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1. Introduction

The present article may be considered to be another
new supplement to the monographs [1, 2]. This supplement
deals with the resolution of issues of practical application of
the ZI method that was developed by the author and pre-
sented in his monographs. The ZI method is a uniform (gen-
eral) method and is applicable for any stage of load opera-
tion when bending moments and /or axial forces are acting.
At structural members’ cross sections, it is possible to make
theoretical calculations of each individual actual value of
stress-strain state parameters (crack, compression and ten-
sile zone height, member layer strain and tension at cracks
and between cracks). The method directly takes into account
of the actual properties of the materials. A very important
and complicated problem is resolved, namely that of theo-
retical estimate of the actual position of the neutral axis. Pre-
viously, its position used to be determined either very
roughly or through costly experimental equations. The ZI
method is suitable for the calculation of variously of rein-
forced structural members (with not pre-tensioned rein-
forcement, with tensioned reinforcement, with mixed rein-
forcement, with not necessarily metallic reinforcement lo-
cated at any height of the structural member; where there
can be any number of rows of reinforcement) of different
materials (concrete, reinforced concrete, metal, wood, plas-
tic, etc.), also for members with any kind of cross-section.
Stress-strain relationships can be described by various equa-
tions, i.e., the stress diagrams may be curvilinear, rectangu-
lar, triangular, etc. It should be noted that for the calcula-
tions we only need to have stress-strain diagrams. The
method enables estimation of the deviation of strain from
the flat section. More information on this may be found in
monographs [1 and 2] and in articles [3, 4, etc.].

The most complex material is reinforced concrete
since members made of reinforced concrete may have
cracks in the tension zone. This article focuses on the calcu-
lation of strength of reinforced concrete beams based on cur-
vilinear stress-strain relationship o, —&_ for concrete pre-

sented in regulations [5-7]. But here still remains one unre-
solved issue. This relationship is presented for the case
where the reliability is 50 %. It is suitable for the analysis of
results of reinforced concrete member tests. There is no op-
tion for the calculation of the SLS — serviceability limit
states — reliability 95 %) or the ULS — ultimate limit states
reliability — ~100 %).

To calculate strength of reinforced concrete beams,
articles [4, 8] and supplements B and C to the monographs
[1, 2] used the eurocode o, —¢, diagram described by the

Z1 method. The reliability was raised from 50 % to ~100 %
not through the increase of the reliability of concrete

strength, as it is usually done in the ultimate limit states
method, but rather by dividing the beam compression zone
strength Fem by factor ye=1.95. The calculation yielded
good results — see Table 2.

In order to retain the integrity of the ultimate limit
states method, this article offers relationships o, — ¢, anal-

ogous to the ones used in EN-2 regulations. Their reliability
is not 50 %, but 95 % and ~100 %. They are described by
polynomials by the ZI method. The latter relationship with
reliability of ~100 % is used in the present article to calcu-
late the strength of beam, and the relationship with reliabil-
ity of 95 % will be used in the next article to examine the
serviceability limit states.

One of the aims of this article is to improve the
method for calculating the strength of heavily reinforced
structural members.

2. Stress-strain diagrams for concrete offered by EN-2
and proposed by the present article

Regulations for reinforced concrete [5-7] present
stress-strain relationships as shown in Table 1.
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Fig. 1 Stress-strain relationship for concrete as presented in
regulation EN-2

The diagram parameters are expressed by the fol-
lowing equations:
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here and further ¢, values are considered to be positive. If

f
E., =tana, E, =1.05E_, and v, = —"—, then

Ecea
/ _ 2
k:iand GC:M - (4)
Vel 1+(1/VC1—2)77

E,, = 22(f,, /10)°* (GPa); (f,, , MPa), (5)
£q =070 <2.8 (%o(; (f,, , MPa), (6)
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Relationship o, — ¢, for concrete in Fig. 1 in the

Z1 method can be accurately described by a 5th degree pol-
ynomial. The rising part of the diagram and part of the fall-
ing part of the diagram and sometimes even all of it can be
described quite accurately also by a much simpler 3rd de-
gree polynomial. The latter option has been chosen in this
article. A3-degree graph is shown in Fig. 2.

Equations of Figs. 1 and 2 and Egs. (1)—(7) mostly
use mean parameter values, their index is cm, and their reli-
ability is 50 %. The method is suitable for the analysis of
test data. In this case in Fig. 2 E_, =tana,, E, =1.05E_,
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Fig. 2 The ZI methodology takes into account 3rd grade
stress-strain relationship for concrete

In order to have reliability of 95 %, which is used
for the calculation of the serviceability limit states (SLS
states), the author of the present article suggests in Egs. (5
and 6) (rather than using mean values of parameters) assum-
ing characteristic values — index k. Then in Fig.2

E,. =tanf, oy = fy, &4 =071, <2.8. This option
is planned to be further analysed in the author’s next article.
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When reliability of ~100% is required, the author
of the present article proposes when calculating the ultimate
limit states (ULS states) in Egs. (5 and 6) (rather than as-
suming mean values of parameters) to assume the calculated

values index d. Then, in Fig.2 E, =tang, o, =f

c cd?

£qq = 0.7 3! < 2.8. This option is analysed in greater de-
tail in this article. We obtain good results— Tables 1 and 2.

3. The main equations of the ZI method when a 3rd
degree polynomial is used

When the function of Fig. 2 is expressed by the ZI
method's 3rd degree polynomial, the following simple equa-
tions are used:
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£, 1s maximum (edge) strain of the compression

zone of the beam.
For more information, see the examples.

4. Assumptions and calculations made in the present
article

4.1. Assumptions

1. For the concrete of beam compression zone, a curvilin-

ear EN-2 stress diagram o, —¢, is assumed that is

shown in Fig. 1, which is described by the ZI method’s
3rd degree polynomial as shown in Fig. 2.

For the reinforcement of tensile zone of beams analysed
in the article, the diagram o — ¢, as shown in Fig. 3 is

used.
The strength of a beam is considered to be the state when
the stress of the concrete compression zone's stresses



o, =0y and strain g, =g, or when the strain of the
reinforcement in tension ¢, = ¢, .

Hypothesis of plane sections (Bernoulli) is applied.
The impact of the tensioned concrete over the crack is
disregarded.
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Fig. 3 Reinforcement stress-strain diagram is assumed in
the article

4.2. Calculations made in the article

Scope of the research. Four reinforced concrete
beam’s tensile zone's reinforcement variants — little (rein-
forcement factor p, ~0.44 %), average (o, ~1.07 % and
P, ~1.60 %) and large (p, = 2.13%). All the [5-7]
strength classes of regular concrete as presented in the reg-
ulations: f, from 08 to 90 MPa. Beam cross-section pa-

rameters: b =0.20 m, h=0.50m, d = 0.46 m (Fig. 4).

4.3. Research results

The results of the calculations are presented in Ta-
ble 2.

Further in the text we supply examples of the cal-
culation and explanations of the results presented in the ta-
bles.

Examples of calculations of Mg, gy, by EN-2

equations and calculation of M, ;, by the ZI method when

7rc =1.95 coefficient is used are presented in example to
monographs [1, 2]. Results of the calculation are presented
in Table 2.

The article presents examples of variants of calcu-
lation of My, by the ZI method, when the calculated
expression is used of the diagram o, —¢, presented in the
EN-2 regulation described by the ZI method. There are three
possible cases: Case 1, where and

<&, <&, — these are regularly (economically) rein-

o, =Ty
Esel
forced beams; Case 2, where o, = fy and ¢, <e¢
these are abundantly reinforced beams and Case 3, where
o. = fy and g, > ¢, economical reinforcement — when
the calculation is made on the assumption that o, = f 4
and &, = ¢4, . In all cases, the calculated version of the cur-

vilinear EN-2 diagram described by the ZI method is used,
i. e. partial material strength factors are used that are ac-
cepted in the limit state method. In the examples provided
for the simplification of the calculations, the impact of ten-
sile concrete over the crack is disregarded, as in most cases

sel
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it is insignificant. If necessary, it is possible to factor in also
the impact of the tensioned concrete over the crack, the im-
pact of the axial force, and the impact of the flanges.

In examples 1, 2 and 3, M., ,, is calculated by

the Z1 method by applying to the compression zone concrete
partial factor y, =1.5.

Example 1. Regularly (economically) reinforced beam

When o, = f and &g, strength of

regularly (economically) reinforced concrete beams with
rectangular cross-section is calculated by the method of ul-
timate limit states of both zones (tension zone reinforcement
and compression zone concrete). f, =25 MPa.

f,=f,/1.5=25/15=16667 MPa.
2916 mm — A =4.02 cm’.
f, 400

Seg S &gy

f, = —— =363.636 =364 MPa,
Vs 1.1
F,=f,A =363.6-10°-4.02.10™ =146.167 kN.
. fyA+P 146.167-10° +0
wl —

o, ,6,E D 0.27743.42.9375.10°.0.20
=0.061352 m.

1.6744
£ = ‘gﬂ(d Xy )= (46-6.1352) =10.8798 %o >
X, 6.1352
f, 363.6-10°
> 6y = E—“ = o010 " 1.818-10° =1.818 %o.
. .

For instance, if ¢, =35 %o, then &, = ¢4, . Con-

trol:

Fea = @ng180q1EcgbX,; =
=0.27743-1.6744-10"° - 25.6435-10° -0.20-0.061352 =
=0.146167 MN =146.167 KN =F,.
Distance between F, and F,:
z

c Zga =d _(1_a)mc/wnc)xw,c1 =
=0.46 —(1— 0.16920/0.27743) -0.061352 = 0.43507 m.
Mg, = FyyZy, =146.167-0.43607 = 63.739 kNm.

sd ©sd1
If we factor in the impact of tensioned concrete
above the crack, then we get M, = 63.747 KN-m, i.e. al-

most the same result.

If we factor in not only the tension zone reinforce-
ments force Fs; and compression zone concrete force Feq, but
also tension zone over the crack concrete force and the
forces, values of which do not depend on xw: (axial and ten-
sion forces N and P, compression zone reinforcement
Fo. = fog A and flanges Fgy =nf (bf —b)hf forces

N const
(wnclgcdl ~ Ntus Pnt€ctu )Ecd b

=17

cdl

(Fig. 5), then x,, =

Neonst = N +P+F —Fo —F .
Example 2. &< ¢s¢, i.€. case of abundant reinforcement

f, =20 MPa, 4925 mm — A =19.63 cm?,
p, =19.63-100/(20-46) = 2.1337 ~ 2.134 %,



F,=f,A =363.6-19.63-10 = 713.747 kN,
E,  200-10°
E.q 23.9830 -10°

From monographs [1, 2] equations relative (not ac-
tual) values are calculated:

G 1 _ 8.3392403 -2.1337 1072
w 0.26123
2
S
- +
3

2
*J(%J © 0 6114054 — 055295037

X, = &,,d = 0.55225037-0.46 = 0.25403517 m.

= 8.3392403 .

a

e

= 0.681140643,

ncl

s
=——+
2

0.68114064 .
2

gwl

Ee
X_dl(d - le) =

&

S

wl

15625
©0.25403517
f, 363.6-10°
E,  200-10°
Actual values:

=¢E A =1.2668-10"°-200-10°-19.63-10* =
N = 497.3585 kN.

= a)nclgcdlEcd bxwl -

(0.46 —0.25403517) =1.2668 %o <

=1.818-10°=1.818 %o.

<&yl

Fsd
= 4973.585-10°
ch
=0.26123-1.5625-10"° - 23.9830-10° - 0.20-0.254035 =
=0.4973611 MN =497.3611 kN.

Zgg1 = d _(1_a)mcl/wncl)xwl =

344

=0.46-(1-0.15786/0.26123)-0.25403517 = 0.359477 m.

M, =497.360-0.359477=

= 178.78976 kNm.

w=Fz.=Fz,=F,z

sd “sd1

Example 3. &< ess=35%o. In this case, the procedure of
the calculation is the same as that of the calculation of
example of the monographs [1, 2].

The same beam as in example 1, but here not
=25 MPa, but f, =70 MPa.

Calculation by method of Example 1 resulted in
the following &, = 41.25936%0 > &, = 35%.. This is a rather
rare case, so because of the limited scope of the article we
only provide guidelines for further calculations.

fck

f 363.6-10°
W == -10.3885714 GPa.
&, 3510
E 10.3885714 -10°
vy == = 005194286 .
200 -10
200 -10°
o, = = —————— = 572670448 .
o 349241 -10
a, =a; =046 m.
~ (P /vpi) + 2N;
w/bo bE ¢, /K,

From [1, 2]:

58.196941.10°°

|

=825.098408

Spo =2’ (XZypa, +a,Z

si/bsi ¢~ «xn/bo

)=

S =4, [Zzsub a, + 2asi)+3af:z'{n/b”:| =

no

=379.545268-10°
SnZ
Sn3

+3a . Z

& Kknlbo

= Zzsilb (Zas +a )
=597.897397-10°

|

=27, +Z

si/b

=12

xn/ba

B, (w +8,,) =698.363293-10°°
( S,. ) = 4554.543216-10°
S,, ) =9901.180896-10°

S,;) =7174.768769-10°

From [1 and 2]:
35
—2.3040
¢ = C7lo,c = —0.2601 - (~15.1909722 ) = 3.951172 ,
Uye = Cqo7iy = —0.1599 - (~15.1909722 ) = —36.899425
Mo, =68’ =6-0.46° =1.2696 m’,
1 =4-(3+uy Ja, =4-(3+3951172 )-0.46 =12.790157 m
»e= 6+4U, +3U, =6+4-3.951172 +3-(~36.899425)
= —88.893588.
1, = k.n,, =1-1.2696 =1269600-10"° ]
C,, =k.n, =1-12.7901565 = 12790156.5-10° L
C,. = k. ,,=-88893588-10"° J
From [1, 2]:
B,, = 698.363293 107
a, =B, +T, =B, = 4554.54321 6-10°
~Cpy =By, —C,, = —1259698.82 -107°
@3 = B3+ T3 —Cpg = By — Cg = —12782981.7 3.107°
a5 = Tpa —Cpa = —C,,4 = 88893588 -10°°
From[1, 2]:
698.363293 + 4554.543216x,, —1259698.82x2 —

-12782981.73x} +88893588x;, = 0.
X1 = —0.02578063 = —0.0257806 m.

Bnl
B., =12(w
B,y =12(W,, +

1|
=12(W,, |
F
|
|
J

= -15.1909722 .
~€ed1

Uy,

8n0 = B +Tyo =

8y, = By + Ty

X, =—X, = 0.02578063 = —0.0257806 m.
35.2.578063
£, = —— X, = =2.0780327 %o <
d-x, 46 — 2.578063
< &4, = 2.3040 %o.
X 2.0780327
= 2= Zw ST 6 9019239
Xen  Eem 2.3040
1 c c, , 1 —-0.2601148
wm:??lnw 42 “=> e 0.9019239 +
201599236 1 9019239 2 = 0.38927562 .
F. = ¢E, ba)nc .= Sw E.ba, x =aw,E.e,bx, =

C

=0.3892756-34.9241-10° - 2.0780327-10° -0.20 -
-0.0257806 = 0.14566604445-10° N =145.6660 kN.



F,=0,A = f A =363.6-10°-4.02-10" =
=1461.672-10° =146.1672 kN.
@, _ 0248664

e =_—mc

© w " 0.389276

nc

Distance between Z, and Z:
Zo =24 =2 = d _(1_ wmcl/wncl) X1 =
0.248664
0.389276
MRu = Mcs = Nc(d _Xc+ec0):
=145.666 - (0.46 —0.0257806 + 0.0164683) =

= 0.46—(1—

-0.0257806 = 0.0164683 m.

)0.0257806 =0.45068768 m.

=145.666-0.4506877 = 65.6498745 = 65.650 kNm.
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If in Example 3 instead of ¢, = &, =35%. we take
&, =&, = 41.25936% , then we get the same result as the

result of the calculation according to both zones ULS
method of Example 1, i.e.
Xy =2.4329 cm, g, =2.3040 %o,
& =&, =41.25936 % and M, =65.932 kNm.

This confirms the correctness of the method of Ex-
ample 3.
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Fig. 5 Cross-section of a member with flanges and stress-strain diagrams
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Conclusions

1. Description of non-linear diagrams o, — ¢ for concrete

as presented in regulations EN-2 with reliability of 50%,
by ZI method provides a possibility to have a reliability
not only of 50 %, but also of 95 % and ~100 %. The cal-
culations made in the article confirm that the proposal is
realistic.

When calculating the strength of reinforced concrete
beams using the ZI method, there is no need to have a
limit value for the thickness of the concrete layer of the
compression zone, which at present is traditionally cal-
culated either from empirical equations or theoretically
very roughly.

Calculation of the strength of reinforced concrete beams
using the ZI method presented in the article is logical and
gives actual values of normal and abundantly reinforced
beam stress-strain state at the crack. No empirical equa-
tions are required for these calculations. This is espe-
cially important for the calculation of abundantly rein-
forced beams, as their calculation that is used at present
is either complex or, alternatively, the simplified calcu-
lation that is made is imprecise.

The data presented in Table 1 makes it possible to sim-
plify the calculations. The data in Table 1 show that the
proposals are realistic. In addition to that data in Table 2
shows that the ULS required reliability can be achieved
in two ways: (1) through the use of diagram o — &,

with reliability of 50 % and reinforced concrete com-
pression zone concrete force factor y.. =1.95 or (2)

through the use of a diagram o, — ¢, with reliability of

~100 %; reinforced concrete compression zone concrete
(not force) factor y, =1.5 is used. The second option is

in line with the limit states methods that are currently
used.
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L. Zidonis

CURVILINEAR STRESS-STRAIN RELATIONSHIP
FOR CONCRETE OF EN-2 REGULATION IN THE ZI
METHOD AND THE CALCULATION OF BEAM
STRENGTH

Summary

The article illustrates the possibilities of the practical
application of the ZI method [1 and 2] when calculating the
strength of reinforced concrete beams. The article presents
variants of description of the EN-2 regulation curvilinear
diagram for concrete o, — ¢, with reliability of 50 % by the

Z1 method with reliability of 50 %, 95 % and ~100 %. The
article demonstrates how, when calculating the strength of
normally and abundantly reinforced concrete beams by the
Z1 method, it is possible to do without the calculation of the
limit value of the thickness of the concrete layer of the beam
compression zone. This is important in the case of the cal-
culation of the strength of abundantly reinforced beams. The
method for calculating the strength of abundantly reinforced
beams has been improved. When calculating strength, we
also obtain actual values of stress-strain parameters at the
crack. The tables provide data supporting the proposed in-
novations and facilitating calculations.

Keywords: ZI method, reliability of curvilinear diagram,
reinforced concrete beam strength, abundantly reinforced
beams, limit value compression zone.
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