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1. Introduction 
 

The present article may be considered to be another 

new supplement to the monographs [1, 2]. This supplement 

deals with the resolution of issues of practical application of 

the ZI method that was developed by the author and pre-

sented in his monographs. The ZI method is a uniform (gen-

eral) method and is applicable for any stage of load opera-

tion when bending moments and /or axial forces are acting. 

At structural members’ cross sections, it is possible to make 

theoretical calculations of each individual actual value of 

stress-strain state parameters (crack, compression and ten-

sile zone height, member layer strain and tension at cracks 

and between cracks). The method directly takes into account 

of the actual properties of the materials. A very important 

and complicated problem is resolved, namely that of theo-

retical estimate of the actual position of the neutral axis. Pre-

viously, its position used to be determined either very 

roughly or through costly experimental equations. The ZI 

method is suitable for the calculation of variously of rein-

forced structural members (with not pre-tensioned rein-

forcement, with tensioned reinforcement, with mixed rein-

forcement, with not necessarily metallic reinforcement lo-

cated at any height of the structural member; where there 

can be any number of rows of reinforcement) of different 

materials (concrete, reinforced concrete, metal, wood, plas-

tic, etc.), also for members with any kind of cross-section. 

Stress-strain relationships can be described by various equa-

tions, i.e., the stress diagrams may be curvilinear, rectangu-

lar, triangular, etc. It should be noted that for the calcula-

tions we only need to have stress-strain diagrams. The 

method enables estimation of the deviation of strain from 

the flat section. More information on this may be found in 

monographs [1 and 2] and in articles [3, 4, etc.]. 

The most complex material is reinforced concrete 

since members made of reinforced concrete may have 

cracks in the tension zone. This article focuses on the calcu-

lation of strength of reinforced concrete beams based on cur-

vilinear stress-strain relationship cc    for concrete pre-

sented in regulations [5–7]. But here still remains one unre-

solved issue. This relationship is presented for the case 

where the reliability is 50 %. It is suitable for the analysis of 

results of reinforced concrete member tests. There is no op-

tion for the calculation of the SLS – serviceability limit 

states – reliability 95 %) or the ULS – ultimate limit states 

reliability – ~100 %). 

To calculate strength of reinforced concrete beams, 

articles [4, 8] and supplements B and C to the monographs 

[1, 2] used the eurocode cc    diagram described by the 

ZI method. The reliability was raised from 50 % to ~100 % 

not through the increase of the reliability of concrete 

strength, as it is usually done in the ultimate limit states 

method, but rather by dividing the beam compression zone 

strength Fcm by factor γFc=1.95. The calculation yielded 

good results – see Table 2. 

In order to retain the integrity of the ultimate limit 

states method, this article offers relationships cc   anal-

ogous to the ones used in EN-2 regulations. Their reliability 

is not 50 %, but 95 % and ~100 %. They are described by 

polynomials by the ZI method. The latter relationship with 

reliability of ~100 % is used in the present article to calcu-

late the strength of beam, and the relationship with reliabil-

ity of 95 % will be used in the next article to examine the 

serviceability limit states. 

One of the aims of this article is to improve the 

method for calculating the strength of heavily reinforced 

structural members. 
 

2. Stress-strain diagrams for concrete offered by EN-2 

and proposed by the present article 
 

Regulations for reinforced concrete [5–7] present 

stress-strain relationships as shown in Table 1. 
 

 
 

Fig. 1 Stress-strain relationship for concrete as presented in 

regulation EN-2 

 

The diagram parameters are expressed by the fol-

lowing equations: 
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Relationship cc    for concrete in Fig. 1 in the 

ZI method can be accurately described by a 5th degree pol-

ynomial. The rising part of the diagram and part of the fall-

ing part of the diagram and sometimes even all of it can be 

described quite accurately also by a much simpler 3rd de-

gree polynomial. The latter option has been chosen in this 

article. A3-degree graph is shown in Fig. 2. 

Equations of Figs. 1 and 2 and Eqs. (1)–(7) mostly 

use mean parameter values, their index is cm, and their reli-

ability is 50 %. The method is suitable for the analysis of 

test data. In this case in Fig. 2 ,
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Fig. 2 The ZI methodology takes into account 3rd grade 

stress-strain relationship for concrete 

 

In order to have reliability of 95 %, which is used 

for the calculation of the serviceability limit states (SLS 

states), the author of the present article suggests in Eqs. (5 

and 6) (rather than using mean values of parameters) assum-

ing characteristic values – index k. Then in Fig. 2 

,
ck

E tan  ,1 ckc f  
0.31

1
0.7 2.8

ck ck
f   . This option 

is planned to be further analysed in the author’s next article. 

When reliability of ~100% is required, the author 

of the present article proposes when calculating the ultimate 

limit states (ULS states) in Eqs. (5 and 6) (rather than as-

suming mean values of parameters) to assume the calculated 

values index d. Then, in Fig. 2 ,
cd

E tan  1
,

c cd
f   

8.27.0
31.0

1  cdcd f . This option is analysed in greater de-

tail in this article. We obtain good results– Tables 1 and 2. 

 

3. The main equations of the ZI method when a 3rd  

degree polynomial is used 

 

When the function of Fig. 2 is expressed by the ZI 

method's 3rd degree polynomial, the following simple equa-

tions are used: 
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w  is maximum (edge) strain of the compression 

zone of the beam. 

For more information, see the examples. 

 

4. Assumptions and calculations made in the present  

article 
 

4.1. Assumptions 
 

1. For the concrete of beam compression zone, a curvilin-

ear EN-2 stress diagram cc    is assumed that is 

shown in Fig. 1, which is described by the ZI method’s 

3rd degree polynomial as shown in Fig. 2. 

2. For the reinforcement of tensile zone of beams analysed 

in the article, the diagram ss    as shown in Fig. 3 is 

used. 

3. The strength of a beam is considered to be the state when 

the stress of the concrete compression zone's stresses 
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1cc    and strain 1cc    or when the strain of the 

reinforcement in tension  sus   . 

4. Hypothesis of plane sections (Bernoulli) is applied. 

5. The impact of the tensioned concrete over the crack is 

disregarded. 
 

 
 

Fig. 3 Reinforcement stress-strain diagram is assumed in 

the article 

 

4.2. Calculations made in the article 
 

Scope of the research. Four reinforced concrete 

beam's tensile zone's reinforcement variants – little (rein-

forcement factor 44.0l %), average ( 07.1l % and 

60.1l %) and large ( 13.2l %). All the [5–7] 

strength classes of regular concrete as presented in the reg-

ulations: ckf  from 08 to 90 MPa. Beam cross-section pa-

rameters: 20.0b m, 50.0h m, 46.0d m (Fig. 4). 
 

4.3. Research results 
 

The results of the calculations are presented in Ta-

ble 2. 

Further in the text we supply examples of the cal-

culation and explanations of the results presented in the ta-

bles. 

Examples of calculations of 2, ENRdM  by EN-2 

equations and calculation of ZIRdM ,  by the ZI method when 

95.1Fc  coefficient is used are presented in example to 

monographs [1, 2]. Results of the calculation are presented 

in Table 2. 

The article presents examples of variants of calcu-

lation of ZIRduM ,  by the ZI method, when the calculated 

expression is used of the diagram cc    presented in the 

EN-2 regulation described by the ZI method. There are three 

possible cases: Case 1, where cdc f  and 

susels  ,  – these are regularly (economically) rein-

forced beams; Case 2, where cdc f  and elss ,  , – 

these are abundantly reinforced beams and Case 3, where 

cdc f  and sus    economical reinforcement – when  

the calculation is made on the assumption that cdc f  

and sus   . In all cases, the calculated version of the cur-

vilinear EN-2 diagram described by the ZI method is used, 

i. e. partial material strength factors are used that are ac-

cepted in the limit state method. In the examples provided 

for the simplification of the calculations, the impact of ten-

sile concrete over the crack is disregarded, as in most cases 

it is insignificant. If necessary, it is possible to factor in also 

the impact of the tensioned concrete over the crack, the im-

pact of the axial force, and the impact of the flanges. 

In examples 1, 2 and 3, 
ZIRdu

M
,

 is calculated by 

the ZI method by applying to the compression zone concrete 

partial factor 5.1c . 

 

Example 1. Regularly (economically) reinforced beam 
 

When cdc f  and susels  , , strength of 

regularly (economically) reinforced concrete beams with 

rectangular cross-section is calculated  by the method of ul-

timate limit states of both zones (tension zone reinforcement 

and compression zone concrete). 25 MPa.
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If we factor in the impact of tensioned concrete 

above the crack, then we get RuM = 63.747 kN∙m, i.e. al-

most the same result. 

If we factor in not only the tension zone reinforce-

ments force Fst and compression zone concrete force Fcd, but 

also tension zone over the crack concrete force and the 

forces, values of which do not depend on xw1 (axial and ten-

sion forces N and P, compression zone reinforcement 

scscdsc AfF   and flanges   ffcdfd hbbfF   forces 

(Fig. 5), then 
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Example 2. ɛs< ɛs,el, i.e. case of abundant reinforcement 
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Example 3. ɛs< ɛsu=35‰. In this case, the procedure of 

the calculation is the same as that of the calculation of 

example of the monographs [1, 2]. 

 

The same beam as in example 1, but here not 

25 MPa,
ck

f   but 70 MPa.
ck

f    

Calculation by method of Example 1 resulted in 

the following 41.25936 35‰ ‰.
s su
   This is a rather 

rare case, so because of the limited scope of the article we 

only provide guidelines for further calculations. 
6

3

363.6 10
10.3885714 GPa.

35 10

sd

su

yu

f
E

 


  


 

.0.05194286
10200

1010.3885714

9

9







s

su
s

E

E
  

.5.72670448
1034.9241

10200

9

9







cd

s
e

E

E
  

0.46 m.
si

a a    

0
)/(

/ 










kbE

NP
Z

ipiSii

bn . 

 

From [1, 2]:  

 

 

2 -6

0 / /

1 / /

-6

58.196941 10

2 3

379.545268 10

n si b si n b

n si b si n b

S a Z a a Z

S a Z a a a Z

   

    





   


      


  

 

 2 / /

-6

3 / /

2 3 825.098408

597.897397 10

n si b si n b

n si b n b

S Z a a a Z

S Z Z

   

 





    


    

 

 

 

 

 

-6

0 0 0

-6

1 1 1

-6

2 2 2

-6

3 3 3

12 698.363293 10

12 4554.543216 10

12 9901.180896 10

12 7174.768769 10

n n n

n n n

n n n

n n n

B W S

B W S

B W S

B W S

   


    


    


    

  

 

From [1 and 2]: 

.15.1909722
3040.2

35

1

0
0 







cd

c








3.951172)15.1909722(2601.0011  cdc cu  , 

36.899425)15.1909722(1599.0
22

022  cdc cu  , 

2 2 2

0
6 6 0.46 1.2696 m ,

c
n a      

    12.79015746.03.9511723434 11  aun cc m 

 2 1 2
6 4 3 6 4 3.951172 3 36.899425

88.893588.

c c c
n u u         

 
 

6

2 0

6

3 1

6

4 2

1 1.2696 1269600 10

1 12.7901565 12790156.5 10 .

88893588 10

n c c

n c c

n c c

C k n

C k n

C k n







    


     


       
From [1, 2]:  






























6
4444

6-
333333

6
222222

6-
1111

-6
0000

1088893588

10312782981.7

101259698.82

1064554.54321

10698.363293

nnnn

nnnnnn

nnnnnn

nnnn

nnnn

CCTa

CBCTBa

CBCTBa

BTBa

BTBa

 

From [1, 2]: 
2

3 4

698.363293 4554.543216 1259698.82

12782981.73 88893588 0.

w w

w w

x x

x x

  

  
 

1
0.02578063 0.0257806 m.

w
x      

1
0.02578063 0.0257806 m.

c w
x x      

1

1

1

35 2.578063
2.0780327

46 2.578063

2.3040

‰

‰.

s

w w

w

cd

x
d x









 

 
   

0.9019239.
3040.2

2.0780327


cm

w

cm

w
w

x

x




  

.0.389275620.9019239
4

1599236.0

0.9019239
3

60114820.

2

1

432

1

2

221









 wwnc

cc


 

2 2

9 3

6

0.3892756 34.9241 10 2.0780327 10 0.20

0.0257806 0.14566604445 10 145.6660 kN.

w

c c nc c c nc c nc c w c

c

F E b x E b x E bx
x

N


    



   

      

   
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6 4

2

363.6 10 4.02 10

1461.672 10 k146.1672 N.

s yd s sd s
F A f A


      

  
 

0

0.248664
0.0257806 0.0164683 m.

0.389276

mc

c c

nc

e x



     

Distance between cZ  and sZ : 

 1 1 1 1 1
1

0.248664
0.46 1 0.0257806 0.45068768 m.

0.389276

c cd sd mc nc w
z z z d x      

 
     

 

 

 

 

0

145.666 0.46 0.0257806 0.0164683

145.666 0.4506877 65.6498745 65.650 kNm.

Ru cs c c c
M M N d x e    

    

   

  

If in Example 3 instead of 35‰
s su
    we take 

41.25 3 ‰9 6
s yu
   , then we get the same result as the 

result of the calculation according to both zones ULS 

method of Example 1, i.e. 

1
2.4329 cm,

w
x 

1
2.3 ,0 ‰04

w
 

41.25 3 ‰9 6
s yu
    and 65.932 kNm.

Ru
M    

This confirms the correctness of the method of Ex-

ample 3.  

 

 

 
 

Fig. 4 Cross-section of a member with rectangular cross-section and stress-strain diagrams 

 

 

 

 
 

Fig. 5 Cross-section of a member with flanges and stress-strain diagrams 
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Conclusions 

 

1. Description of non-linear diagrams cc   for concrete 

as presented in regulations EN-2 with reliability of 50%, 

by ZI method provides a possibility to have a reliability 

not only of 50 %, but also of 95 % and ~100 %. The cal-

culations made in the article confirm that the proposal is 

realistic. 

2. When calculating the strength of reinforced concrete 

beams using the ZI method, there is no need to have a 

limit value for the thickness of the concrete layer of the 

compression zone, which at present is traditionally cal-

culated either from empirical equations or theoretically 

very roughly. 

3. Calculation of the strength of reinforced concrete beams 

using the ZI method presented in the article is logical and 

gives actual values of normal and abundantly reinforced 

beam stress-strain state at the crack. No empirical equa-

tions are required for these calculations. This is espe-

cially important for the calculation of abundantly rein-

forced beams, as their calculation that is used at present 

is either complex or, alternatively, the simplified calcu-

lation that is made is imprecise. 

4. The data presented in Table 1 makes it possible to sim-

plify the calculations. The data in Table 1 show that the 

proposals are realistic. In addition to that data in Table 2 

shows that the ULS  required reliability can be achieved 

in two ways: (1) through the use of diagram cc    

with reliability of 50 % and reinforced concrete com-

pression zone concrete force factor 95.1Fc  or (2) 

through the use of a diagram cc    with reliability of 

~100 %; reinforced concrete compression zone concrete 

(not force) factor 5.1c  is used. The second option is 

in line with the limit states methods that are currently 

used. 
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I. Židonis 
 

CURVILINEAR STRESS-STRAIN RELATIONSHIP 

FOR CONCRETE OF EN-2 REGULATION IN THE ZI 

METHOD AND THE CALCULATION OF BEAM 

STRENGTH 
 

S u m m a r y 
 

The article illustrates the possibilities of the practical 

application of the ZI method [1 and 2] when calculating the 

strength of reinforced concrete beams. The article presents 

variants of description of the EN-2 regulation curvilinear  

diagram for concrete cc   with reliability of 50 % by the 

ZI method with reliability of 50 %, 95 % and ~100 %. The 

article demonstrates how, when calculating the strength of 

normally and abundantly reinforced concrete beams by the 

ZI method, it is possible to do without the calculation of the 

limit value of the thickness of the concrete layer of the beam 

compression zone. This is important in the case of the cal-

culation of the strength of abundantly reinforced beams. The 

method for calculating the strength of abundantly reinforced 

beams has been improved. When calculating strength, we 

also obtain actual values of stress-strain parameters at the 

crack. The tables provide data supporting the proposed in-

novations and facilitating calculations. 

 

Keywords: ZI method, reliability of curvilinear diagram, 

reinforced concrete beam strength, abundantly reinforced 

beams, limit value compression zone. 
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