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1. Introduction 

The knowledge of dynamic characteristics is very 

necessary and useful in the design and rehabilitation of 

structures equipped with viscoelastic materials, because due 

to their specific mechanical properties, viscoelastic materi-

als contribute to the attenuation of structural vibrations.  

Structures by viscoelastic materials are often used in various 

dynamic loading conditions and in several areas during the 

last decades. Therefore, the viscoelastic materials develop-

ment in the structures requires the implementation ap-

proaches characterizing their vibration behavior. Many re-

search works have studied the structures vibrations under 

moving dynamic loads. This type of load generally causes 

vibrations that can extinguish the performance of the struc-

ture. These studied are focused on the impact of different 

dynamic parameters [1-4]. Based on the Bernoulli beam the-

ory, a three-dimensional finite element model was proposed 

by Kiral et al. [5] to characterize the dynamic response of a 

clamped-clamped beam under dynamic load. Fuh-Gwo Y. 

[6] have proposed a vibration analysis model for multilayer 

laminated composite beams under moving load. Kahya V. 

[7] employed the Timoshenko theory to take into account 

the shear effect in each layer of composite. Sarvestan V. et 

al. [8] employed a quadratic equation for the moving load in 

order to determine the vibratory responses of the cracked 

Timoshenko beam under moving load. Nevertheless, the 

viscoelastic materials can be used as damping materials be-

cause of their specific properties. Generally, few researchers 

interested in linear and nonlinear viscoelastic sandwich vi-

brations under moving load. Irazu L. et al. [9] investigate 

the effect of geometric parameters on the dynamic behavior 

of thin sandwich structures with viscoelastic core. Billasse 

et al. [10] presents a numerical approach using finite ele-

ment bases solution for viscoelastic sandwich vibrations. In 

this work, the dynamic responses of viscoelastic sandwich 

beams under moving load were obtained. The Hamilton 

principle is applied to obtain the motion equation while the 

finite element method is applied for the problem discretiza-

tion. Different configurations of the sandwich beams and 

with various loss factor are considered in this study. 

2. Mathematical model 

The viscoelastic sandwich beam studied in this 

work is composed of a viscoelastic layer placed between 

two elastic layers constituting the sandwich skins; the beam 

is the length L and the width b (Fig.1). The displacement 

and linear strain fields of the ith face layer are given by [10]: 
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where: Ui and Wi are the axial displacement and the trans-

verse displacement in the face layers for any (x) location, 

respectively. ui represents the axial displacement at the cen-

troid of the ith layer and w is the common transverse dis-

placement. The subscripts i = 1.3 refer to the upper and 

lower layers respectively. 

 

Fig. 1 Geometry of a viscoelastic sandwich beam 
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ordinates of the upper and lower layers respectively. hf  and 

hc are thickness of the face layers and of the viscoelastic 

core, respectively. The notations (g’, g”) stand for the spatial 

derivatives (∂g/∂x, ∂2g/∂x2). Taking into account the shear 

in the viscoelastic layer, displacement and linear strain 

fields of the core layer are given by: 
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where: U2 and W2 are the axial displacement and the trans-

verse displacement in the core layer for any (x) location, re-

spectively. β and u corresponds to the displacement and the 

rotation normal of the viscoelastic layer’s mid-plane, re-

spectively. εs2 is the shear strain of viscoelastic layer and εn2 

the normal deformation. The subscript i=2 refers to the core 

layer.  The equations describing the relationship between the 

viscoelastic (u, β) and face layers (u1, u3) are given by [10]: 
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The formulation of the motion equation of the vis-

coelastic sandwich beam is described by the Hamilton prin-

ciple. The strain energy of the beam can be expressed as fol-

lows [11]: 
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where: σij and εij are stress and strain, respectively. The ki-

netic energy of the beam is: 
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in which ρi is the density of the ith layer and the notation g  

represents the first partial derivative of time (∂g/∂t). The vir-

tual work of the moving load can be expressed as follows: 
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The moving load F(x, t) is simply given by: 
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where: δ(.) is the Dirac-Delta function, F0 refers to the con-

stant force and s(t) = vt is the function describing the moving 

of the load F0 at time t, with v is the speed of the moving 

load. By using the Hamilton’s principle and Eqs. (4), (5), 

and (6), and with the terms of axial inertia and the axial ex-

citation force neglected, the bending motion equation can be 

obtained [10]: 
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where: T is shear force and Mβ and Mw are bending moment. 

ρf  and ρc are mass density of the face layers and viscoelastic 

core, respectively. Sf  and Sc are cross-section area of the face 

layers and viscoelastic core, respectively. Y and υc are the 

relaxation function and the Poisson ratio of the viscoelastic 

material, respectively. If and Ic are second moment of the 

face layers and viscoelastic core, respectively.The notation

g stand for temporal derivative (∂2g/∂t2). No analytical so-

lution of Eq. (8), this equation is a nonlinear differential 

equation; only approximated solutions will be investigated. 

In this paper, the approximate solution of the linear bending 

equation (8) is obtained by coupling the one-mode Galerkin 

approximation with the harmonic balance method [10]: 
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3. Finite element discretization 

The finite element method will be used for the nu-

merical discretization of the Eq. (8). An element with two 

nodes is used in this study, at each node there degrees of 

freedom (the transverse displacement w, the rotation of the 

normal of the central layer β and the rotation w’) as shown 

in the Fig. 2.  

 

Fig. 2 Two-node sandwich beam element 

 

The displacement field expression as a function of the 

nodal displacements make:  
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Using classical polynomial shape functions [12], the 

element displacement field vector is written as: 
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where: [Nw] and [Nβ] are the interpolation functions matrices 

given by [12]: 
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Inserting Eqs. (9)- (12), into Eq. (8), one gets the 

following frequency–amplitude equation:  

   ,])[)](([ 2 eeee FqMK   (13) 

where: [Me] and [Ke] are element mass and stiffness matri-

ces, respectively, given by [10]: 
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The {Fe} is element force vector: 
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These matrices are assembled to get the overall 

complex nonlinear eigenvalue problem: 

  ,0])[)](([ 2  QMK   (16) 

where: [K] and [M] are the assembled mass and stiffness 

matrices, respectively and {Q} is the vibration amplitude. 

The Eq. (16) can be solved by different methods of the ei-

genvalue problem as described in [13]. The amplitude equa-

tion (16) leads to an approximate value of the complex ei-

genfrequency that can written in the following classical 

form: 
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where: η is the structure loss factor and Ω is the structure 

linear frequency. The stiffness matrix K is complex with a 

real KR and an imaginary KI parts. The viscoelastic fre-

quency and the loss factor of the viscoelastic structure are 

related to the real and imaginary parts of the linear stiffness 

by the following relationship: 

.IR iKKK   (18) 

The imaginary KI part resulting only from the core 

layer (viscoelastic). For each eigenvalue, the ratio of the im-

aginary part to the real part is the loss factor and the square 

root of the real part represents the natural frequency: 
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This will explain the physical meaning of the real 

and imaginary parts of the modal stiffness constants. The 

introduction of an equivalent structural loss factor as a func-

tion of the amplitude makes it possible to characterize the 

dissipation capacity of the structure. From Eq. (16), the 

equation of motion for beam can be written in the form: 
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where:  


IK
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 is the equivalent damping matrix and 

{F} is the external nodal load vector, obtained by assemb-

ling the formulated element load vector, defined as: 
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4. Results and discussions  

In this study, a numerical code of finite elements is 

developed under MATLAB for dynamic analysis of sand-

wich beam with viscoelastic core under moving loads. The 

differential equation (20) is solved by using the implicit time 

integration Newmark method with parameters γ = 0.5 and β 

= 0.25. The mobile load is 100 N moving at a constant speed 

of 10 m/s. The number of finite elements used in this code 

is equal to 100. This code is used to calculate the frequen-

cies, the loss factor, the dynamic responses due to the mo-

bile load and the dynamic amplification factor. The model 

of viscoelastic behavior is considered with a module Ec in-

dependent of the frequency given by: 

),1(0 vc iEE   (22) 

where: E0 is the real modulus and ηv is the material loss 

factor do not depend on the frequency. This model is widely 

used to study viscoelastic behavior. In this paper, the 

Eq. (16) is solved iteratively for ωn, the resonant frequency 

for mode n, and ηn, the corresponding modal loss factor. 

4.1. Validation 

The real natural frequencies and loss factors of 

sandwich of the simply supported sandwich beam with 

viscoelastic core with aluminum face layers are calculated 

from Eq. (19) and compared with the corresponding results 

obtained by Billasse [10]. The mechanical properties of the 

viscoelastic sandwich beam with Aluminum face layers are 

given in Table 1. 

Table 1 

Mechanical properties of the the sandwich beam. 

 Elastic face  Viscoelastic core  

Young’s module, Pa Ef = 6.9E10 E0 = 1749E3 

Poisson's ratio  υf = 0.3 υc = 0.3 

Density, kg/m3 ρf = 2766 ρc = 968.1 
Thickness, m hf = 1.524 hc = 0.127 
Length, Width, m L = 177.8,   b = 12.7 

The results are obtained for different values of vis-

coelastic core loss factor ηv = 0.1, 0.6 and 1.0. The real nat-

ural frequencies and loss factors corresponding to the first 

three modes sandwich beam are given in Table 2. The results 

show that as the damping factor of the viscoelastic core in-

creases, the damped pulsation also increases involving the 

improvement of the structural damping level.  

Table 2 

Real natural frequencies Ω and loss factor η of the sand-

wich beam for different values of ηv. 

  Present formulation Billasse [10] 

ηv Mode Ω, Hz η/ηv Ω, Hz η/ηv 

 

0.1 

1 148.41 0.3501 148.51 0.3502 

2 488.27 0.1953 488.48 0.1958 

3 1034.50 0.1067 1034.75 0.1071 

 

0.6 

1 150.60 0.33283 150,71 0,3328 

2 489.54 0.19388 489,76 0,1943 

3 1035.20 0.10654 1035,44 0,1069 

 

1.0 

1 154.30 0.3053 154.42 0.3052 

2 491.83 0.1914 492.07 0.1918 

3 1036.40 0.1062 1036.69 0.1065 
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The obtained results are very acceptable, given 

their coincidences with those obtained by Billasse [10] that 

shows the effectiveness of the present approach. 

4.2. Vibrations analysis 

The effects of geometric parameter (h/H) and vis-

coelastic loss factor on natural frequencies and structure loss 

factors are studied. First, we examine the effect of the sand-

wich beam configuration parameters such as viscoelastic 

loss factor and the ratio of thickness h/H on the damping 

properties of the structure. The configuration and geometric 

properties of the sandwich beam considered are given in 

Fig. 1 and Table 3, respectively. 

Table 3 

Mechanical properties of the viscoelastic sandwich beam. 

 Layer face  Viscoelastic core  

Young’s  

modulus(Pa) 

E1=14.7E10 

E2=9.0E9 

G=5.0E9 

EC=7.037E5(2(1+ υc)) 

Poisson's ratio  υ1= 0.3 υc = 00.49 

Density (kg/m3) ρ1= 1580 ρc = 970 
Thickness (m) hf = H-h  h2 = 2h  H = 0.012  h = 0.0012 

4.2.1. Free vibrations  

The variations of the real natural frequencies and 

loss factors corresponding to the first three modes for dif-

ferent configuration parameters, viscoelastic loss factor and 

thickness ratio of the simply supported sandwich beam are 

reported in Fig. 3.   

 

a 

 

b 

Fig. 3 Real naturel frequencies and loss factors of the sand-

wich beam according to the parameters: a) ηv; b) h⁄H 

Proportional relationship between the viscoelastic 

loss factor and the structure loss factor shown in Fig. 3, a, 

nevertheless the eigen frequencies remain constant.  The re-

sults are quite logical given the importance of the imaginary 

part of Young's modulus that reflects the ability of viscoe-

lastic materials to dampen vibrations. Especially when this 

imaginary part is considerable, the results of Fig. 3, b, illus-

trate that the frequencies are inversely proportional to the 

thickness ratios h/H. This means that the frequencies de-

crease when the thickness ratio increases.  

4.2.2. Forced vibrations  

The time-forced responses of the sandwich beam 

are illustrated for different values of ηv. Fig. 4 show the re-

sponses dynamic obtained for different values of ηv = 0.1, 

0.6, 1.0 and 1.5 with h⁄H=0.1 at velocity of moving load, v 

= 10 m/s. It is observed that the effect of the viscoelastic loss 

factor is particularly significant for free oscillations whose 

amplitudes of oscillations are very small for the large values 

of ηv. 

 

Fig. 4 Dynamic responses of the sandwich beam under 

moving load for different values of ηv 

 

The dynamic amplification factor (DAF) responses 

for different values of ηv are reported in Fig. 5. This factor is 

defined as the ratio between the maximum value of the dy-

namic displacement under moving load and the static dis-

placement under concentrated force. The Fig. 5 show that 

the critical speeds vary from one configuration to another, 

for which ηv= 0.6, Vc = 75, 25, 45 and 25 (m/s) respectively. 

The impact of the viscoelastic damping on the DAF is very 

considerable considering the decrease in the amplitudes of 

the DAF of the studied cases for with h⁄H = 0.1, after having 

increased the viscoelastic loss factor.  

 

Fig. 5 DAF of the sandwich beam for different values of ηv 
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The deflection responses of the sandwich beam 

with the effect of the thickness ratio are illustrated in Fig. 6 

for different values of the viscoelastic loss factor ηv at  

v = 10 m/s. The results obtained from Figs. 6, a – c reveal 

that the amplitudes of the responses increase with the in-

crease in the hc whose amplitudes with ηv = 0.6 reach 

w=1.6e-3, 3.5e-3, 15e-3 and 46.4e-3 (m) for respectively 

h⁄H=0.1, 0.3, 0.6 and 0.8. However, the damping capacity 

becomes more significant for these values which have been 

noticed for the ratios h/H = 0.6 and 0.8 whose free oscilla-

tions have disappeared more rapidly compared with those 

obtained with h/H = 0.1 and 0.3.  The viscoelastic damping 

can be improved by increasing the thickness of the viscoe-

lastic layer while keeping the thickness of the face layers. 

 

a 

 

b 

 

c 

Fig. 6 Forced dynamic responses of the sandwich beam for 

different values of ηv: a) h/H=0.3; b) h/H=0.6; c) 

h/H=0.8 

The responses obtained from the DAF for different 

values of ηv and h⁄H are presented in Fig. 7. The effect of the 

damping is also clear from what is illustrated in Figs. 7, a – 

c especially in the hypercritical region where the effect of 

the viscoelastic damping becomes more significant. 

 

a 

 

b 

 

c 

Fig. 7 DAF of the sandwich beam for different values of ηv: 

a) h/H =0.3; b) h/H =0.6; c) h/H =0.8 

 

5. Conclusions  

 

The vibration behaviors of sandwich beams with 

viscoelastic core under moving force are investiged 

numerically. From the work done, several conclusions can 

be drawn: The significant effect of the loss factor of fre-

quency-independent viscoelastic modulus on the dynamic 

behavior involving the improvement of the overall damping 
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of the structure which consequently allows to reduce the am-

plitudes of vibrations when the factor becomes considera-

ble. The maximum amplitudes of the vibratory responses of 

the sandwich beams are proportional to the thickness ratio 

H/h between the viscoelastic layer and the face layer, the 

damping of which becomes very significant with a very thin 

thickness of the viscoelastic layer involving the decrease of 

the amplitudes of displacement. Thus, the damping of the 

structure becomes more significant as the thickness of the 

viscoelastic core layer becomes thinner. This amounts to the 

shear force applied to the viscoelastic layer for this type of 

configuration, which consequently makes it possible to 

further improve the damping provided essentially by the 

viscoelastic layer.  
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DYNAMIC ANALYSIS OF SANDWICH BEAM WITH 

VISCOELASTIC CORE UNDER MOVING LOAD  

 

S u m m a r y 

 

In this article, numerical approach is proposed for 

dynamic behavior of symmetrical sandwich beams with vis-

coelastic core under moving load using the Hamilton's prin-

ciple formulation and the finite element method solution. 

The dynamic responses are obtained for different configu-

rations using the modal superposition method and the im-

plicit Newmark integration scheme. The analysis shows that 

the viscoelastic damping has a significant effect on the vi-

bration behavior involving the improvement of the damping 

of the structure. The parametric study of the effect of the 

configuration parameters shows that the sandwich structure 

has more dissipative capacities of vibratory energy by 

adopting adequate configurations to the structure. 

Keywords: vibration, sandwich, viscoélastic material, 

damping, moving load. 
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