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1. Introduction

The atomic and molecular scale test is known as
the safest method for the study of materials in small-scales.
In this method, the nanostructures are studied in real dimen-
sions. The atomic force microscopy (AFM) is used to apply
different mechanical loads on nanoplates and measure their
responses against those load in order to determine the me-
chanical properties of the nanoplate. The difficulty of con-
trolling the test conditions at this scale, high economic costs
and time-consuming processes are some setbacks of this
method. Therefore, it is used only to validate other simple
and low-cost methods.

Atomic simulation is another solution for studying
small-scale structures. In this method, the behavior of atoms
and molecules is examined by considering the intermolecu-
lar and interatomic effects on their motions, which eventu-
ally involves the total deformation of the body. In the case
of large deformations and multi atomic scale the computa-
tional costs is too high, so this method is only used for small
deformation problems.

Given the limitations of the aforementioned meth-
ods for studying nanostructures, researchers have been look-
ing for simpler solutions for nanostructures. Modeling
small-scale structures using continuum mechanics is an-
other solution to this problem. There are a variety of size-
dependent continuum theories that consider size effects,
some of these theories are; micromorphic theory, micro-
structural theory, micropolar theory, Kurt's theory, non-lo-
cal theory, modified couple stress theory and strain gradient
elasticity. All of which are the developed notion of classical
field theories, which include size effects.

2. Modified couple stress theory

In 2002 Yang et al. [1] proposed a modified couple
stress model by modifying the theory proposed by Toppin
[2], Mindlin and Thursten [3], Quitter [4] and Mindlin [5] in
1964. The modified couple stress theory consists of one ma-
terial length scale parameter for projection of the size effect,
whereas the classical couple stress theory has two material
length scale parameters. In the modified couple stress the-
ory, the strain energy density in the three-dimensional ver-
tical coordinates for a body bounded by the volume V and
the area Q [6], is expressed as the follows:
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xijand g;are the symmetric parts of the curvature and

strain tensors; &, and u; are the displacement and the rota-
tional vectors, respectively.
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oy , the stress tensor, and m, ; , the deviatory part of the cou-

N
ple stress tensor, are defined as:
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where: 4 and u are the lame constants; J; is the Kronecker

delta and I is the material length scale parameter. From Eqgs.
(3) and (6) it can be seen that y; and m; are symmetric.

3. Mindlin's plate model

Fig. 1 A schematic of the nanoplate and axes

The displacement equations for the Mindlin's plate
are defined as [8]:



u (X y,z,t)=u(xyt)+zp,
u, (X, y,2,t)=v(x,y,t)+ 20, , U]
g (X, y,2,t) =w(x,y,t),

where: ¢, and ¢, are the rotations of the normal vector
around the x and y axis respectively, and w is the midpoint

displacement of the plate in the z-axis direction. The strain
and stress tensors, the symmetric part of the curvature ten-
sor, and the rotational vector for the Mindlin's plate is ob-
tained as follows:
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The variation of the strain energy is expressed as
follows:
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For the sake of simplification, the coefficient of
each variable in the above equation is named from F to F;

and this equation can be rewritten as shown below:
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4. The buckling force

For a rectangular plate with length a, width b and
thicknessh, under the axial forces (P, , P, , P, ) , the buckling

xy! yrix
force is obtained as shown in equation (44) [7]:

2 2 2
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where: P, is the Axial force along the x axis; P, is the Axial
force along the y axis; P, is the shear force in the xy

plane, and q(X, y) is the out-of-plane force.

5. Virtual work of the external forces

In these kind of problems, the virtual work of three
kinds of external forces are included in the solutions, if the
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middle-plane and the middle-perimeter of the plate are

shown as Q and I respectively, these virtual works are [8]:

1. The virtual work done by the body forces, which is
applied on the volum V = Qx(-h/2,h/2).

2. The virtual work done by the surface tractions at
the upper and lower surfaces Q.
3. The virtual work done by the shear tractions on the

lateral surfaces, S=Tx(-h/2,h/2).
If (f,,f,.f,) are the body forces, (c,.c,,c,)are
the body couples, (g,.q,,q, ) are the forces acting on the Q

plane, (tx,t t )are the Cauchy's tractions and (SX,SV,SZ)

yrz
are surface couples the Variations of the virtual work is ex-
pressed as:
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Given that in this study only the external force g, was
applied, virtual work becomes:

ow=[];a(xy)ow(x,y)dxdy. (46)

the variation of Kinetic energy is obtained as:
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where: p is the density.
Finally using the Hamilton's principle, it can be said
that [9]:

[1(5T (58U —ow))dt =0, (48)

0

where: T is the kinetic energy; U is the strain energy, and w
is the work of the external forces.

6. The final governing equations of the plate after apply-
ing the buckling and external forces

Using Hamilton's principle, Eq. (48), and the Egs.
from (44) to (47), the governing equations of the plate in-
cluding the buckling and external forces are obtained as fol-

lows:
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7. Obtaining the general governing equation of the
Mindlin's plate (including buckling, bending and vi-
brations)

Considering the following constants:
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the general governing equation of the Mindlin's plate will
become:
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8. Solution of the governing equations using Navier's
method

The Navier's solution is applicable to the rectangu-
lar plates which have simply supported boundary conditions
on all edges. Since the boundary conditions are spontane-
ously satisfied in this method, the unknown functions of the
plate's mid-plane were assumed to be double trigonometric
series [8]:
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The force can also be calculated from the following
relations:

q=2.> Qusinaxsingy, (68)
4 cacb R .
= Efo [ a(x, y)sinaxsingydxdy, (69)
q,; For sinusoidal force
16q02 ; For uniform force
Q=107 (70)
4Q° mZ nn—”
ab 2 2
For point force in the plane center
where
o="M g NG 1 (71)
a b

Simply-supported boundary conditions were also
satisfied by the Navier's method according to the following
equations:
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9. The general equation matrix of a Mindlin's plane

After solving the governing equations and naming
the coefficient of each variable, we have:

U=2Caf +Ca+Cp +Ca +C/S, (74)
U=U=-Ca-Caff +Ca, (75)
U,=U,=-C°-Ca’B+C,p3, (76)
U, =-C,B*'-C,a’p*-C,p*-C.,a’*+C,, )
U, =C,af° +C,a’B-Ciaf3, (78)
U, =-C,a’B-C,ap’ —Ciaf, (79)
U, =C,a* +C,a’p?* -C,a’ -C,5° +C,, (80)
K, =-C, (81)
K,=K,=K, =K, =K, =K, =0, (82)
K, =K, =-C,. (83)

Finally, the general equation matrix of the
Mindlin's plate along with the auxiliary equations will be
obtained as follows:
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In this study, graphene is chosen as the plate's material.
A single-layer graphene plate has the following properties

[9]: E=1.06 TPa, v=0.25, h=0.34 nm, r=2250 K9/’ .

Also, the relationship between E, x4 and v can be
expressed as:

VE
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where: x and A are the lame's coefficients; E is the Young's
modulus [10]. The value of the distributed force was con-
sidered to be g =1N/m ..

10. Results and discussion

Results were obtained using a computational pro-
gram coded in the MATLAB software. The results have also
been compared with the literature [11, 12] and good agree-
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ments between results were observed. The plate's dimen-
sional parameters are chosen as follows: a is plate's length;
b is plate's width; h is plate's thickness; I is material length
scale parameter
Table 1 shows the Mindlin's nanoplate bending
rate under sinusoidal load for different material length scale
parameters to thickness I/h and length to width ratio a/b. As
can be seen, as the length scale parameter to thickness ratio
increases, the bending ratio decreases but it increases due to
the increase in the plate's length to width ratio.
Table 1

The Mindlin's nanoplate bending rate under sinusoidal load
for different length to width and material length scale to
thickness ratios (q =1e —18N/nm,a/h=30)

I/h
alb 0 0.5 1 2
1 7.0630 1.6642 0.5104 0.1406
1.5 14.2905 3.3664 1.0306 0.2820
2 21.1039 4.9708 1.5205 0.4145

Table 2 compares the values of critical force for
different nanoplates under a bi-axial surface loading for var-
ious length to thickness ratios. It was observed that, the
Mindlin's nanoplate has the highest, and the Third-order na-
noplate has the lowest critical force values.

Table 2

Values of the critical force for different nanoplates under a
bi-axial surface loading for various width to thickness ra-
tios (P, /P,=1, I/h=1, a/h=1)

. - Third order | N order shear de-

a/h K|r<:hhoff M'Indlm shear defor- | formation plate
plate plate mation plate (n=5)

5 |142.2802 | 233.7327 130.1058 131.5295

10 | 35.5701 | 86.0362 34.7400 34.8479

20 | 8.8925 | 23.9784 8.8394 8.8465

30 | 3.9522 | 10.8814 3.9417 3.9431

40 | 2.2231 | 6.16595 2.2198 2.2202

50 | 1.4228 3.9597 1.4214 1.4216

Fig. 2 compares the bending values of different na-
noplates under the uniform surface traction for different
length to width ratios. As can be seen, the Kirchhoff's hano-
plate yielded the lowest values and the third-order nanoplate
yielded the highest values for bending.

Table 3 shows the dimensionless bending values of
Mindlin's nanoplate under the uniform surface traction and
sinusoidal load for material length scale to thickness and
length to width ratios. As shown in the table, except for the
classical theory 1=0, the dimensionless bending values under
sinusoidal load were higher than bending values obtained
under the uniform surface traction. It was also found that
with an increase in the material length scale parameter to
thickness and length to width ratio of the nanoplate, the di-
mensionless bending value decreases.

Fig. 3 shows the values of dimensionless critical
force for Mindlin's nanoplate under a uniaxial force in the
x-direction. It was found that this value increases due to an
increase in length to thickness ratio of the nanoplate. Fur-
thermore, when the effect of size parameter is neglected
(classical theory), the value of dimensionless critical force
becomes constant and reaches its lowest value, but with an
increase in the size parameter the dimensionless critical
force value increases.
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Table 3

The dimensionless bending values of Mindlin's nanoplate under uniform surface traction and sinusoidal load for various
material length scale to thickness and length to width ratios (a/h=30,q =1e—-18N/nm)

I/h
alb 0 0.5 1 2
Uniform Sinusoidal Uniform Sinusoidal Uniform Sinusoidal Uniform Sinusoidal
load load load load load load load load
1 1 1 0.235573 0.235626 0.072128 0.072264 0.019740 0.019913
15 1 1 0.235499 0.235569 0.071942 0.072121 0.019506 0.019735
2 1 1 0.235479 0.235541 0.071892 0.072049 0.019443 0.019643
thickness of the nanoplate.
e R irchBOFF plate
= O Mindhin plate 500
——-%-——  Third order shear deformation plate . ath=10
64| — A — Norder shear deformation plate (n=5) e O~ g/h=20
o O e am=30
5 - e afh=d40
//’ 30041 ~®~  a/h=50
ﬂ//
“ 7 z
- T 200
%« 34 // o e -~
~ - -
-~ 4
z ] % J— 190 v
e e =TT B (R
1 e T 0 g R
o
L4} L L » " " ; " .
0.0 06 10 1.5 20 25
08 1.0 1?2 1:4 1?6 1i8 2j€3 22 ih
afb Fig. 4 Values of critical force for Mindlin's nanoplate under
. . . . a uniaxial force in the X -direction for various mate-
Fig. 2 Comparison of bending values for different nano-

plates under the uniform surface traction for different
aspect ratios (a/h=230,1/h=1,q=1-18N/nm)

P
boe 6~ #h=05
e Y]
e et =1 -1
| =2
50 T e ol e e -l = R
-
e
40 e
D.E 30 o g Bl
B &
CLE 20
A o W ma o e e e
10
[ i * I o ST o T
0- e ey )
] 10 20 20 40 50 B0
afh
Fig. 3 Values of dimensionless critical force for Mindlin's

nanoplate under a uniaxial force in the X -direction
for different material length scale to thickness and
length to thickness ratio of the nanoplate
(a/b=1, m=1, n=1)

Fig. 4 shows the values of critical force for
Mindlin's nanoplate under a uniaxial force in the x-direc-
tion. As shown in the figure, the dimensionless critical force
increases due to an increase in the length scale parameter to
thickness ratio and decreases due to an increase in length to

rial length scale to thickness and length to thickness
ratio of the nanoplate (a/b=1, m=1, n=1)

Fig. 5 shows the values of dimensionless critical
force for Mindlin's nanoplate under a bi-axial surface force
in x and y directions. As can be seen, this value increases
due to an increase in, length scale parameter to thickness and
length to thickness ratio of nanoplate.
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Fig. 5 Values of dimensionless critical force for Mindlin's
nanoplate under a bi-axial surface force in x and y
directions for material length scale to thickness and
length to thickness ratio of the nanoplate
(a/b=1, m=1, n=1)

Figs. 6 — 9 shows the dimensionless frequency of
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different modes of Mindlin's nanoplate
(oo, —w, | 0, —wy, | ©,— 0, | ®,) (except for the clas-

sical theory I=0. It was observed that this value increases
due to an increase in length to thickness ratio. Also, for the
classical theory (neglecting the effect of size parameter) the
dimensionless frequency reaches its lowest value, but with
an increase in the size effect, the dimensionless frequency
values increase.
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Fig. 8 Comparison of dimensionless frequencies of the
mode (@,,) fora Mindlin's nanoplate for various ma-

terial length scale parameter to thickness and length
to thickness ratios of the nanoplate (h=0.34, a/b=1)
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Fig. 7 Comparison of dimensionless frequencies of the
mode (@,,) for a Mindlin's nanoplate various mate-

rial length scale parameter to thickness and length to
thickness ratios of the nanoplate (h=0.34, a/b=1)

Table 4 shows that the dimensionless frequency of
different modes of Mindlin's nanoplate increases due to an
increase in material length scale parameter to thickness ra-
tio.

By comparing Tables 4 — 7 it was found that with
an increase in length to thickness ratio of the Mindlin's na-
noplate, the vibration frequency decreases.

Table 8 shows different modes of frequencies for
various nanoplates (@, — @y, — @, —@,,) . According to the

table, the frequency values were the highest for the
Mindlin's nanoplate and the lowest for the third-order nano-
plate.

Table 4

Comparison of dimensionless frequencies of different
modes of Mindlin's nanoplate for various material length
to thickness ratios (a/b=1, a/n=30)

ih
Mode 0 05 1 2
w11 13.9429 | 28.7266 | 51.9052 | 99.1252
w12 346425 | 71.3140 | 128.0217 | 237.9174
w21 346425 | 71.3140 | 128.0217 | 237.9174
w22 550918 | 113.3246 | 202.1703 | 365.8010
w3 1215505 | 249.5297 | 436.5378 | 722.2380
Table 5

Comparison of dimensionless frequencies of different
modes of Mindlin's nanoplate for various material length
to thickness ratios (a/b=1.5, a/h=30)

ih

Mode 0 05 1 2
w1 10.0816 | 20.7745 | 37.5829 | 72.1427
w12 19.3340 | 39.8248 | 71.8354 | 136.2116




Continuation of Table 5

I/
Mode 0 05 1 2
w1 30.8284 | 63.4718 | 114.0783 | 213.0666
w22 39.9678 | 82.2500 | 147.4292 | 272.0827
w33 88.6398 | 182.1338 | 321.6951 | 556.8022
Table 6

Comparison of dimensionless frequencies of different
modes of Mindlin's nanoplate for various length to thick-
ness ratios (a/b=0.5, 1/h=1)

a/h
Mode 20 30 40 50
w1 280.4153 | 128.0217 | 727219 | 46.7575
w12 4365378 | 202.1703 | 115.4757 | 74.4444
wa1 860.2080 | 413.9252 | 240.0504 | 155.9272
w22 988.5087 | 481.2484 | 280.4153 | 182.5827
wss | 1844.9056 | 988.5087 | 596.8069 | 395.7091
Table 7

Comparison of dimensionless frequencies of different
modes of Mindlin's nanoplate for length to thickness ratio

(@/b=1, 1/h=1)
a/h
Mode 20 30 40 50
w1 1154757 | 51.9052 | 29.3145 | 18.7965
w12 2804153 | 128.0217 | 72.7219 | 46.7575
w21 2804153 | 128.0217 | 72.7219 | 46.7575
w22 4365378 | 202.1703 | 1154757 | 744444
w3 903.7094 | 436.5378 | 2535674 | 164.8397
Table 8

Comparison of dimensionless frequencies of different
modes of various nanoplates for length to thickness ratio

(a/b=1, I/h=1)
/h
Mode 20 [ 30 | 40
Mindlin plate

w11 280.4153 128.0217 72.7219
w12 436.5378 202.1703 115.4757
w21 860.2980 413.9252 240.0504
22 988.5087 481.2484 280.4153

Kirchhoff plate
w11 175.2090 78.0917 43.9704
w12 279.4825 124.7767 70.2985
w21 588.5668 264.0744 149.0415
22 690.3772 310.2573 175.2090

Third order shear deformation plate

w1 174.0385 77.8533 43.8941
012 276.5826 124.1752 70.1049
w21 576.6542 261.4753 148.1887
22 674.3836 306.7113 174.0385

11. Conclusion

In this study, the bending, buckling and vibration
of a graphene Mindlin's nanoplate were investigated using
the modified couple stress theory. As observed in the tables
and figures, the Mindlin's nanoplate bending rate under si-
nusoidal load, decreases with an increase in length to thick-
ness ratio of the nanoplate, but, this value increases with an
increase in the aspect ratio of the nanoplate. Furthermore,
by comparing different nanoplates under uniform surface
traction it was found that the Kirchhoff's nanoplate yields
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the lowest and the third-order nanoplate yields the highest
values for bending.

The buckling analysis showed that the dimension-
less critical force increases due to an increase in material
length scale parameter to thickness ratio and decreases due
to an increase in length to thickness ratio of the nanoplate.
But when the size effect parameter is neglected (classical
theory), the value of dimensionless critical force becomes
constant and reaches its lowest value, but with an increase
in the size parameter the dimensionless critical force value
increases.

Analysis of frequencies of different modes showed
that this value increases due to an increase in length to thick-
ness ratio. Also, for the classical theory (neglecting the ef-
fect of size parameter) the dimensionless frequency reaches
its lowest value, but with an increase in the size effect, the
dimensionless frequency values increase. It was also found
that the Mindlin's nanoplate yields the highest and the third-
order nanoplate yields the lowest values for frequency.
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BENDING, BUCKLING AND VIBRATIONS
ANALYSIS OF THE GRAPHENE NANOPLATE USING
THE MODIFIED COUPLE STRESS THEORY

Summary

In this paper a Mindlin's plate model is developed
for the Bending, buckling and vibration analysis of a gra-
phene nanoplate based on a modified couple stress theory.
The bending rates and dimensionless bending values under
uniform surface traction and sinusoidal load, the dimension-
less critical force under a bi-axial surface force in x and y
directions and dimensionless frequencies of different modes
are all obtained for various plate's dimensional ratios and
material length scale to thickness ratios. The results are pre-
sented and discussed in details.

Keywords: modified couple stress theory, mindlin plate,
rectangular nanoplate, Navier type solution.
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