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1. Introduction 

Modeling of oscillations of various dynamic sys-

tems is a constructive-nonlinear problem in some cases. 

They are the systems with one-way connections, various 

designs with enabling and disabling connections, construc-

tions after destruction of one or several elements with the 

calculation scheme change, mechanisms with gaps and 

backlashes, constructions with elastic connections and pre-

liminary compression by a construction body own weight 

or motion limiters, etc. The differential equations in partial 

derivatives with discontinuous boundary conditions are 

used in mathematical model for the description of behavior 

of such systems. Such constructions are floating bridges of 

continuous system with additional limiting rigid supports. 

On the ends of these supports river parts of the bridge rely 

only in the case of passing mobile loading. Generally, in 

the case of mobile loading motion along the floating bridg-

es of not continuous system the greatest bending moments 

and lowering arise at their ends. It is impractical to in-

crease buoyancy of all bridge to get the admissible free end 

lowering because the middle part of the bridge will have 

excess margins of buoyancy and durability. Therefore, in 

order to avoid the floating bridge end lowering there are 

used the limiting rigid supports under the beginning and 

the end of river-transitional parts connection in modern 

floating bridges.  

In the absence of mobile loading on the floating 

bridge there are available vertical gaps between it’s span 

and rigid supports. During the movement of the loading 

along the river or transitional parts of the span, vertical 

gaps at one or both sides change and, generally, the ends of 

the bridge river part can alternately or simultaneously lean 

on rigid support (Fig. 1). 

 

Fig. 1 Span structure (marked by dots) in the general oscillatory system "Car + floating bridge of continuous system with 

additional limiting rigid supports" 

Practically a vertical gap between the bridge span 

and rigid support is appointed by not less than a half of 

draft of the bridge middle under the action of the estimated 

passing loading weight [1]. The dynamic influence of mo-

bile loading on the span middle draft at the modeling of the 

floating bridge oscillations as not continuous system with 

additional limiting rigid support has an important practical 

value. The influence of floating bridge limiting supports on 

stress strain behavior was earlier estimated only at static 

loading [1]. Inertia forces of the mobile loading and the 

bridge, and also the influence of back link weren't consid-

ered. The analysis of features of floating bridge oscillations 

in case of mobile loading considering the nonlinear effects 

of end supports operation is urgent and important at the 

mobile loading weight increase. There are not yet invented 

the strict algorithms for dynamic calculations of bridge 

bearing structures oscillations together with the vehicle 

moving on it, taking into account change of the calculation 

scheme depending on a mobile loading position.  

Despite of a large number of publications devoted 

to problems of one-way connections it is necessary to de-

velop simple and effective method and calculation algo-

rithm for the solution of the considered task. Complexity 

of its implementation consists in the solution of differential 
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equations with discontinuous boundary conditions due to 

the unknown time of boundary conditions change. 

Statement of a problem of constructive nonline-

arity accounting at floating bridges oscillations considering 

the additional limiting rigid supports is described in [2] and 

it is solved by the one-dimensional piecewise linear mod-

els with concentrated parameters. The results are extended 

to a bridge span which is a distributed system. 

In recent years there was published a number of 

works devoted to investigation of the floating bridges be-

havior at static and dynamic loadings. It should be noted 

the active research work in this field, made by Fu S., 

Cui W., Chen X., Wang C., Lin Z.-M. and others. Papers 

[3-6] describe the new dynamic calculation models used 

for the analysis of oscillations of floating and continuous 

bridges systems in a deterministic setting, depending on 

the moving load size and velocity. Work [7] studies the 

effect of different water depths on the oscillations features. 

Paper [8] determines frequencies and forms of free oscilla-

tions of bridges, considering the impact of bridge horizon-

tal cables fixing and torsion oscillations. In paper [9] float-

ing bridge oscillations are investigated, taking into account 

the partial filling of separate supports with water. The 

problem is solved by the stochastic finite element method. 

The works [10, 11] consider the characteristics of the wave 

loading, magnitudes of the hydrodynamic coefficients and 

seismic loading. To perform the research there are used the 

finite element method and a number of numerical methods 

[12, 13]. Such an interest shows their wide use in the prac-

tice of transportation construction. There are not found the 

publications on the calculation of floating bridges of con-

tinuous system with limiting rigid supports under the ac-

tion of the moving loading, which are the structural and 

non-linear systems. Papers [14-16] are devoted to the study 

of structural and nonlinear oscillations of constructions. 

The solution of some problems of building structures static 

calculation can be obtained in analytic form that allows to 

study the impact of various construction parameters in an 

explicit form [17]. This work is performed on the basis of 

the results obtained in [2, 18] and it is their continuation 

and development. 

The purpose of this work is to develop a tech-

nique for modeling structural and nonlinear oscillations of 

building structures on the example of a span of a floating 

bridge of continuous system with limiting rigid supports 

under the moving loading action. To achieve this, it is nec-

essary to develop a computational algorithm for solving 

partial differential equations with discontinuous boundary 

conditions. 

2. Calculation scheme and mathematical model 

The structural-nonlinear oscillations of the float-

ing bridge span are considered. The problem is solved in a 

flat substitution, that corresponds to the case of a car mov-

ing along the axis of a bridge or roadway with only one 

traffic lane. 

A model of an elastic rod of length l with free 

ends previously considered in [2, 18] was taken as a calcu-

lation scheme. In this model the rod is under the action of a 

combination of concentrated forces from the dynamic tire 

pressures Rk(t) of a three-axle vehicle, forces in the linings 

under the floating supports Sj(t) and forces Pl(t) and Pr(t) 

acting the rod from the left and right side of the transition 

parts, respectively (Fig. 2). 

 

 

Fig. 2 Scheme of the floating bridge 

Bending oscillations of an elastic rod (bridge span 

model) in the vertical plane are described by a partial dif-

ferential equation of the fifth (or fourth if the internal fric-

tion is neglected) order relative to the coordinate y (x, t), 

measured from the rod position in equilibrium. If the origin 

coincides with the mass center position C of the rod, there 

are no forces Rk (t) than the equation is: 
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where:  is linear rod mass;   is attenuation coefficient of 

bending strain due to internal friction; E is material elastic-

ity modulus; J is moment of inertia the rod’s cross section; 

N is number of floating supports; δ(x) is Dirac delta func-

tion, allowing to take into account the concentrated forces 

action in the equation with distributed parameters; χj and xk 

are coordinates of forces Sj(t) and Rk(t) application points 

correspondingly. 

It should be noted that 
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bridge span mass. The first term describes the loading of 

the intermediate supports from the span sole weight in 

equilibrium. The total force from all the intermediate sup-

ports is equal to the total weight of the bridge. The second 

term reflects the additional force from the intermediate 

support when the bridge leaves the equilibrium position. 

Under the action of forces Rk(t) it should be taken 

into account the possibility of gaps closing in the case of 

span extreme point displacement exceeding Δ (Fig. 2). In 

this case, additionally the forces Fl(t) and Fr(t) start to act 

the elastic rod from the limiting supports. The position 

when the span is in contact with the limiting supports de-

pends not only on the bending deformations y(x, t), but 

also on the displacement of the bridge as an absolutely 

rigid body, which is determined by the coordinate of the 

mass center z(t) and the rotation angle φ(t) (Fig. 3). 

 

Fig. 3 The span displacement scheme for the floating bridge modeled as the rigid body 

In the case of small displacements at tan  = , 

the movement of the span as a solid body is described by 

the equations: 
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where: Jb is central moment of inertia of the rod as a solid. 

The initial conditions for the differential equa-

tions system (2) are: 

 z(0) = 0; ;0)0( 
dt

dz
 (0) = 0; .0)0( 

dt

d
 (3) 

Thus, the full vector of generalized coordinates 

determining the position of a random span point has the 

form [ ( ) ( ) ( )]Ty x,t ,z t , t .Z  

Then there was created a mathematical model of

an elastic thin rod bending movements in the coordinate 

system associated with this rod, as with a rigid body. 

This coordinate system is non-inertial, therefore, 

in the motion Eq. (1) it is necessary to take into account the 

distributed inertia forces acting at a point with a coordinate 

x additionally. As the vertical coordinate of point X is con-

nected with the generalized coordinates z and  by the re-
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Therefore, the Eq. (1) takes the form: 
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The new variable u(x, t) = y(x, t) + z(t) – x(t) de-

scribes the displacements of the rod points at a time t in a 

fixed coordinate system in the case of rod small angular 

deviations from the equilibrium position. 

To determine the values of forces Fl(t) and Fr(t) 

from the limiting supports the Heaviside function 

(–Δ – u) was applied. This function is equal to 0 if its 

argument is negative, and 1 if it is positive. Using the 

Heaviside function, there could be uniformly written down 

the boundary conditions both for the case of opened and 

closed gaps. The changing of boundary conditions takes 

place when the function argument changes its sign, i.e., 

when u = – Δ. It is considered that the uttermost limiting 

supports are not absolutely rigid, and their action can be 

modeled using elastic springs with large stiffness factors cl 

and cr. In this case:    
2

;ll lF u c u  
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The considered approach allows to consider the 

floating bridge span as a rod with free ends even at its con-

tact with the limiting supports. In this case, the internal 

transverse forces and bending torques at the rod ends are 

equal to zero. Consequently, the elastic thin rod motion can 

be written in the form of an initial-boundary value problem 

for a partial differential equation, taking into account ex-

pressions (3): 
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The application of the Galerkin method and finite 

differences for the Eq. (1) made it possible to obtain stable 

solutions only for a certain range of stiffness coefficients 

of limiting supports. Their increase in order to obtain more 

accurate results led to the algorithm stability loss. There-

fore, in this work, there was applied the apparatus of gener-

alized functions, which are continuous linear functionals on 

the space of basic functions D, consisting of infinitely dif-

ferentiable smooth compactly supported functions [19]. A 

regular generalized function can be associated with each 

integrated ordinary function f(x) and this function acts a 

arbitrary test function (x)  D according to the rule: 
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Here: q(x) can be considered as a variation law of 

the external load distributed along the rod length, corre-

sponding to the action of concentrated forces. 

Then the Eq. (4) will be rewritten as: 
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According to the definition (5) there follows that: 
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After double integration in parts: 
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And one more double integration in parts: 
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Taking into account the Eq. (7) and boundary conditions (4), it turns out: 
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After equating (8) and (9) it follows that: 
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Taking into consideration (6), there is finally ob-

tained the equation to determine the function u(x, t) using a 
random infinitely-differentiable finite basic function (x). 
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Compared to Eq. (4), the obtained form of equa-

tion no longer contains the Dirac δ-function and allows to 

operate with finite values of quantities. The derived equa-

tion is taken as the basis for constructing the computational 

algorithm. 

3. Creation of computational algorithm 

The solution will be searched in the form 





K

n

nn tTxHtxu
1

)()(),( , where the Chebyshev polynomials 

of the first kind, order n from 1 to K are the basis function 

Hn(x). As the test functions there are set the polynomials 

)()( xHx mm  , conjugated to Hn(x), i.e. defined by the 

condition 

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




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.if,0

;if,12/

2/
nm

nm
dxHH

l
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Hereinafter, the indices related to the basis func-

tion are indicated below, and to the main one – above. 

Then the substitution in (10) gives: 
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To make the equation more compact we will use: 
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Then the system of equations can be rewriting as: 
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Multiplying by the inverse matrix [HH], it is ob-
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Taking into account the initial conditions: 

Tn(t = 0) = 0; ,0)0( t
dt

dT n

we obtain the Cauchy prob-

lem with respect to unknown functions Tn. Substitution of 

the ordinary differential equations resulting system solu-

tion in the expression 



K

n

nn tTxHtxu
1

)()(),(  gives the 

form of the floating bridge span under the action of dy-

namic loads. 

If necessary, the found function can be substituted 

into the Eq. (2), this will allow to find the laws of the z and 

 generalized coordinates changing and the beam elastic 

axis deformations y(x). 

4. Computational results 

Based on the developed algorithm, a computer 

program was created. The solution to the Cauchy problem 

was implemented in the Matlab environment using the 

built-in module for solving systems of ordinary differential 

equations, based on the one-step explicit Runge-Kutta 

method of the 2nd and 4th order with automatic step selec-

tion. A wide range of numerical investigations was per-

formed to analyze the effect of bending stiffness, the size 

of the gap between the limiting supports and the ends of 

the rod, the loading velocity and its value on the ampli-
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tudes and features of the vibrations. 

For example, there are presented some results of 

numerical calculations for a rod of length l = 42.5 m, linear 

mass μ = 888 kg/m, the cross section axial moment of iner-

tia J = 0.0050936 m4. The rod relied on five elastic bonds 

with a step of 9.8 m. It was considered that a force moves 

along the beam at a constant velocity. The force varied by 

the harmonic law with respect to the static value P0 = 2 kN 

with a frequency ω = 4π c–1 and amplitude A = 0.3 kN, 

which simulates the effects of the car wheels. 

To illustrate the numerical results, the Fig. 4 

shows the graphs of the beam leftmost point vertical dis-

placements for various stiffness coefficients of the limiting 

supports when the mobile loading moves at a 15 km/h ve-

locity and the gaps value Δ = 0.15 m. 

The seventh-order polynomials were used for the 

calculations. At high rigidity of the supports, the disconti-

nuities of displacements are not observed, this confirms the 

efficiency of the algorithm. The computational results were 

very close to the observed in practice ones. It should be 

noted that the duration of the floating bridge contact with 

the limiting support is practically independent of its stiff-

ness coefficient. 

Fig. 5 shows a deformed view of the rod at the 

moment of rod relying on the left limiting support at dif-

ferent stiffness coefficients of these supports. A certain 

excess of the gap Δ is caused by the deformation of the 

limiting supports. 

 

Fig. 4 Dependence of the beam leftmost point vertical 

displacements for the different stiffness coefficients 

of the limiting supports on time: 1 – cl=cr= =12 

MN/m; 2 – cl=cr=22 MN/m; 3 – cl=cr= =32 MN/m; 

4 – cl=cr=42 MN/m; 5 – cl= cr= 120 MN/m 

 

Fig. 5 Vertical displacements of the points along the rods 

length (general deformed view) at stiffness 

coefficients of the limiting supports: 1 – cl=cr=12 

MN/m; 2 – cl=cr=22 MN/m; 3 – cl=cr=32 MN/m; 

4 – cl=cr=42 MN/m; 5 – cl=cr=120 MN/m 

 

5. Conclusions 

There was developed an algorithm for solving dif-

ferential equations with discontinuous boundary conditions 

for modeling structurally nonlinear vibrations of building 

structures. To improve the computational schemes for the 

practical problems implementation the Chebyshev's poly-

nomials were used. There were avoided the computational 

difficulties and unacceptable discontinuities while simulat-

ing the oscillations of the simplified construction model of 

the floating bridge as a continuous system at the moment 

of the moving loading driving on and off the elastically 

supported system, and the smooth solutions were obtained. 

It should be noted that to implement the general 

problem of modeling the floating bridge nonlinear vibra-

tions at its continuous system with limiting supports at the 

ends under a moving loading, it is also necessary to use 

methods of modeling the vibrations of a moving car and 

single floating supports along with the developed algorithm. 

The described technique can be easily used for 

modeling of structural-nonlinear vibrations of a wide range 

of building structures. This will allow to make an adequate 

prediction and evaluation of such structures behavior under 

a moving loading. 
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S. Yu. Gridnev, Y. I. Skalko, A. O. Shimanovsky 

MODELING OF CONSTRUCTIONS’ 

STRUCTURALLY NONLINEAR OSCILLATIONS 

USING CHEBYSHEV'S POLYNOMIALS 

S u m m a r y 

A numerical algorithm for solving initial-

boundary value problems with nonlinear boundary condi-

tions was developed and implemented. The algorithm is 

constructed with reference to modeling of oscillations of 

an elastically supported deformable rod with limit stops at 

the ends under the action of a moving variable force. Such 

a rod is the design scheme of a number of building struc-

tures, including the span structure of a floating bridge of 

continuous system with limiting rigid supports at the ends. 

Chebyshev's polynomials were used to improve the com-

putational schemes for realizing the practical problems of 

modeling constructive-nonlinear oscillations of building 

structures. The solution does not lose stability for large 

values of the elasticity coefficients of elastic couplings. 

Using the developed approach, it is possible to perform 

virtual computing experiments to skip a variety of movable 

loads on the floating bridge to analyze its deformed state 

and to make well-grounded design decisions. 

Keywords: floating bridge, constructive-nonlinear oscilla-

tions, Chebyshev's polynomials. 
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