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1. Introduction 

Functionally graded (FG) materials composed of 

two or more constituent phases are being extensively re-

searched due to their continuous property along a particular 

orientation and are widely applied in weight sensitive areas, 

such as sensors and actuators, metallic porous and shape 

memory alloy structure [1-3] etc. Recently, FG material 

concept was also used in layered plate, including sandwich 

plates with FG core and/or FG face sheets, to meet the opti-

mal structural design requirements [4-6]. The adjacent lay-

ers in layered FG plate are commonly connected by the flex-

ible interlayer made of polymer adhesive with smaller mod-

ulus than that of FG layer, which inevitably leads to the slips 

in the interlayer [7-9]. Moreover, the polymer material nat-

urally possesses the viscoelastic property; therefore, the me-

chanical behavior of the layered FG plate is actually time-

dependent and can be greatly influenced by the interlayer 

[10-12]. The investigation of such a problem becomes es-

sential and deserves in-depth studies. 

It is generally known that the analytical solutions 

can be served as a benchmark to verify the veracity and ac-

curacy of the numerical solutions. Several a nalytical mod-

els for the mechanical analysis of layered FG structures have 

been proposed in literature. Based on the Kirchhoff theory, 

Moita et al. [13] developed an efficient finite element model 

to analyze the active-passive damped FG sandwich plates 

with a viscoelastic core. Joseph and Mohanty [14] designed 

a finite element (FE) model relied on the first-order shear 

deformation theory for the analysis of the free vibration of a 

beam with FG constraining layer and viscoelastic core. By 

the use of Fourier series and Rayleigh-Ritz method, a uni-

fied accurate solution based on the first-order shear defor-

mation theory was provided by Yang et al. [15] to study the 

vibration and damping of a FG sandwich plate with a soft or 

hard core. According to the refined zigzag theory, Kolahchi 

et al. [16] dealt with the general wave propagation in a pie-

zoelectric plate, whose core is consisted of several viscoe-

lastic layers with temperature-dependent behaviors and re-

inforced by FG carbon nanotubes. Considering the initial 

geometrical imperfection, Tung [17] studied the bending 

and postbuckling of FG sandwich plate built upon the first 

order shear deformation theory by employing the Galerkin 

procedure. By virtue of the first order shear deformation the-

ory, the electro elastic analysis of the thick-walled FG pie-

zoelectric cylinder was explored by Rahimi et al. [18]. 

Nejad et al. [19] presented the elastic analysis of the expo-

nential FG solid sphere based on the 2-dimensional elastic-

ity theory. A novel quasi-3D shear deformation theory was 

created for the static and free vibration analysis of FG sand-

wich plates by Farzam-Rad et al. [20] with the application 

of the isogeometric analysis method. Furthermore, centered 

on nth-order shear deformation theory, the natural frequen-

cies of plate with FG face layer and homogeneous core have 

been studied by Xiang et al. [21] via the meshless global 

collocation method on account of the thin plate spline radial 

basis function. Foraboschi [22] proposed an analytical 

model for two-layer glass plate on the basis of the Kirchhoff 

plate theory. 

However, in the above literatures, the connection 

between the adjacent layers in structures is considered as 

perfectly bonded condition or static slip interface, while the 

long-term response of structures caused by viscoelastic ad-

hesive interlayer is neglected. In the present study, an ana-

lytical solution based on the Kirchhoff plate theory for two-

layer FG plates bonded by a viscoelastic interlayer is pro-

posed. The mechanical property of interlayer is simulated 

by the Maxwell-Wiechert model. With the incorporation of 

Fourier series expansion and energetic method, the potential 

energy equation of system is obtained and the deformation 

components can be solved. In addition, the effects of the ge-

ometry and material on the time-dependent behaviour of the 

structure are discussed in detail.  

2. Theoretical model 

The structure investigated is a two-layer plate of 

length a, width b and thickness H, comprising two FG facial 

layers of thickness hi bonded by an adhesive interlayer of 

thickness h , as shown in Fig. 1, in which the scripts i 

means the variables belongs to the i-th (i=1, 2) layer and the 

variable with superscript * means it belongs to interlayer. 

Ei(z) and μ
 
denote the elastic modulus and Poisson’s ratio of 

the FG layer, respectively, and G*(t) signifies the shear mod-

ulus of the interlayer. μ holds a constant value in each layer. 

The plate is subjected to vertical load q(x, y)
 
on its top sur-

face and simply supported at four edges. 

2.1. Assumptions 

Following assumptions are proposed beforehand 

for the present study:  

a) The plate deforms within the range of linearity;  

b) The thickness of the adhesive interlayer is small; thus, 

the interlayer stains are assumed to be constant along 

the thickness direction;  
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c) The adhesive interlayer is rather soft compared with the 

FG layer; hence, the flexural stiffness in the thin inter-

layer is ignored. 

2.2. Governing formulations for the FG layer 

The Cartesian coordinate system o-xyz in Fig. 1 is 

introduced to identify the position of the present structure. 

Based on the Kirchhoff plate theory, the relations between 

the deformation components are given by: 
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in which, ,iu
 

iv  and
 
w represents the deformations in x, y 

and z directions, respectively;
 iz  denotes the z-coordinate 

value of the middle plane of the i-th layer; 
iu0  and 

iv0  are 

defined as the deformations of 
iu  and 

iv on the middle 

plane, respectively. 
iu  and

 
iv  are functions of x, y, z and t, 

while w is the function of x, y and t. The geometrical rela-

tions can be written as:  
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where: 
i

x , 
i

y  and 
i

xy  are the strains of the i-th layer. The 

constitutive equations in plate are given by:  
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By substituting Eq. (2) to Eq. (3), one has:  
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Fig. 1 A two-layer functionally graded plate with viscoelas-

tic interlayer 

2.3. Governing formulations for the interlayer  

The adhesives commonly possess the viscoelastic 

property, which leads to that the whole system exhibits 

time-dependent behavior [23]. The Maxwell-Wiechert 

model, consisting of a series of spring-dashpot units and a 

spring in parallel as shown in Fig. 2, is adopted for the sim-

ulation of the viscoelasticity. Thus, G*(t) can be expressed 

in the form of Prony series, as follows: 
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in which, *

G  means the long-term modulus; 
*

jG  denotes 

the relaxation modulus; θG,j represent the relaxation time. 

These viscoelastic parameters can be achieved by long-term 

creep tests [24]. As shown in Fig. 3, the geometric equations 

in the interlayer are given by:  
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Fig. 2 The Maxwell–Wiechert model 

By substituting Eq. (1) into Eq. (6), the shear 

strains can be rewritten as:  
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where: h0= )( 12 zz  . According to the Boltzmann superpo-

sition principle [25, 26], the constitutive equations in the in-

terlayer can be expressed in the form:  

 

.
)(

)()0()()(

,
)(

)()0()()(

0

*

****

0

*
****















t yz

yzyz

t
xz

xzxz

dtGtGt

dtGtGt













 

(8) 

 

This means the stress depends on both the current 

strain and the strain history. However, the calculation con-

sidering the strain history is complicated and time-consum-

ing. The quasi-elastic approximation method, which ne-

glects the strain history, can be employed to simplify the 

viscoelastic constitutive equation. Thus, the stress equations 

of the viscoelastic interlayer can be reduced as:  
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It should be point out that solution based on the 

quasi-elastic approximation is always on the side of safety 

in comparison of the exact solution [12, 27].  

 

Fig. 3 A deformation profile of an x cross-section 

2.4. The energetic method 

Based on the principle of minimum potential en-

ergy, the energy of the system   is expressed as the varia-

tional form: 
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in which, δ represents the variation operator and  
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To simplify the energy functional equation, the ex-

tensional stiffness 
e

iR , the coupling stiffness 
c

iR , and the 

bending stiffness 
b

iR  of each FG layer are respectively de-

fined as follows:  
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By combining Eqs. (2)-(4) with Eqs. (9)-(12), one 

has:  

 

.),,(
0 0 
a b

dxdytyxF  (13) 

The corresponding Euler-Lagrange equations of 

Eq. (13) are given by:  
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Then, by substituting Eqs. (11-13) into the above 

equations, one obtains:  
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The boundary conditions of the simply supported 

layered FG plate are given by: 
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0 wvi

x  at x=0, a; 

0 wui

y  at y=0, b. (16) 

 

Resorting to the Navier’s method, the applied load 

and the deformations are expanded as the form of double 

trigonometric series:  
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in which, 
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By substituting Eq. (17) into Eq. (15), the unknown 

variables can be obtained by the Cramer's Rule and given by 

as follows:  
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By substitution of the determined variables in Eq. 

(18) back into Eqs. (17), (1) and (4), respectively, the ana-

lytical solutions of stress and deformation can be obtained 

eventually. 

3. Numerical examples and discussion 

In this section, a FG system with two constituents, 

formed by metal and ceramic materials, is considered, and 

their volume fractions are rendered as the power-law rela-

tions through the z direction, which are respectively defined 

by:  
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(19) 

 

in which, the scripts m and c represent the variables belong-

ing to the metal and ceramic layers, respectively; ik
 
is non-

negative real number named as gradient factor. The layer 

degenerates to a metal case when ik →∞, while it degener-

ates to a ceramic case as ik →0. The elastic moduli in FG 

layers are determined by the modified rule of mixtures [28], 

as follows: 
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where:   means the ratio of stress to strain transferring be-

tween the two phases which can be achieved by material test 

[29, 30]. The typical metal-ceramic FG system Al/SiC is 

chosen to be analyzed in this part and the basic properties of 

this system are Em = 67 GPa, Ec = 302 GPa,  = 91.6 GPa
 

and μm 
= μc = 0.25 [29]. 

Eight variables are beforehand defined for the fol-

lowing analysis: 
l

x , 
l

y , 
lw  represent 

1

x , 
1

y  and w  at 

x=0.5a, y=0.5b, z=0 respectively; 
r

xy , 
ru  and 

rv  denote 

1

xy , 
1u  and 

1v  at x=0.25a, y=0.25b, z= 1h  respectively; 

r

xz

*  and 
r

yz

*  are 
*

xz  and 
*

yz  at x=0.25a, y=0.25b, respec-

tively. The variable with two external vertical bar denotes 

its absolute value, e.g., || w ; meanwhile the variable with 

subscript max represents its maximum value, e.g., maxw . 

3.1. Validation analysis 

In this part, the Al/SiC system is applied in FG lay-

ers and the shear relaxation moduli of the PVB as the inter-

layer are listed in Table 1. The analytical solutions are com-

pared with the FE solutions which are given by the commer-

cial software ANSYS. The material of interlayer is simu-

lated by the VISCO-89 elements. Since ANSYS cannot di-

rectly model the FG material, the two FG layers here are 

equally divided into λ isotropic sub-layers with each mod-

eled by the PLANE-183 element. The elastic modulus in 

each sub-layer is determined by )( 
ii zE , in which 


iz  rep-

resents the z-coordinate of the middle plane of each sub-

layer. The FG layer and interlayer in x-y plane are divided 

by λ×λ parts. The geometric and material parameters of the 

plate are taken as a=1000 mm, H=20 mm, 1k = 2k .  
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Table 1 

The relaxation moduli and relaxation time in the 

viscoelastic interlayer (PVB) 

j ,*

jG MPa ,, jG s 

1 75.6426 3.256×10-11 

2 37.0677 4.949×10-9 

3 137.1552 7.243×10-8 

4 33.5140 9.864×10-6 

5 126.6048 2.806×10-3 

6 42.1950 1.644×10-1 

7 14.2162 2.265×100 

8 3.5822 3.536×101 

9 0.4538 9.368×103 

10 0.1912 6.414×105 

11 0.2893 4.135×107 

  0.0880  
 

Table 2 displays the comparison of 
l

x , 
r

xz

*  and 

lw  between the present results and FE ones with 1k =3 and 

t =104 s for different λ and different length-width ratios a/b, 

respectively. It can be observed from Table 2 that a good 

agreement is obtained between the present and FE results as 

λ increases, and the relative errors of stresses and defor-

mations are less than 2.25% when λ=20. It is worth empha-

sizing that the precise FE solutions are highly time-consum-

ing to be obtained because of the fine mesh both in geomet-

ric shape and the time step. 

3.2. Parametric analysis 

Consider a simply supported layered Al/SiC FG 

plate subjected to a sinusoidal load ),( yxq

)/()/( bysinaxsin  N/mm2 on its top surface. The geo-

metric parameters are fixed at a = 800 mm, b = 1000 mm, 

∆h=0.2 mm. 
 

Table 2 

A comparison of l

x , r

xz

*  and 
lw  between the present re-

sults and the FE results for different gradient factor and 

length-width ratio 

a/b solution present 
λ
 

1
 

5 10
 

20
 

2 

,
x

l MPa 163.9 193.2 168.3 165.8 165.1 

Error, % \ 15.2 2.62 1.15 0.72 

,*r

xz
 MPa

 
-0.645 -0.950 -0.696 -0.665 -0.657 

Error, % \ 32.2 7.39 3.11 1.81 

,lw mm
 

-17.43 -20.14 -18.21 -17.76 -17.63 

Error, % \ 13.43 4.26 1.87 1.14 

4 

,
x

l MPa 37.95 47.69 38.91 38.07 37.83 

Error, % \ 20.4 2.47 0.32 0.31 

,*r

xz
 MPa

 
-0.068 -0.115 -0.074 -0.070 -0.069 

Error, % \ 41.1 8.97 3.81 2.25 

,lw mm
 

-1.688 -2.175 -1.771 -1.712 -1.695 

Error, % \ 22.4 4.68 1.40 0.43 

 

The distributions of stresses and deformations in 

structure with 1k = 2k =1/3 when t=10 s, 102 s, 105 s are pre-

sented in Fig. 4, in which PB means the perfectly bonded 

case. It can be observed from Fig. 4 that || i

x  and |u| i  

close to the surfaces and the interlayer increases with t, and 

|w|  increases with t. || *

zx max in x-y plane decreases with t, 

while || i

yx
 
in x-y plane increases with t. Compared with the 

PB case, || i

x max, |iu| max, |w| max, and || xy max increases 

by 157.3%, 82.3%, 191.7%, 82.4%, respectively when 

t=105 s, while || zx

* max decreases by 77.1%. 

          

      a) 
i

x  (x=400 mm, y=500 mm)             b) iu  (x=0 mm, y=500 mm)                                  c) w  

                          

d) 
*

zx                                                                                        e) 
i

yx  (z=0 mm) 

Fig. 4 Distributions of the stress and deformation components and those corresponding PB cases when t=10 s, 102 s and 

105 s, respectively when k1=k2=1/3 
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The influences of k and ∆h on 
l

x , 
r

xz

* , 
lw  in 

model Ⅲ are presented in Fig. 5. It can be found from Fig. 5 

that for a given ∆h, || l

x  and |w l|  increase with t and 

reach at a fixed value as t is close to 1010 s, while || *r

xz  de-

creases with t and is reduced to a constant as t draws near 

1010 s. The rise of the ∆h leads to an obvious increase of 

|| l

x  and || lw  at any t, while || *r

xz  exhibits a downward 

trend as ∆h increases at any t. For a given k, || l

x  and || lw  

increase with t and reach at a fixed value as t is close to 1010 

s. Similarly, |l

x|  and |w| l  increase with the rise of k and 

tend to be constants at any t. For a given k, || *r

xz  monoton-

ically decreases with t and tend to be a constant as t draws 

near 1010 s. In early stage, || *r

xz  increases initially and then 

decreases with the rise of k, while || *r

xz  monotonically goes 

up as k increases when t>103 s. 

 

                  

a) 
l

x  (k=1/3)                                                                           b) 
r

xz

*  (k=1/3) 

  

c) 
lw  (k=1/3) d) 

l

x  (∆h=0.2 mm) 

  

e) 
r

xz

*  (∆h=0.2 mm) f) 
lw  (∆h=0.2 mm) 

Fig. 5 Variations of 
l

x , 
r

xz

*  and 
lw  with time for different gradient factor and different interlayer thickness 

4. Conclusions 

In the present work, an analytical solution based on 

the Kirchhoff plate theory is proposed to analyze the time-

dependent behaviors of the two-layer FG plate with adhe-

sive interlayer. The obtained results provide the following 

conclusions: 

1. The FE results are in great agreement with the present 

one. However, the FE solutions are highly time-consum-

ing to be obtained because of the fine mesh both in geo-

metric shape and the time step. 

2. The longitudinal stress, longitudinal displacement and 

deflection increase with time, while the shear stress in 
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the interlayer decreases with time. In contrast to the per-

fectly bonded case, the maximum value of deflection in-

creases by 191.7% and that of shear stress decreases by 

77.1%. 

3. The stress and deformation both tend to be constant in 

the long term. The increase of the thickness of the inter-

layer leads to the growth of the longitudinal stress and 

deflection, while the shear stress in the interlayer de-

creases as the interlayer thickness increases.  

4. The longitudinal stress and deflection both show an up-

ward trend as gradient factor increases and remain un-

changed at any time. However, with the rise of gradient 

factor, the shear stress increases initially and then de-

creases to a constant in early stage, while in the medium 

term it has a monotonic rise and then stays the same as 

gradient factor increases. 

Acknowledgements 

This research is financially supported by the Na-

tional Natural Science Foundation of China (Grant 

No. 51778285), the Natural Science Foundation of Jiangsu 

Province (Grant No. BK20190668) and the Natural Science 

Foundation of the Jiangsu Higher Education Institutions of 

China (Grant No. 19KJB560014). 

References 

1. Alibeigloo, A.; Simintan, V. 2011. Elasticity solution 

of functionally graded circular and annular plates inte-

grated with sensor and actuator layers using differential 

quadrature, Composite Structures 93: 2473-2486.  

https://doi.org/10.1016/j.compstruct.2011.04.003. 

2. Gao, K.; Huang, Q.; Kitipornchai, Q. 2019. Nonlinear 

dynamic buckling of functionally graded porous beams, 

Mechanics of Advanced Materials and Structures: 1-12. 

https://doi.org/10.1080/15376494.2019.1567888. 

3. Asadi, H.; Akbarzadeh, A. H.; Wang, Q. 2015. Non-

linear thermo-inertial instability of functionally graded 

shape memory alloy sandwich plates, Composite Struc-

tures 120: 496-508. 

https://doi.org/10.1016/j.compstruct.2014.10.027. 

4. Liu, M.; Cheng, Y. S.; Liu, J. 2015. High-order free vi-

bration analysis of sandwich plates with both function-

ally graded face sheets and functionally graded flexible 

core, Composites Part B-Engineering 72: 97-107. 

https://doi.org/10.1016/j.compositesb.2014.11.037. 

5. Merdaci, S.; Tounsi, A.; Houari, M. S. A.; Mechab, I.; 

Hebali, H.; Benyoucef, S. 2011. Two new refined shear 

displacement models for functionally graded sandwich 

plates, Archive of Applied Mechanics 81: 1507-1522. 

https://doi.org/10.1007/s00419-010-0497-5. 

6. Ganapathi, M.; Anirudh, B.; Anant, C.; Polit, O. 
2019.  Dynamic characteristics of functionally graded 

graphene reinforced porous nanocomposite curved 

beams based on trigonometric shear deformation theory 

with thickness stretch effect, Mechanics of Advanced 

Materials and Structures: 1-12. 

https://doi.org/10.1080/15376494.2019.1601310. 

7. Ecsedi, I.; Baksa, A. 2011. Static analysis of composite 

beams with weak shear connection, Applied Mathemat-

ical Modelling 35 (4): 1739-1750. 

https://doi.org/10.1016/j.apm.2010.10.006. 

8. Kwak, H. G.; Seo, Y. J. 2002. Time-dependent behavior 

of composite beams with flexible connectors. Computer 

Methods in Applied Mechanics and Engineering 191 

(34): 3751-3772. 

https://doi.org/10.1016/s0045-7825(02)00293-1. 

9. Foraboschi, P. 2009. Analytical solution of two-layer 

beam taking into account nonlinear interlayer slip, Jour-

nal of Engineering Mechanics 135 (10): 1129-1146. 

https://doi.org/10.1061/(asce)em.1943-7889.0000043. 

10. Ranzi, G.; Bradford, M. 2006. Analytical solutions for 

the time-dependent behaviour of composite beams with 

partial interaction, International Journal of Solids and 

Structures 43 (13): 3770-3793. 

https://doi.org/10.1016/j.ijsolstr.2005.03.032. 

11. Chen, W. Q.; Lee, K. Y. 2004. Time-dependent behav-

iors of angle-ply laminates with viscous interfaces in cy-

lindrical bending, European Journal of Mechanics a-Sol-

ids 23 (2): 235-245. 

https://doi.org/10.1016/j.euromechsol.2003.12.004. 

12. Galuppi, L.; Royer-Carfagni, G. 2012. Laminated 

beams with viscoelastic interlayer, International Journal 

of Solids and Structures 49 (18): 2637-2645. 

https://doi.org/10.1016/j.ijsolstr.2012.05.028. 

13. Moita, J. S.; Araujo, A. L.; Correia, V. F.; Soares, C. 

M. M.; Herskovits, J. 2018. Active-passive damping in 

functionally graded sandwich plate/shell structures, 

Composite Structures 202: 324-332. 

https://doi.org/10.1016/j.compstruct.2018.01.089. 

14. Joseph, S. V.; Mohanty, S. C. 2017. Free vibration of a 

rotating sandwich plate with viscoelastic core and func-

tionally graded material constraining layer, International 

Journal of Structural Stability and Dynamics 17 (10): 

1750114. 

https://doi.org/10.1142/s0219455417501140. 

15. Yang, C. M.; Jin, G. Y.; Ye, X. M.; Liu, Z. G. 2016. A 

modified Fourier-Ritz solution for vibration and damp-

ing analysis of sandwich plates with viscoelastic and 

functionally graded materials, International Journal of 

Mechanical Sciences 106: 1-18. 

https://doi.org/10.1016/j.ijmecsci.2015.11.031. 

16. Kolahchi, R.; Zarei, M. S.; Hajmohammad, M. H.; 

Nouri, A. 2017. Wave propagation of embedded viscoe-

lastic FG-CNT-reinforced sandwich plates integrated 

with sensor and actuator based on refined zigzag theory, 

International Journal of Mechanical Sciences 130: 534-

545. 

https://doi.org/10.1016/j.ijmecsci.2017.06.039. 

17. Tung, H. V. 2015. Thermal and thermomechanical post-

buckling of FGM sandwich plates resting on elastic 

foundations with tangential edge constraints and temper-

ature dependent properties, Composite Structures 131: 

1028-1039. 

https://doi.org/10.1016/j.compstruct.2015.06.043. 

18. Rahimi, G. H.; Arefi, M.; Khoshgoftar, M. J. 2012. 

Electro elastic analysis of a pressurized thick-walled 

functionally graded piezoelectric cylinder using the first 

order shear deformation theory and energy method, 

Mechanika 18 (3): 292-300. 

https://doi.org/10.5755/j01.mech.18.3.1875. 

19. Nejad, M. Z.; Abedi, M.; Lotfian, M. H.; Ghannad, 

M. 2014. Meshless analysis of cracked functionally 

graded materials under thermal shock, Mechanika 20 

(3): 254-258. 

https://doi.org/10.5755/j01.mech.20.3.7395. 

20. Farzam-Rad, S. A.; Hassani, B.; Karamodin, A. 2017. 

https://doi.org/10.1016/j.compstruct.2011.04.003
https://doi.org/10.1080/15376494.2019.1567888
https://doi.org/10.1016/j.compositesb.2014.11.037
https://doi.org/10.1007/s00419-010-0497-5
https://doi.org/10.1080/15376494.2019.1601310
https://doi.org/10.1016/j.apm.2010.10.006
https://doi.org/10.1016/s0045-7825(02)00293-1
https://doi.org/10.1061/(asce)em.1943-7889.0000043
https://doi.org/10.1016/j.ijsolstr.2005.03.032
https://doi.org/10.1016/j.euromechsol.2003.12.004
https://doi.org/10.1016/j.ijsolstr.2012.05.028
https://doi.org/10.1016/j.compstruct.2018.01.089
https://doi.org/10.1142/s0219455417501140
https://doi.org/10.1016/j.ijmecsci.2015.11.031
https://doi.org/10.1016/j.ijmecsci.2017.06.039
https://doi.org/10.1016/j.compstruct.2015.06.043


 485 

Isogeometric analysis of functionally graded plates us-

ing a new quasi-3D shear deformation theory based on 

physical neutral surface, Composites Part B-Engineer-

ing 108: 174-89. 

https://doi.org/10.1016/j.compositesb.2016.09.029. 

21. Xiang, S.; Kang, G. W.; Yang, M. S.; Zhao, Y. 2013. 

Natural frequencies of sandwich plate with functionally 

graded face and homogeneous core, Composite Struc-

tures 96: 226-31. 

https://doi.org/10.1016/j.compstruct.2012.09.003. 

22. Foraboschi, P. 2012. Analytical model for laminated-

glass plate, Composites Part B-Engineering 43 (5): 

2094-2106. 

https://doi.org/10.1016/j.compositesb.2012.03.010. 

23. Galuppi, L.; Royer-Carfagni, G. 2014. Buckling of 

three-layered composite beams with viscoelastic interac-

tion, Composite Structures 107: 512-521. 

https://doi.org/10.1016/j.compstruct.2013.08.006. 

24. Kim, J.; Sholar, G. A.; Kim, S. 2008. Determination of 

accurate creep compliance and relaxation modulus at a 

single temperature for viscoelastic solids, Journal of Ma-

terials in Civil Engineering 20 (2): 147-156. 

https://doi.org/10.1061/(asce)0899-

1561(2008)20:2(147). 

25. Kolarik, J.; Pegoretti, A. 2008. Proposal of the Boltz-

mann-like superposition principle for nonlinear tensile 

creep of thermoplastics, Polymer Testing 27 (5): 596-

606. 

https://doi.org/10.1016/j.polymertesting.2008.03.002. 

26. Shukla, A.; Joshi, Y. M. 2017. Boltzmann superposition 

principle for a time-dependent soft material: assessment 

under creep flow field, Rheologica Acta 56 (11): 927-

940. 

https://doi.org/10.1007/s00397-017-1044-x. 

27. Van Duser, A.; Jagota, A.; Bennison, S. J. 1999. Anal-

ysis of glass/polyvinyl butyral laminates subjected to 

uniform pressure, Journal of Engineering Mechanics-

Asce 125 (4): 435-442. 

https://doi.org/10.1061/(asce)0733-

9399(1999)125:4(435). 

28. Kapuria, S.; Bhattacharyya, M.; Kumar, A. N. 2008. 

Bending and free vibration response of layered function-

ally graded beams: A theoretical model and its experi-

mental validation, Composite Structures 82(3): 390-402. 

https://doi.org/10.1016/j.compstruct.2007.01.019. 

29. Bhattacharyya, M.; Kapuria, S.; Kumar, A. N. 2007. 

On the stress to strain transfer ratio and elastic deflection 

behavior for Al/SiC functionally graded material, Me-

chanics of Advanced Materials and Structures 14(4): 

295-302. 

https://doi.org/10.1080/15376490600817917. 

30. Finot, M.; Suresh, S.; Bull, C.; Sampath, S. 1996. Cur-

vature changes during thermal cycling of a composition-

ally graded Ni-Al2O3 multi-layered material, Materials 

Science and Engineering: A-Structural Materials Prop-

erties Microstructure and Processing 205 (1-2): 59-71. 

https://doi.org/10.1016/0921-5093(95)09892-5. 

Z. Y. Yang, P. Wu, W. Q. Liu 

TIME-DEPENDENT CHARACTERISTICS OF  

TWO-LAYER FUNCTIONALLY GRADED PLATES 

ADHESIVELY BONDED BY A VISCOELASTIC 

INTERLAYER BASED ON KIRCHHOFF PLATE 

THEORY 

S u m m a r y 

An analytical solution is proposed to investigate 

the time-dependent characteristics of two-layer functionally 

graded plates with a viscoelastic interlayer. The elastic mod-

ulus in each graded layer varies through the thickness fol-

lowing an arbitrary function, and its mechanical properties 

are described based on the Kirchhoff theory. The Maxwell-

Wiechert model is applied to simulate the viscoelastic adhe-

sive interlayer with the neglect of memory effect. The en-

ergy equation of the system is expressed by the deformation 

components, which are expanded as the double trigonomet-

ric series. By virtue of variational method, the solutions of 

stress and deformation are determined efficiently. The com-

parison study indicates that the present solution matches the 

finite element solution well; however, the finite element 

method is highly time-consuming because of the fine mesh 

in the geometric shape and the time step. Finally, the influ-

ences of the geometry and material on the time-dependent 

behavior of the structure are discussed in detail. 

Keywords: functionally graded material, viscoelastic inter-

layer, time-dependent behavior, variational method. 
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