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1. Introduction 

The atomic and molecular scale test is known as 

the safest method for the study of materials in small-scales. 

In this method, the nanostructures are studied in real dimen-

sions. The atomic force microscopy (AFM) is used to apply 

different mechanical loads on nanoplates and measure their 

responses against those load in order to determine the me-

chanical properties of the nanoplate. The difficulty of con-

trolling the test conditions at this scale, high economic costs 

and time-consuming processes are some setbacks of this 

method. Therefore, it is used only to validate other simple 

and low-cost methods. 

Atomic simulation is another solution for studying 

small-scale structures. In this method, the behavior of atoms 

and molecules is examined by considering the intermolecu-

lar and interatomic effects on their motions, which eventu-

ally involves the total deformation of the body. In the case 

of large deformations and multi atomic scale the computa-

tional costs is too high, so this method is only used for small 

deformation problems. 

Given the limitations of the aforementioned meth-

ods for studying nanostructures, researchers have been look-

ing for simpler solutions for nanostructures. Modeling 

small-scale structures using continuum mechanics is an-

other solution to this problem. There are a variety of size-

dependent continuum theories that consider size effects, 

some of these theories are; micromorphic theory, micro-

structural theory, micropolar theory, Kurt's theory, non-lo-

cal theory, modified couple stress theory and strain gradient 

elasticity. All of which are the developed notion of classical 

field theories, which include size effects. 

2. Modified couple stress theory 

In 2002 Yang et al. [1] proposed a modified couple 

stress model by modifying the theory proposed by Toppin 

[2], Mindlin and Thursten [3], Quitter [4] and Mindlin [5] in 

1964. The modified couple stress theory consists of one ma-

terial length scale parameter for projection of the size effect, 

whereas the classical couple stress theory has two material 

length scale parameters. In the modified couple stress the-

ory, the strain energy density in the three-dimensional ver-

tical coordinates for a body bounded by the volume V and 

the area Ω [6], is expressed as the follows: 

( )
1

, 1,2,3
2

V ij ij ij ijU m dV i j  =  + = , (1) 

where: 

 ( ), ,

1

2
ij i j j iu u = + , (2) 

 ( ), ,

1

2
ij i j j i  = + , (3) 

ij and ij are the symmetric parts of the curvature and 

strain tensors; i  and iu  are the displacement and the rota-

tional vectors, respectively. 

,

1

2
i ijk k je u = , (4) 

ij , the stress tensor, and ,i jm , the deviatory part of the cou-

ple stress tensor, are defined as: 

2ij kk ij ij   = + , (5) 

2

, 2i j ijm l = , (6) 

where:   and  are the lame constants; ij is the Kronecker 

delta and l is the material length scale parameter. From Eqs. 

(3) and (6) it can be seen that ij and ijm are symmetric. 

3. Mindlin's plate model 

 

Fig. 1 A schematic of the nanoplate and axes 

 

The displacement equations for the Mindlin's plate 

are defined as [8]: 
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where: x and y  are the rotations of the normal vector 

around the x and y axis respectively, and w is the midpoint 

displacement of the plate in the z-axis direction. The strain 

and stress tensors, the symmetric part of the curvature ten-

sor, and the rotational vector for the Mindlin's plate is ob-

tained as follows: 
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The variation of the strain energy is expressed as 

follows: 
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For the sake of simplification, the coefficient of 

each variable in the above equation is named from 1F to 15F

and this equation can be rewritten as shown below: 
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where: 

2 2
2

1 2 2

1

4

yxw w
F l

x yy x




  
= − − + − 

   
, (31) 

2 2
2

2 2 2

1

4

yxw w
F l

x yy x




  
= − + − 

   
, (32) 

2
2

3

1 1

2 2

y xw
F l

x y x y

 


 
= − − 

    
, (33) 

4 x

w
F

x
 

 
= + 

 
, (34) 



 378 

5 y

w
F

y
 

 
= + 

 
, (35) 

2 2
2 2

6 8 2

1

4

y xF F l z
x y y

 


  
= = − 

    

, (36) 

2 2
2 2

7 9 2

1

4

y xF F l z
x yx

 


  
= = − 

   

, (37) 

( ) 2 2

10

2 2
2

2 2

2

1
,

4

yX

yx

F z z
x y

w w
l

x yy x


  





= + + +

 

  
+ − + − 

   

 

(38)

 

( )2 2

11

2 2
2

2 2

2

1
,

4

yx

yx

F Z z
x y

w w
l

x yy x


  





= + + −

 

  
− − + − 

   

 

(39)

 

2

12

2
2 1 1

,
2 2

yX

yx

F z
y x

w
l

y x x y







 
= + + 

  

  
+ + − 

    

 

(40) 

2

13

22
2 1 1

,
2 2

yX

y x

F z
y x

w
l

x x y y




 


 
= + + 

  

 
+ − − 

    

 

(41)

 

14 x

w
F

x
 

 
= + 

 
, (42) 

15 y

w
F

y
 

 
= + 

 
. (43) 

4. The buckling force 

For a rectangular plate with length a , width b and 

thickness h ,  under the axial forces ( ), ,xy y xP P P , the buckling 

force is obtained as shown in equation (44) [7]: 
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where: xP is the Axial force along the x axis; yP is the Axial 

force along the y  axis; xyP is the shear force in the xy  

plane, and ( ),q x y is the out-of-plane force. 

5. Virtual work of the external forces  

In these kind of problems, the virtual work of three 

kinds of external forces are included in the solutions, if the 

middle-plane and the middle-perimeter of the plate are 

shown as Ω and Γ respectively, these virtual works are [8]:  

1. The virtual work done by the body forces, which is 

applied on the volum ( )/ 2, / 2V h h=  − . 

2. The virtual work done by the surface tractions at 

the upper and lower surfaces Ω. 

3. The virtual work done by the shear tractions on the 

lateral surfaces, ( )/ 2, / 2S h h=  − . 

If ( ), ,x y zf f f  are the body forces, ( ), ,x y zc c c are 

the body couples, ( ), ,x y zq q q  are the forces acting on the Ω 

plane, ( ), ,x y zt t t are the Cauchy's tractions and ( ), ,x y zS S S  

are surface couples the Variations of the virtual work is ex-

pressed as:  
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 Given that in this study only the external force zq was 

applied, virtual work becomes: 

( ) ( )
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the variation of kinetic energy is obtained as: 
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(47) 

where: ρ is the density. 

Finally using the Hamilton's principle, it can be said 

that [9]: 
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where: T is the kinetic energy; U is the strain energy, and w 

is the work of the external forces. 

6. The final governing equations of the plate after apply-

ing the buckling and external forces 

Using Hamilton's principle, Eq. (48), and the Eqs. 

from (44) to (47), the governing equations of the plate in-

cluding the buckling and external forces are obtained as fol-

lows: 
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7. Obtaining the general governing equation of the 

Mindlin's plate (including buckling, bending and vi-

brations) 

Considering the following constants: 
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the general governing equation of the Mindlin's plate will 

become: 
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8. Solution of the governing equations using Navier's 

method 

The Navier's solution is applicable to the rectangu-

lar plates which have simply supported boundary conditions 

on all edges. Since the boundary conditions are spontane-

ously satisfied in this method, the unknown functions of the 

plate's mid-plane were assumed to be double trigonometric 

series [8]: 
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Simply-supported boundary conditions were also 

satisfied by the Navier's method according to the following 
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9. The general equation matrix of a Mindlin's plane 

After solving the governing equations and naming 

the coefficient of each variable, we have: 

2 2 4 4 2 4

1 1 1 1 2 2

2U C C C C C     = + + + + , (74) 

3 2

2 4 1 1 2

U U C C C  = = − − + , (75) 

3 2

3 7 1 1 2U U C C C   = = − − + , (76) 

4 2 2 2 2

5 3 3 4 5 2U C C C C C    = − − − − + , (77) 

3 3

6 3 3 6U C C C   = + − , (78) 

3 3

8 3 3 6U C C C   = − − − , (79) 

4 2 2 2 2

9 3 3 4 5 2U C C C C C    = + − − + , (80) 

1 7K C= −  (81) 

2 3 4 6 7 8 0K K K K K K= = = = = = , (82) 

5 9 8K K C= = − . (83) 

Finally, the general equation matrix of the 

Mindlin's plate along with the auxiliary equations will be 

obtained as follows: 

1 2 3 1 2 3

2

4 5 6 4 5 6

7  8 9 7 8 9

      

   -    = 0

0    

mn mn

mn

mn

U U U K K K w Q

U U U K K K X .

U U U K K K y



        
        
        
               

 (84) 

 In this study, graphene is chosen as the plate's material. 

A single-layer graphene plate has the following properties 

[9]: 
3

kg
=1.06 TPa,  0.25, =0.34 nm, =2250 .

m
E v = h r  

Also, the relationship between E, μ and ν can be 

expressed as: 

 ,  ,
(1 )(1 2 ) 2(1 )

vE E

v v v
 = =

+ − +
 (85) 

where: μ and λ are the lame's coefficients; E is the Young's 

modulus [10]. The value of the distributed force was con-

sidered to be 
21N m .q = . 

10. Results and discussion 

Results were obtained using a computational pro-

gram coded in the MATLAB software. The results have also 

been compared with the literature [11, 12] and good agree-

ments between results were observed. The plate's dimen-

sional parameters are chosen as follows: a is plate's length; 

b is plate's width; h is plate's thickness; l is material length 

scale parameter 

Table 1 shows the Mindlin's nanoplate bending 

rate under sinusoidal load for different material length scale 

parameters to thickness l/h and length to width ratio a/b. As 

can be seen, as the length scale parameter to thickness ratio 

increases, the bending ratio decreases but it increases due to 

the increase in the plate's length to width ratio. 

Table 1 

The Mindlin's nanoplate bending rate under sinusoidal load 

for different length to width and material length scale to 

thickness ratios ( 21 18N/nm , / 30q e a h= − = ) 

a/b 
l/h 

0 0.5 1 2 

1 7.0630 1.6642 0.5104 0.1406 

1.5 14.2905 3.3664 1.0306 0.2820 

2 21.1039 4.9708 1.5205 0.4145 

 

Table 2 compares the values of critical force for 

different nanoplates under a bi-axial surface loading for var-

ious length to thickness ratios. It was observed that, the 

Mindlin's nanoplate has the highest, and the Third-order na-

noplate has the lowest critical force values. 

Table 2 

Values of the critical force for different nanoplates under a 

bi-axial surface loading for various width to thickness ra-

tios ( / =1, / =1, / =1)y xP P l h a b  

a/h 
Kirchhoff 

plate 

Mindlin 

plate 

Third order 

shear defor-

mation plate 

N order shear de-

formation plate 

(n=5) 

5 142.2802 233.7327 130.1058 131.5295 

10 35.5701 86.0362 34.7400 34.8479 

20 8.8925 23.9784 8.8394 8.8465 

30 3.9522 10.8814 3.9417 3.9431 

40 2.2231 6.16595 2.2198 2.2202 

50 1.4228 3.9597 1.4214 1.4216 

 

Fig. 2 compares the bending values of different na-

noplates under the uniform surface traction for different 

length to width ratios. As can be seen, the Kirchhoff's nano-

plate yielded the lowest values and the third-order nanoplate 

yielded the highest values for bending.  

Table 3 shows the dimensionless bending values of 

Mindlin's nanoplate under the uniform surface traction and 

sinusoidal load for material length scale to thickness and 

length to width ratios. As shown in the table, except for the 

classical theory l=0, the dimensionless bending values under 

sinusoidal load were higher than bending values obtained 

under the uniform surface traction. It was also found that 

with an increase in the material length scale parameter to 

thickness and length to width ratio of the nanoplate, the di-

mensionless bending value decreases. 

Fig. 3 shows the values of dimensionless critical 

force for Mindlin's nanoplate under a uniaxial force in the 

x-direction. It was found that this value increases due to an 

increase in length to thickness ratio of the nanoplate. Fur-

thermore, when the effect of size parameter is neglected 

(classical theory), the value of dimensionless critical force 

becomes constant and reaches its lowest value, but with an 

increase in the size parameter the dimensionless critical 

force value increases.  
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Table 3 

The dimensionless bending values of Mindlin's nanoplate under uniform surface traction and sinusoidal load for various 

material length scale to thickness and length to width ratios 
2( / 30, 1 18 / )a h q e N nm= = −  

a/b 

l/h 

0 0.5 1 2 

Uniform 

load 

Sinusoidal 

load 

Uniform 

load 

Sinusoidal 

load 

Uniform 

load 

Sinusoidal 

load 

Uniform 

load 

Sinusoidal 

load 

1 1 1 0.235573 0.235626 0.072128 0.072264 0.019740 0.019913 

1.5 1 1 0.235499 0.235569 0.071942 0.072121 0.019506 0.019735 

2 1 1 0.235479 0.235541 0.071892 0.072049 0.019443 0.019643 

 

 

Fig. 2 Comparison of bending values for different nano-

plates under the uniform surface traction for different 

aspect ratios (
2/ 30, / 1, 1 18N/nma h l h q e= = = − ) 

 

Fig. 3 Values of dimensionless critical force for Mindlin's 

nanoplate under a uniaxial force in the x -direction 

for different material length scale to thickness and 

length to thickness ratio of the nanoplate 

( / =1, =1, =1)a b m n  

 

Fig. 4 shows the values of critical force for 

Mindlin's nanoplate under a uniaxial force in the x-direc-

tion. As shown in the figure, the dimensionless critical force 

increases due to an increase in the length scale parameter to 

thickness ratio and decreases due to an increase in length to 

thickness of the nanoplate. 

 

Fig. 4 Values of critical force for Mindlin's nanoplate under 

a uniaxial force in the x -direction for various mate-

rial length scale to thickness and length to thickness 

ratio of the nanoplate ( / =1, =1, =1)a b m n  

 

Fig. 5  shows the values of dimensionless critical 

force for Mindlin's nanoplate under a bi-axial surface force 

in x and y directions. As can be seen, this value increases 

due to an increase in, length scale parameter to thickness and 

length to thickness ratio of nanoplate. 

 

Fig. 5 Values of dimensionless critical force for Mindlin's 

nanoplate under a bi-axial surface force in x  and y  

directions for material length scale to thickness and 

length to thickness ratio of the nanoplate 

( / =1, =1, =1)a b m n  

 

Figs. 6 – 9 shows the dimensionless frequency of 
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different modes of Mindlin's nanoplate 

11 12 21 22( / / / / )c c c c       − − −  (except for the clas-

sical theory l=0. It was observed that this value increases 

due to an increase in length to thickness ratio. Also, for the 

classical theory (neglecting the effect of size parameter) the 

dimensionless frequency reaches its lowest value, but with 

an increase in the size effect, the dimensionless frequency 

values increase.  

 

Fig. 6 Comparison of dimensionless frequencies of the first 

mode 11( )  for a Mindlin's nanoplate for various ma-

terial length scale parameter to thickness and length 

to thickness ratios of the nanoplate ( =0.34, / =1)h a b  

 

Fig. 7 Comparison of dimensionless frequencies of the 

mode 12( )  for a Mindlin's nanoplate various mate-

rial length scale parameter to thickness and length to 

thickness ratios of the nanoplate ( =0.34, / =1)h a b  

 

Table 4 shows that the dimensionless frequency of 

different modes of Mindlin's nanoplate increases due to an 

increase in material length scale parameter to thickness ra-

tio. 

By comparing Tables 4 – 7 it was found that with 

an increase in length to thickness ratio of the Mindlin's na-

noplate, the vibration frequency decreases. 

Table 8 shows different modes of frequencies for 

various nanoplates 11 12 21 22( )   − − − . According to the 

table, the frequency values were the highest for the 

Mindlin's nanoplate and the lowest for the third-order nano-

plate. 

 

Fig. 8 Comparison of dimensionless frequencies of the 

mode 21( )  for a Mindlin's nanoplate for various ma-

terial length scale parameter to thickness and length 

to thickness ratios of the nanoplate ( =0.34, / =1)h a b  

 

Fig. 9 Comparison of dimensionless frequencies of the 

mode 22( )  of a Mindlin's nanoplate for various ma-

terial length scale parameter to thickness and length 

to thickness ratios of the nanoplate 

( / =0.34, / =1)a h a b  

Table 4 

Comparison of dimensionless frequencies of different 

modes of Mindlin's nanoplate for various material length 

to thickness ratios ( / =1, / =30)a b a h   

Mode 
l/h 

0 0.5 1 2 

ω11 13.9429 28.7266 51.9052 99.1252 

ω12 34.6425 71.3140 128.0217 237.9174 

ω21 34.6425 71.3140 128.0217 237.9174 

ω22 55.0918 113.3246 202.1703 365.8010 

ω33 121.5505 249.5297 436.5378 722.2380 

Table 5 

Comparison of dimensionless frequencies of different 

modes of Mindlin's nanoplate for various material length 

to thickness ratios ( / =1.5, / =30)a b a h   

Mode 
l/h 

0 0.5 1 2 

ω11 10.0816 20.7745 37.5829 72.1427 

ω12 19.3340 39.8248 71.8354 136.2116 
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Continuation of Table 5 

Mode 
l/h 

0 0.5 1 2 

ω21 30.8284 63.4718 114.0783 213.0666 

ω22 39.9678 82.2599 147.4292 272.0827 

ω33 88.6398 182.1338 321.6951 556.8022 

Table 6 

Comparison of dimensionless frequencies of different 

modes of Mindlin's nanoplate for various length to thick-

ness ratios ( / =0.5, / =1)a b l h   

Mode 
a/h 

20 30 40 50 

ω21 280.4153 128.0217 72.7219 46.7575 

ω12 436.5378 202.1703 115.4757 74.4444 

ω21 860.2980 413.9252 240.0504 155.9272 

ω22 988.5087 481.2484 280.4153 182.5827 

ω33 1844.9056 988.5087 596.8069 395.7091 

Table 7 

Comparison of dimensionless frequencies of different 

modes of Mindlin's nanoplate for length to thickness ratio  

( / =1, / =1)a b l h  

Mode 
a/h 

20 30 40 50 

ω11 115.4757 51.9052 29.3145 18.7965 

ω12 280.4153 128.0217 72.7219 46.7575 

ω21 280.4153 128.0217 72.7219 46.7575 

ω22 436.5378 202.1703 115.4757 74.4444 

ω33 903.7094 436.5378 253.5674 164.8397 

Table 8 

Comparison of dimensionless frequencies of different 

modes of various nanoplates for length to thickness ratio 

( / =1, / =1)a b l h  

Mode 
/h 

20 30 40 

Mindlin plate 

ω11 280.4153 128.0217 72.7219 

ω12 436.5378 202.1703 115.4757 

ω21 860.2980 413.9252 240.0504 

ω22 988.5087 481.2484 280.4153 

Kirchhoff plate 

ω11 175.2090 78.0917 43.9704 

ω12 279.4825 124.7767 70.2985 

ω21 588.5668 264.0744 149.0415 

ω22 690.3772 310.2573 175.2090 

Third order shear deformation plate 

ω11 174.0385 77.8533 43.8941 

ω12 276.5826 124.1752 70.1049 

ω21 576.6542 261.4753 148.1887 

ω22 674.3836 306.7113 174.0385 

11. Conclusion 

In this study, the bending, buckling and vibration 

of a graphene Mindlin's nanoplate were investigated using 

the modified couple stress theory.  As observed in the tables 

and figures, the Mindlin's nanoplate bending rate under si-

nusoidal load, decreases with an increase in length to thick-

ness ratio of the nanoplate, but, this value increases with an 

increase in the aspect ratio of the nanoplate. Furthermore, 

by comparing different nanoplates under uniform surface 

traction it was found that the Kirchhoff's nanoplate yields 

the lowest and the third-order nanoplate yields the highest 

values for bending.  

The buckling analysis showed that the dimension-

less critical force increases due to an increase in material 

length scale parameter to thickness ratio and decreases due 

to an increase in length to thickness ratio of the nanoplate. 

But when the size effect parameter is neglected (classical 

theory), the value of dimensionless critical force becomes 

constant and reaches its lowest value, but with an increase 

in the size parameter the dimensionless critical force value 

increases.  

Analysis of frequencies of different modes showed 

that this value increases due to an increase in length to thick-

ness ratio. Also, for the classical theory (neglecting the ef-

fect of size parameter) the dimensionless frequency reaches 

its lowest value, but with an increase in the size effect, the 

dimensionless frequency values increase. It was also found 

that the Mindlin's nanoplate yields the highest and the third-

order nanoplate yields the lowest values for frequency. 
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M. Eskandari Shahraki, M. Shariati, N. Asiaban, J. 

Eskandari Jam 

BENDING, BUCKLING AND VIBRATIONS 

ANALYSIS OF THE GRAPHENE NANOPLATE USING 

THE MODIFIED COUPLE STRESS THEORY 

S u m m a r y 

In this paper a Mindlin's plate model is developed 

for the Bending, buckling and vibration analysis of a gra-

phene nanoplate based on a modified couple stress theory. 

The bending rates and dimensionless bending values under 

uniform surface traction and sinusoidal load, the dimension-

less critical force under a bi-axial surface force in x  and y  

directions and dimensionless frequencies of different modes 

are all obtained for various plate's dimensional ratios and 

material length scale to thickness ratios. The results are pre-

sented and discussed in details. 

Keywords: modified couple stress theory, mindlin plate, 

rectangular nanoplate, Navier type solution. 
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