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1. Introduction  

 

Rotor system is a kind of mechanical model de-

scribing rotating system, which has been applied used in 

rotating engineering areas [1, 2], for example power gener-

ation [3], aviation [4], wind turbines [5], turbofan [6], etc. 

The resonance phenomena in the rotating system [7, 8] 

which will damage rotary machinery, therefore it is neces-

sary to do the work on improving the stability of rotating 

system [9].   

The complexity behavior of nonlinear rotor sys-

tem is a long-standing problem in the mechanical engineer-

ing and rotary machine. So far, many researchers investi-

gate the nonlinear vibration of the nonlinear rotor system 

with Hertz contact force. Nayak given the theoretical foun-

dation of the observation phenomenon of vibration point 

contact experiment for the detailed physical explanation 

[10]. Hess and Soom studied nonlinear vibration with the 

Hertz contact by using multi-scale perturbation method 

[11]. Gauthier et al. studied the indentation problem of 

elastic half space under the action of Coulomb friction and 

the action of monotonic normal force [12]. Xiao et al. de-

termined the inherent frequency of the undamped vibration 

of the mass with the Hertzian contact stiffnes by using 

three methods [13]. Bidi et. al. estimated the contact force 

and duration of the cylindrical curved double plate by 

modified Hertz contact theory and shell shear deformation 

theory [14]. Machado et al. seen a bearing as a polydis-

perse granular chain which interact Hertzian contact be-

tween rolling elements and cage components [15]. Yan, 

based on the Hertz contact theory and the Winkler founda-

tion, derived analytical formulas of rolling resistance of 

belt conveyor [16]. Ojolo and Eweina predicted the exact 

cracking force of cashew nut based on a mathematical 

model of contact stress of two bodies, the Hertz’s theory 

and assumption of uniaxial compressive load [17]. Nadimi 

and Fonseca presented the Hertzian response of a single 

soil grain with the tensile strength by both the experimental 

and the numerical investigation [18].  Du et al. estimated 

the tread contact stiffness and given the theoretical support 

of the wheel face design by using an innovative method 

based on the Hertz theory [19]. Sladkowski given Hertz–

Beliaev solution of the problem of the contact elastic hemi-

spheres which have been examined by means of FEM [20]. 

Although various nonlinear rotor models have been pro-

posed in the past hundred years [21-23], an analytical solu-

tion of nonlinear rotor with Hertz and clearance has not 

been achieved [24, 25].  

The motivations of this paper were: 1. To establish 

a typical rotor system consisting of a disk, a shaft and a 

stator with Hertz contact; 2. To present the governing 

equation of complex form for this system by the Lagrangi-

an approach; 3. To find the natural frequency theoretically 

for both the free and the forced vibration by the complex 

harmonic balance (CHBM) method; 4. To verify the theo-

retical formula by the numerical integration.  

2.  Rotor system 

2.1. Dynamical model  

As shown in Fig. 1, the rotor model consists of a 

disc, the stator with Hertz contact and clearance. All the 

variables of the model can be illustrated in Table 1.  
 

 

a 

 

b 

Fig. 1 Model of nonlinear rotor. a – physical model of rotor 

with the bearing clearance, b – the rotor model with 

Hertz contact and the clearance 

Table 1 

Variables of the model 

k Stator’s radial stiffness  

δ Radial clearance of bearing 

O Intersection of bearing axis and the plane X-Y 

C  Mass centre of rotor disc  

m Disc’s mass 

D Geometrical centre of rotor disc 

∆ Disc’s eccentricity  

Ω Rotor’s spinning speed 

http://dx.doi.org/10.5755/j01.mech.25.6.23278
http://xueshu.baidu.com/s?wd=author:(P.%20Ranganath%20Nayak)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
http://dict.youdao.com/w/eng/lagrangian_approach/#keyfrom=dict.phrase.wordgroup
http://dict.youdao.com/w/eng/lagrangian_approach/#keyfrom=dict.phrase.wordgroup
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2.2. Equation of motion  

Consider the rotor system with Hertz and clear-

ance in Fig. 1, the kinetic energy is:  
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where: Z=X+Yi is the complex number and 1i    is the 

imaginary unit.  

The internal energy formula can be obtained as 

follow: 

 

 

 

5/ 2

5/ 2
2 2 2 2

2
( )

5

2
( ) .

5

U kH

kH X Y X Y

 

 

   

    

Z Z

 

(2) 

 

The Coulomb dissipative formula is: 
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where: n is the viscous damping coefficient.  

The external perturbation: 
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The Lagrangian L: 
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Using the Lagrangian equation and the Coulomb 

dissipative function, i.e.: 
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The differential equation of motion for a nonline-

ar rotor system with complex clearances was derived: 
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where: iYXdTd   /ZZ . 

 

By the transformation of 2
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vector equation for the system (7) can be written in follow 

form: 
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Define the transformation of variables as follows: 
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The rotor system (8) is rewritten as the dimen-

sionless expression as follows: 
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2.3. Nonlinear restoring forces and potential energy 

 

The expression of dimensionless restoring force is: 
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The

 

surfaces of dimensionless forces fx and fy are 

plotted in Figs. 2, a – c, which are both considered as func-

tions of x and y, determined by the real section of formula 

(11). It is seen from Fig. 2 that f(x) decreases from positive 

to negative with x. From Figs. 2, b – d, the dimensionless 

force f(y) is a function of vertical displacement y, decided 

by the imaginary section of bearing clearance δ0 in formula 

(11). The gradient, especially the stiffness of the mecha-

nism, is determined by the values of x and y.  

 

   a                                              b 

 

   c                                              d 

Fig. 2 The force-displacement curves for different values 

of stiffness ratio α, bearing clearance δ0. a – δ0=0.0, 

b – δ0=0.0, c – δ0=0.5, d – δ0=0.5 

 

Dimensionless nonlinear potential energy func-

tion can be expressed as: 

 

2.5
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2
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5
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Fig. 3 shows the nonlinear curves of potential en-

ergy V varying with x and y, and presents the complex in-

ner surface of the depression. The results show that the 

potential curves are concave under any combination of 

parameters. 
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a                                              b 

 

c                                              d 

Fig. 3 The potential surfaces in the x-y ccoordinate planes 

for different values of bearing clearance δ0.  

a –δ0=0.0, b – δ0=0.0, c – δ0=0.5, d – δ0=0.5 

 

The dimensionless nonlinear Hamilton energy 

function can be expressed: 
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with the help of the Hamilton function Eq. (13), the trajec-

tories could be classified and analyzed.  

3. The free rotation system 

3.1. Natural frequency  

By letting parameters
0

0, 0, 0      the free 

vibration for the system (10) can be obtained as follows: 
 

0.5
| | 0.  z z z  (14) 

 

It is an autonomous system without gap, damp 

and external force. 

The solution of rotor system (14) of the free vi-

bration can be obtained: 
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i t

A


z  (15) 

 

And submitting Eq. (15) into Eq. (14), we ob-

tained: 
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Based on the expression Aexp(iꞷt)≠0, the natural 

response frequency ω in Eq. (14) can be obtained as fol-

lows:  
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and the vibration period is: 
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A
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here: ω denotes the natural response frequency and is a 

function of the response amplitude A of free vibration. 

The amplitude and frequency of the rotor are 

shown in Eq. (17 a). The relationship between amplitude A 

and frequency ω are illustrated in Fig. 4. As shown in 

Fig. 4, a, the amplitude A increases with the frequency ω. 

In Fig. 4, b the amplitude A decreases with the periodic T. 
 

 

a 

 

b 

Fig. 4 Natural frequency of free vibration of system. a –the 

amplitude frequency curve on (ω, A) plane, b – am-

plitude periodic curve on (T, A) plane 

3.2. Hardening stiffness characteristic 

For a nonlinear free rotation system (14), the 

natural frequencies and periods are physical parameters 

related to the initial conditions. As shown in Fig. 5, a, the 

phase diagram of the system (14) at fixed intervals under 

different initial conditions of (x0, 0, 0, 0) with x0 = 0, 2, 4, 

6, 8. As illustrated in Fig. 5, b, the phase portraits of sys-

tem (14) for the initial conditions of (0, 0, 0, y0') with  

y0' = 0, 2, 4, 6, 8. It is found that the higher the amplitude, 

the longer the corresponding period, so the system behav-

ior has the characteristic of hardening stiffness. 
 

 

                            a                                          b 

Fig. 5 The hardening stiffness characteristic. a – for differ-

ent initial displacement (x0, 0, 0, 0), b – for different 

initial velocity (0, 0, 0, y0') 
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4. The forced rotating system 

4.1. Clearance-free forced rotation system 

Under conditions of the viscous damping 

0
0, 0 0  ，   and the external periodic force 0 , 

the clearance
0

0 , the form of disturbance damped rotor 

system is as follows: 
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where: the ζ is the damping ratio, and the ω is the external 

excitation frequency. 

4.1.2. Frequency response characteristics  

The particular solution for the force-rotating sys-

tem (18) can be defined:  
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submitting Eq. (19) into the force-rotating system (18),  

then it is can be obtained: 
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where: H(ω, A) is a complex variables function of the fre-

quency ω and the amplitude A. The Amplitude-frequency 

function is obtained as follows： 
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where the magnification factor β for amplitude is: 
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and the phase angle θ is given as follows: 
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Fig. 6 Amplitude-frequency curves of force-rotating sys-

tem with different damping ratios ζ. Solid line  

ζ =0.07, dashed line ζ= 1.0, dotted line ζ=1.5, 

dashed-dotted line ζ=2.0 

The relationship of the frequency ω and the magni-

fication factor β is interdependency, named the frequency-

amplitude response. From the Fig. 6, the frequency re-

sponse was plotted by taking the damping ratio ζ as the 

control parameter. It was found that there was the jump 

bifurcation phenomenon.  

  
4.1.2. Attraction domain of periodic response  

 

As shown in Fig. 7, we plotted the attracting set in 

initial plane (x0, y0) to show attracting regions of the big 

periodic solution marked by symbol ∗ , also the small peri-

odic solution denoted by symbol ◦. It was interesting found 

that the shape of the attraction region looks like a spider.  
 

 
 

Fig. 7 Attraction domain in (x0, y0) plane for ω= 1.7; 

ζ=0.07 

 

It is can be seen in Fig. 8, under initial conditions 

of ∗ , a stable large periodic solution is obtained by numer-

ical method in order to show the historical characteristics 

of time. Figs. 8, a – d give the time histograms of axle tra-

jectory, horizontal and vertical axis trajectory for the large 

periodic orbit, respectively.  

 

a                                          b 

 

c                                         d 

Fig. 8 The big periodic solution for the initial condition (0, 

0, 0, 0) and ω=1.7. a – three dimensional axial tra-

jectories; b – the plane axial trajectories, c – time 

history of horizontal direction x; d – time history of 

vertical direction y 

http://dict.youdao.com/w/complex%20variables%20functions/#keyfrom=E2Ctranslation
http://dict.youdao.com/w/magnification%20factor%20for%20amplitude/#keyfrom=E2Ctranslation
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From the Fig. 9, in order to show the historical 

properties of time, the stable small periodic solutions are 

given under initial conditions of ◦.  

However, numerical simulation cannot obtain an 

unstable periodic orbit, because the unstable orbit is related 

to the transient motion. 

 

a                                          b 

 

c                                         d 

Fig. 9 The small periodic solution for the initial condition 

(10, 0, 0, 0) and ω=1.7. a – three dimensional axial 

trajectories; b – the plane axial trajectories, c – time 

history of horizontal direction x; d – time history of 

vertical direction y 

4.1.3. General solution  

The general solution of system (18) is assumed 

as: 
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where: λ1=ω0, λ2=–ω0 the first two terms are general regu-

lar solutions, and the last one is special solutions. 

Using the initial conditions  ' '

0 0 0 0
, , ,x x y y  we ob-

tained the: 
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here: C3, C4 denote undetermined parameters. 

By establishing synchronization in the equation 

(25), we get: 
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Substituting coefficients (26) and (27) into the Eq. 

(24), the general solution of system (18) was obtained as: 
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4.2. The forced rotation system with clearance 

4.2.1. Amplitude frequency  

The force-rotating model for system (8) with the 

rotor system Hertz and clearance can be rewritten in the 

following form: 
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The above system is an inherent nonlinear system 

with jump function, signum function, and 1.5 order fractal 

nonlinearity. 

 

a                                          b 

 

c                                         d 

Fig. 10 The amplitude frequency curves for the nonlinear 

rotor system with clearance δ. a – for δ=2, b – for  

δ =1, c – for δ=0.5, d – for δ= 0.0 

 

For rotating system (29) with clearances, the deri-

vation of the amplitude-frequency relationship is as fol-

lows. 
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The phase-frequency relationship θ was ex-

pressed:  
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Fig. 10 shows the effect of clearance δ = 2, 1, 0.5 

and 0.0 on the amplitude-frequency resonance curve of a 

forced rotating rotor under Hertz contact force and clear-

ance. It is found that the system behaviors hysteretic char-

acteristic. It should be emphasized that the amplitude A 

can be reduced and shifted to the left by increasing the 

clearance coefficient δ of the main resonance region. 

Therefore, there is a method to reduce the risk of rotor ro-

tation, that is, to increase clearance δ.  

4.2.2. Numerical simulation  

The Runge-Kutta method is used to simulate the 

amplitude-frequency response in steady state, and the reli-

ability of the theoretical response formula of perturbed 

rotor system is verified. 

As shown in Fig. 11, the numerical simulation re-

sults (expressed in circles ◦) verify the accuracy of theoret-

ical results (expressed in solid line –) for the presented 

rotor system. Several comparisons between theoretical 

results and numerical results show that periodic dynamics 

has a good correlation.
 

       

                                                                  a                                                              b 

   

                                                                  c                                                               d 

Fig. 11 The comparison of theoretical results and numerical simulation: a – for δ=2, b – for δ=1, c – for δ=0.5, d – for  
δ= 0.0 

 

5. Conclusions 

In this paper, the frequency response of a rotor 

system with piecewise nonlinearity of Hertzian contact 

fractal power and bearing clearance is studied. A complex 

equation of motion for this rotor system was deduced using 

the Lagrange equation. The natural frequency and phase 

portraits of the unperturbed rotor system were obtained to 

demonstrate hardening stiffness characteristics. The ampli-

tude frequency responses and attraction basins of multiple 

solutions for the perturbed rotatory system without clear-

ance were investigated. The analytical form of amplitude 

frequency responses of the perturbed system with clear-

ance were analyzed. The theoretical results are verified by 

numerical simulation and in good agreement with the nu-

merical results. 
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Z. Zhang, Y. Dong, Y. Han 

ANALYTICAL RESPONSE FOR A NONLINEAR 

ROTOR WITH THE HERTZ BEARING AND 

CLEARANCE 

S u m m a r y 

This paper focuses on a nonlinear frequency re-

sponse of a rotor system with power of Hertz contact and 

piecewise nonlinearities of bearing clearance. A complex 

equation of motion for this rotor system was deduced using 

the Lagrange equation. The natural frequency and phase 

portraits of the unperturbed rotor system were obtained to 

demonstrate hardening stiffness characteristics. The ampli-

tude frequency and attraction basins of multiple solutions 

for the perturbed rotatory system without clear-

ance were investigated. The analytical forms of amplitude 

frequency of the perturbed system with clearance were 

analyzed. Through numerical simulation, the correctness of 

the theoretical formula is verified, and it is in good agree-

ment with the numerical results. 

 

Keywords: nonlinear rotor, Hertiz contact force, clearance, 

hysteretic bifurcation. 

 

Received September 19, 2018 

Accepted November 21, 2019 

 

http://dx.doi.org/10.1177/058310248902100303
https://doi.org/10.1080/14786440308635889
https://doi.org/10.1016/0022-460X(72)90168-X
http://dx.doi.org/doi:10.1016/j.cam.2006.07.008
https://doi.org/10.1016/j.mechrescom.2011.07.012
https://doi.org/10.1177/1464419318756661
https://doi.org/10.1177/1687814018783938
https://doi.org/10.1016/j.jssas.2017.04.002
https://doi.org/10.5755/j01.mech.25.3.22265
http://dx.doi.org/10.5755/j01.mech.23.5.19356
https://doi.org/10.1016/j.ijengsci.2016.11.009
https://doi.org/10.1155/2017/2489376
https://doi.org/10.1016/j.proeng.2017.02.156

