer the identical expression 

MF = 1/2
1-TF

; it is also often assumed to use MF = 1, if 

TF < 1 [4, 6].  

The TF values usually are calculated as an ave-

rage through the wall thickness (for vessels) [6] or through 

the cross section (for beams) under the elastic stress state. 

The possible change of TF under the increasing plastic 

strain is disregarded. 

In case of low cycle fatigue, when cyclic plastic 

strain range is used for lifetime (number of cycles) calcula-

tion, the basic expressions of MF are [7] 

MF = 1/(2 - TF), if TF  1 (8) 

and  

MF = TF, if TF > 1 (9) 

If the energy-based approach is used [8], for the 

cyclic plastic work 

 112


 STFk
MF  (10) 

and for the effective elastic distortion strain energy para-

meter to account the mean stress effect in case of non-

symmetric cycle 

mTFk
MF 22  (11) 

here TFS and TFm are the stress triaxiality factors calculat-

ed using amplitudes S and mean values m of the principal 

cyclic stresses; k1 and k2 are the calibration constants. 

The continuum damage mechanics approach,  

[9-11] uses the stress triaxiality parameter Tx = H /eq (ra-
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tio of hydrostatic and equivalent von Mises stresses) and 

the stress triaxiality function 

R = 2/3(1+)+3(1 - 2)(H/eq)
2
 (12) 

Relation of the equivalent accumulated plastic 

strain (p) under multiaxial stress state can express the in-

fluence of stress triaxiality on ductility reduction [10, 11] 

  
R

thfthp
/1

  (13) 

where th and f are damage strain threshold and failure 

strain under uniaxial stress state of the material. The one 

could notice that under the uniaxial stress state the 

R = TF = 1 and the difference between Tx and TF is in a 

constant factor of 3. 

To see the shallow notch effect on the stress triax-

iality factor, the TF values along the symmetry line of the 

cross section of the smooth and notched (H = 80 mm, 

t = 4 mm,  = 10 mm) curved beams were calculated. Be-

cause the stress triaxiality effects failure only when the 

plastic straining take place, the nonlinear FEA was per-

formed using bilinear uniaxial stress strain curve approxi-

mation with yield stress point 245 MPa (Table 1) and the 

tangent modulus ET = 671 MPa. The TF values were calcu-

lated over the cross section under the several load levels 

and elastic plastic straining. Figs. 7 and 8 show the equiva-

lent plastic strains (pleq, curves 1, 2, 3) and TF values 

(curves 1, 2, 3) for smooth and notched curved beam on 

the part of the symmetry line of the cross section under the 

dominating tensile normal stresses and positive TF values. 

The corresponding load levels were: P = 72 kN (curves 1 

and 1), P = 130 kN (curves 2 and 2) and P = = 160 kN 

(curves 3 and 3). The maximum equivalent plastic strains 

under these load levels for the smooth beam were: 0.0017, 

0.139 and 0.362; for notched beam: 0.00482, 0.0365 and 

0.423. The dotted curves 0 represent the TF under the 

elastic stress state. 

The results of TF demonstrate the local increase 

of the triaxiality at the initial stage of plastic straining 

comparing to the elastic stress state (curves 1, Figs. 7 and 

8). Then, under the growing load and plastic straining, the 

TF further increases at the large zone of the cross section, 

but slightly decreases at the inner surface of a beam curva-

ture (curves 2). Under the further development of the load, 

when the plastic strain zone covers the entire cross section, 

the TF values are decreasing and are getting lower compar-

ing to the ones under the elastic stress state (curves 3). 

This behavior is characteristic for both, the smooth and the 

notched curved beams, but the local increase of TF is more 

sharply expressed in the notched beam (curves 1) and the 

overall values of TF are higher in the notched beam. These 

results allow to conclude, that the stress triaxiality factors 

at the load levels near the failure are lower comparing to 

the ones under the elastic stress state. Assuming that the 

stress multiaxiality effects the failure strain only at the fi-

nal (failure) stage of the straining, the usage of TF calcu-

lated under the elastic stress state would be conservative. 

However, if the assumptions of the continuum damage 

mechanics would be used, then the damage accumulation 

would take place under the changing stress triaxiality dur-

ing the development of the equivalent strain starting from 

the threshold strain (th). Depending on the materials 
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Fig. 7 Evolution of the equivalent plastic strain and the 

stress triaxiality factor of the smooth curved beam 

(H = 80 mm; t = 4 mm) 
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Fig. 8 Evolution of the equivalent plastic strain and the 

stress triaxiality factor of the notched curved beam 

(H = 80 mm; t = 4 mm;  = 10 mm) 

 

th, the damage accumulation range may cover the part of 

the plastic straining at the higher triaxiality then under the 

elastic stress state for the curved beams.  

 

6. Conclusions  

 

 The single parameter depending on the geometry 

of the curved beams of circular cross-section with asym-

metric shallow notches was found by fitting the selected 

equations to the FEA results. Comparing this parameter to 

the previously found parameters for the curved beam of 

trapezoidal cross-section allow to conclude that the estab-

lished equations are acceptable for both cross-sections 

within the relative difference of 5%, except for the cases of 

df where  > 0.8. 

 The evolution of the stress triaxiality factor under 

the large plastic straining demonstrates the increase of TF 

at the beginning of the plastic straining and decrease at the 

later stage of loading for both smooth and notched curved 

beams. The decrease of the TF under the large loads indi-

cates that the use a TF factor calculated under the elastic 

stress state is conservative if the Manjoine [5] assumption 
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is applied. However, if the assumptions of the continuum 

damage mechanics will be used, the approach to employ 

the Tx calculated under the elastic stress state may be non-

conservative, because the significant increase of TF (and 

Tx) was observed during the loading history. Therefore, the 

damage evolution should be considered starting from the 

threshold plastic strain and the increase of the Tx should be 

accounted.  
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E. Narvydas, N. Puodžiūnienė  

ĮTEMPIŲ KONCENTRACIJA TIES NEGILIAIS 

GRIOVELIAIS KREIVUOSE APVALAUS 

SKERSPJŪVIO STRYPUOSE  

R e z i u m ė 

Straipsnyje nagrinėjama įtempių koncentracija 

apvalaus skerspjūvio kreivuose strypuose ties vidinėje iš-

lenkimo pusėje esančio griovelio dugnu. Šis tyrimas papil-

do anksčiau išnagrinėto trapecinio profilio strypų atvejus ir 

leidžia spręsti apie sudarytų formulių tinkamumą ir univer-

salumą. 

Straipsnyje taip pat nagrinėjamas įtempių būvio 

erdviškumo ir plastinių deformacijų kitimas didinant ap-

krovą. Nustatyta, kad įtempių būvio erdviškumas prasidė-

jus strypo plastinėms deformacijoms yra didesnis lyginant 

su tampraus įtempių būvio atveju, tačiau, plastinėms de-

formacijoms apėmus visą strypo skerspjūvį, įtempių būvio 

erdviškumas sumažėja.  

 

E. Narvydas, N. Puodžiūnienė 

STRESS CONCENTRATION AT THE SHALLOW 

NOTCHES OF THE CURVED BEAMS OF CIRCULAR 

CROSS-SECTION  

S u m m a r y 

Paper presents the results of investigation of the 

stress concentration at the groves of the inner side of cur-

vature for the curved beams of circular cross-section. This 

investigation supplements the earlier work for curved 

beams of trapezoidal cross-section and enables the evalua-

tion of the suitability and versatility of the established 

equations for the calculation of the stress concentration 

factors.  

The paper also presents the investigation results 

of the evolution of stress triaxiality and plastic strain under 

the increasing load. It was found that the stress triaxiality 

factor is higher at the beginning of the plastic deformation 

comparing to one calculated under the elastic stress state. 

However, when the plastic strain covers the entire cross 

section of the beam the stress triaxiality reduces. 

 

Keywords: curved beams, stress concentration factors, 

stress triaxiality, FEA. 
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