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1. Introduction 

Double beam system is a kind of important beams 

in civil, and mechanical engineering etc.[1, 2]. Usually the 

double beam system can be divided into the upper beam 

and lower beam, where the parallel beams are connected 

continuously by a viscoelastic layer or discretely by a se-

ries of supporting units. Taking the railway slab track as an 

example, the rail can be regarded as the upper beam and 

the slab as the lower beam [3, 4]. For the embankment 

structures, the pavement structure can be treated as an up-

per beam, and the geo-cell reinforced layer idealized as the 

lower beam [5]. Therefore, the dynamic behaviors of these 

infrastructures travelled by moving vehicles is the concern 

of most researchers. 

The vibration problem of double beam system ex-

cited by moving loads is good developed and explored 

during the past decades. For the double beam system vibra-

tion, Abu-Hilal studied the dynamic response of a double 

beam system under a moving constant load, and the dy-

namic displacements of both beams are given in analytical 

closed forms [6]. Zhang et al obtained the dynamic re-

sponses of an elastically connected simply supported dou-

ble-beam system under compressive axial load and arbi-

trarily distributed continuous loads, where the upper beam 

and lower beam are continuously joined by a Winkler elas-

tic layer [7]. Balkaya et al investigated the free vibration of 

a double beam system with both end simply supported and 

fixed, and the motion of the system is solved by the Differ-

ential Transform Method (DTM)[8]. Huang and Liu ob-

tained the free vibration characteristics and the forced vi-

bration responses of the double beam system through the 

free interface substructure method, and pointed out that the 

mode localization phenomena would occur in such a weak-

ly coupled system [9]. Koziol adopted wavelet approxima-

tion method combined with Adomian’s decomposition to 

study the dynamic response of a double-beam resting on a 

nonlinear viscoelastic foundation and subjected to a series 

of moving loads [10]. Jiang et al. presented an analytical 

expression of dynamic response of a double beam system 

under successive moving loads and the results are verified 

through general FEM software ANSYS [11]. A compre-

hensive investigation on the literatures indicates that most 

of the existing studies are focused on the dynamic behav-

iors of double beam system under free vibration and mov-

ing loads, and there is no paper investigated the damage 

detection of the connection between the upper and lower 

beams for the double beam system. 

This paper is organized as follows. In Section 2 

the dynamic model of double beam system under moving 

load is presented and followed the integration procedure 

solution. In Section 3 the dynamic accelerations of the 

double beam system with and without connection damage 

are compared and the feasibility of connection damage 

detection using structural responses is verified. In Section 

4 the process of connection damage detection of double 

beam system using the structural dynamic responses com-

bined with genetic algorithm is proposed. In Section 5 

some certain connection damage cases between the upper 

and lower beams, including simple damage and multiple 

damages, are studied through the numerical investigation. 

Last, the paper is concluded in Section 6. 

2. Mathematical formulation 

In this paper, the dynamic responses of a double 

beam system under moving load are studied, as shown in 

Fig 1. To simplify the mathematical formulation of the 

double beam system vibration under moving load, some 

assumptions are list as follows: 

1. The double beam system is composed of two 

beams, which are represented as upper beam and lower 

beam, and both beams are modeled as simple supported 

elastic Bernoulli-Euler beam. 

2. The upper beam and lower beam are connected 

by a series of linear springs with stiffness k, and the inter-

val between two adjacent springs is l. 

3. In this study, the moving load is simplified as a 

moving sinusoidal force P(t) = P0sin(ω0t) with the constant 

frequency ω0 and the amplitude P0[12]. 

4. The connection damage of the double beam sys-

tem can be regarded as some mechanical properties reduc-

tion such as stiffness reduction, and the stiffness of the 

damaged spring is kr. 

5. At the initial time t=0, the moving sinusoidal 

load is located at the left end of the beam and travels to the 

right end at a constant speed v. 

As shown in Fig. 1, the force acting on the double 

beam system is simplified as a moving sinusoidal force, 

therefore the dynamic double beam system model is called 

as moving load model also. 

 

2.1. Upper beam 

 

The upper beam is regarded as an elastic Bernoul-

li-Euler beam with span length L, and supported by the 
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lower beam via a series of linear springs discretely, as shown 

in Fig. 1. For the connection damage condition, it is assumed 

that the stiffness of the jth (j=1~N) spring is reduced as kr. 

The equation of motion for the upper beam with connection 

damage subjected to moving sinusoidal load can be written 

as [13, 14]: 
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where: Z1(x, t) is the upper beam deflection; (x, t) are the 

spatial co-ordinate and the time; m1 is the constant mass per 

unit length; E1 is the elastic modulus; I1 the moment of iner-

tia; c1 the damping of the upper beam. F1(x, t) is the force 

acting on the upper beam, including the moving load and 

the force from the lower beam, which can be given as: 
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where: Z2 (xj, t) is the lower beam deflection; (xj, t) are the 

spatial co-ordinate of the jth spring and the time; xp the dis-

tance of the moving sinusoidal load from the left-hand of the 

beam; δ(·) is the Dirac delta function. 
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Fig. 1 Double beam system with connection damage under 

moving sinusoidal load 
 

2.2. Lower beam 

 

The lower beam is modelled as an elastic Bernoul-

li-Euler beam with the same span length as the upper beam, 

and the equation of motion for the lower beam with 

connection damage loads can be written as [15, 16]: 
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where: Z2(x, t) is the lower beam deflection; (x, t) are the 

spatial co-ordinate and the time; m2 is the constant mass per 

unit length; E2 is the elastic modulus; I2 the moment of iner-

tia; c2 the damping of the lower beam. F2(x, t) is the force 

acting on the lower beam, which can be given as: 
 

       

     

     

1

2 1 2
1

1 2

1 2
1

, , ,

, ,

, , .

d

j j j
j

r j j j
j d

N

j j j
j d

F x t k Z x t Z x t x x

k Z x t Z x t x x

k Z x t Z x t x x













 

    
 

    
 

   
 







 

(4)

 

 

2.3 Solution 
 

The upper and lower beams are regarded as simple 

supported beam, respectively, and the ith mode shapeφi(x) 

and circular frequency ωi of the beam can be written as [17]: 
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With mode superposition method, the displace-

ments of the upper and lower beams can be obtained in terms 

of modal shapes and corresponding modal displacements as: 
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where: q1n(t) and q2n(t) are the generalized coordinate asso-

ciated with the ith natural mode of the upper and lower 

beams; φ1i(x) andφ2i(x) are the ith mode shape function of 

both beams. 

Substituting Eqs. (7) and (2) into Eq. (1), the 

equation of motion for the nth mode in terms of the 

generalized displacement q1n(t) of the upper beam can be 

given as: 
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where: ω1n, ξ1n, and M1n are the modal frequency, the 

damping ratio, and the modal mass of the nth mode, 

respectively, and the generalized force F1n(t) acting on the 

upper beam from the moving sinusoidal load and the lower 

beam is expressed as: 
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Similarly, the equation of motion for the nth mode 

in terms of the generalized displacement q2n(t) of the lower 

beam can be given as: 
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where: ω2n, ξ2n, and M2n are the modal frequency, the 

damping ratio, and the modal mass of the nth mode, 

respectively, and the generalized force F2n(t) acting on the 

lower beam from the upper beam is expressed as: 
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Subsequently, substituting Eqs. (10) and (12) into 

Eqs. (9) and (11), respectively, and moving the unknown 

terms with (q1n, q2n) to the left side of the differential equation, 

the equations of motion of the double beam system under 

moving load can be expressed as: 
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It is indicated from Eqs. (13) and (14) that the upper 

and lower beams are coupled through the springs between 

them. By combining Eqs. (13) and (14) together, the 

equations of motion of double beam system subjected 

moving load in modal space can be given in a matrix form as: 
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where: [M], [C], [K] are the mass, damping and stiffness ma-

trices of double beam system; ({ },{ },{ })U U U  are the vec-

tors of displacement, velocity, and acceleration, respectively; 

and {F} represents the vector of exciting forces applying to 

the dynamic system.  

Assume Nb modes of the upper and lower beams in 

Eqs (7) and (8) are used in this paper, {U} and {F} can be 

given as: 
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As shown in Eq. (15), the dynamic responses of the 

double beam system can be calculated using a step-by-step 

integration method. When the moving sinusoidal load travels 

over the double beam system, the mass, damping and stiff-

ness matrices [M], [C], [K] in Eq. (15) vary with time. There-

fore, during each time step the matrices [M], [C], [K] and the 

vector of external forces need to be updated. In this paper, the 

integration procedure of Newmark-β method with constant 

acceleration of β=1/4 and γ=1/2 are selected, which consists 

of the following equations [18-20]. 

      
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1 1
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

 
   

  

  

(21)
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3. Feasibility of connection damage detection 

As shown in Fig. 1, the moving sinusoidal load 

travels over the double beam system at a constant speed v, 

and the properties of the double beam system and moving 

sinusoidal load are listed in Table 1.  

In this paper, a sufficient number of modes in Eqs. 

(7) and (8) should be determined to calculate the dynamic 

responses of the upper and lower beams via the mode 

superposition method. For the simple supported beam, it is 

usually that 20 modes are enough for accuracy of the 

response from Eq. (15), which are also used herein [21, 22]. 

In the following numerical example, a time step of 0.001 s 

and ending time of tend = L/v are employed to compute the 

dynamic responses of the double beam under moving load.  

Table 1 

Properties of the double beam system and moving  

sinusoidal load 

m1, kg/m E1, N/m2 I1, m4 ξ1 L, m L, m K, N/m 

3250 2.15×1010 0.65 2% 36 6 3.2×107 

m2, kg/m E2, N/m2 I2, m4 ξ2 N P0, kN ω0, Hz 

6250 3.05×1010 2.65 5% 5 800 2.268 

 

To study the connection damage of the spring on 

the dynamic responses of the double beam system, let us 

consider the 3rd spring damaged with the stiffness reduction 

of 50% as the initial value, that is kr=(1-50%)k=0.5k. When 

the speed of the moving load is 10 m/s, the accelerations of 

the upper beam at midspan before and after danmage are 

compared, as shown in Fig. 2. The maximum accelerations 
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Amax of the upper beam at different locations, such as L/8, 

L/4, 3L/8, L/2, 5L/8, 3L/4, and 7L/8 are list in Table 2. 

It indicates that from Fig. 2, when the moving load 

travels over the damaged doubele beam system with the 

stiffness reduction of the spring support, the acceleration of 

the upper beam is with a slight increase. The changing of the 

dynamic responses of the double beam system before and 

after damage also can be confirmed in Table 2. This shows 

the possibility of the proposed damage detection approach 

using the structural dynamic responses with genetic 

algorithm, which will be introduced below.  

Fig. 2 Accelerations of the upper beam system at mid span 

 

Table 2 

Maximum accelerations Amax of the upper beam 

Amax, cm/s2 L/8 L/4  3L/8 L/2 5L/8 3L/4 7L/8 

Before damage 20.63 45.46 72.09 90.60 92.26 73.98 40.90 

After damage 22.08 48.14 74.10 92.72 94.21 75.48 41.71 

 

4. Damage detection process with genetic algorithm 

Genetic algorithm was motivated by biological 

genetic and evolution mechanisms and had been applied 

successfully in engineering optimization problems [23, 24]. 

The method is powerful at global convergence, high 

precision, and less computation time under the same 

precision requirements than other optimization methods. 

Therefrore, genetic algorithm is widely used in multi-

objective optimization problem, combinatorial optimization, 

pattern recognition and so on. To find the global optimum 

from a complex surface, the solutions from genetic algorithm 

is created using selection, crossover and mutation operators 

such as the natural selection. 

In this paper, the genetic algorithm is used to 

detecte the spring connection damage of the double beam 

system. The damage degree of spring connections are treated 

as discrete values, and each value is encoded by a binary 

digits gene string with gray code. In this paper, each discrete 

value is encoded by a three binary digits gene string, which 

can be used to detect 0 to 70 percent stiffness reduction of 

spring connection, as given in Table 3. From pratical view, 

for higher spring stiffness reduction such as 80%, 90%, 100% 

can be found through visual inspection, and these damaged 

cases are not studied through numerical investigations in the 

following. Then, an individual (chromosome) consisting of 5 

gene strings is used to represent the stiffness k of 5 springs in 

double beam system in Fig. 1 , which is used as the input 

data for the spring connection prarmeters between the upper 

and lower beams. 

Table 3 

Binary digits gene string with gray code 

Gene string 000 001  011 010 110 111 101 100 

Damage degree, % 0 10 20 30 40 50 60 70 

 

The procedure of spring connection damage 

detection of doubel beam system using beam vibration and 

genetic algorithm is shown in Fig. 3.  

For the procedure of damage detection with genetic 

algorithm in Fig. 3, it is can be divided into two main groups. 

The first one is to compute the dynamic responses of double 

beam under moving load with certain damage state, including  

Calculate the dynamic responses U*(i) using moving load model

Selection, crossover, mutation and recombination

Fitness evaluation

Convergence

End

Detect the damage state

No
Yes

Input data including double beam 

system and moving load parameters

Determine the objective function FOBJ with pseudo-

measurement data U(i) and U*(i)

Assume the initial damage condition

Calculate the dynamic responses U*(i) using moving load model

Determine the objective function FOBJ with pseudo-

measurement data U(i) and U*(i)

Take new connection damage as the initial damage condition

Update the 

initial 

damage 

condition 

using the 

new 

generation

  

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 3 Procedure of damage detection with genetic algo-

rithm 

steps ③, ⑧. And the second one is to perform the spring 

damage detection with genetic algorithm method, including 

steps ④, ⑤, ⑥, ⑦, ⑨, ⑪. In this paper, the damage 

detection procedure, including the two main groups and other 

steps ①, ②, ⑩, ⑫ in Fig. 3 are executed by MATLAB 

codes. During the detection process, the dynamic responses 

of the double beam system with some certain known pre-

assumed damage state are calculated using the developed 

moving load model in Section 2 first, which are set as the 

pseudo-measurement data U(i). In this paper, the objective 

function Fobj in Fig. 3 is defined as the difference between the 

computed acceleration response and the pseudo-

measurement data: 
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    
1

,objF U i U i
N

   (23) 

 

where: U(i) is the vector of the discrete values of pseudo-

measurement data with certain pre-assumed damage state 

and U*(i) is the vector of the computed results calculated by 

the dynamic moving load model developed in Section 2 with 

some damage state generated by the genetic algorithm 

process. During the pratical mearuments some noise may be 

included in the measurement data, which will make some 

differences between the pseudo-measurement data and the 

computed results. However, this is the first attempt to using 

the structural dynamic responses with genetic algorithm to 

detect connection damages of double beam system. All the 

research herein are focused on the theoretical study, and the 

measurement noise is not considered bellow. 

The objective function Fobj in Eq. (23) is used as 

fitness function value in the detection process. The 

effectiveness of the genetic algorithm depends greatly on the 

crossover and mutation rate values, which are set as 60 and 

10 percent, respectively, in this study [25]. During detection 

process, the minimum value of Fobj is determined, the 

detection process determines that the identified damage state 

is in agreement with the pre-assumed damage state.  

5. Numerical investigation 

Due to the springs manufacturing and installing, 

there may be some initial faults for the connection between 

the upper and lower beams. Also, the spring connection of 

the double beam system may degerate during services, 

especially under the impact of moving loads. To investigate 

the connection detection feasibility of the proposed approach 

in Section 4, the simple damage and multiple damages 

dection will be considered herien. The connection damage is 

expressed by a uniform decrease of the spring stiffness. For 

example, if the ith spring connection has 20 percent damage, 

and it means that the stiffness of the ith spring loses 20 

percent and the value is the 80 percent of the initial value. 

During the damage detection process, the acceleration 

response of the upper beam at midpoint is used as the input 

data for objective function in Eq. (23). During connection 

damage detection calculation, the computed time of one 

generation is almost the same, so the calculated generations 

CG can be set as an index to represent the identification 

efficiency. In the following numerical studies, it is assumed 

that the moving load travels at a low speed of 10 m/s for all 

the cases.  

 

5.1. Simple damage detection 

 

For simple damage detection, it is assumed that one 

spring connection of the double beam system is damaged. 

The location and degree of the damaged spring should be 

detected simultaneously, which are the targets of the 

identification. In this paper, the following three simple 

damage cases are considered. Case 1 indicates the 1st spring 

connection is damaged and the damage is light with 10 

percent stiffness reduction. For Case 2, there is a light 

damage state for 3rd spring connection. And Case 3 

represents a severe damage state for the 3rd spring connection, 

and the stiffness loses 70 percent. The identification results 

and calculated generations CG for simple damage detection 

are list in Table 4. 

Case 1: the 1st spring connection has 10 percent damage; 

Case 2: the 3rd spring connection has 10 percent damage; 

Case 3: the 3rd spring connection has 70 percent damage. 

Table 4 

Results for simple damage detection  

Spring 

No. 

Case 1 Case 2 Case 3 

Pseudo-

measured 

Com- 

puted 

Pseudo-

measured 

Com- 

puted 

Pseudo-

measured 

Com- 

puted 

1 10 10 0 0 0 0 

2 0 0 0 0 0 0 

3 0 0 10 10 70 70 

4 0 0 0 0 0 0 

5 0 0 0 0 0 0 

CG 20 25 126 

 

From the identification results in Table 4, the values 

of damage degrees for all spring connections in Case 1, 2, 

and 3 are consistent with the pre-assumed damage state. It 

indicates that the damage pattern, including damage location 

and degree, can be identified by the proposed detection 

approach using the upper beam acceleration and genetic 

algorithm in Section 4. Table 4 indicates the calculated 

generations CG are 20, 25, and 126 for Case 1, 2, and 3, 

respectively. It shows that the bigger damage degree case 

needs much longer time to detect sucessfully. 

Here we take the Case 2 to study the objective 

function Fobj variations during the detection process, the 

objective function of Case 2 against calculated generation is 

show in Fig. 4. For the 15th and 17th iteration, the local 

minimum of objective function Fobj is determined, see the 

regional enlarged drawing in Fig. 4. It indicates that the 

jumping ability of objective function Fobj is implemented due 

to the genetic and evolution mechanism of genetic algorithm. 

At last the minimum value of objective function Fobj can be 

reached, in this numerical investigation the vaule is 0, and the 

real damage state is found by genetic algorithm method also. 

 

Fig. 4 Objective function of Case 2 

 

5.2 Multiple damages detection 

 

To investigate the feasibility of multiple connection 

damages detection, two or three spring connection damages 

are assumed in the folowing cases. The identification results 

and calculated generations CG for multiple damages detec-

tion are calculated in Table 5. 
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Case 4: the 1st spring connection has 10 percent damage and 

the 2nd has 20 percent damage; 

Case 5: the 2nd spring connection has 10 percent damage and 

the 3rd has 20 percent damage; 

Case 6: the 2nd, 3rd, and 4th spring connections have 20, 50, 

and 20 percent damages, respectivelly. 

Table 5 

Results for multiple damages detection  

Spring 

No. 

Case 4 Case 5 Case 6 

Pseudo-

measured 

Com- 

puted 

Pseudo-

measured 

Comp- 

uted 

Pseudo-

measured 

Com- 
puted 

1 10 10 0 0 0 0 

2 20 20 10 10 20 20 

3 0 0 20 20 50 50 

4 0 0 0 0 20 20 

5 0 0 0 0 0 0 

CG 50 131 324 

 

The identification results in Table 5 show that the 

identified damage location and degrees are the same as the 

pre-assumed damage state. The possibility of the proposed 

detection approach combined the upper beam acceleration 

with genetic algorithm in Section 4 is verified. The calculated 

generations for Case 4, 5, and 6 are 50, 131, and 324, 

respectively, and the tendency is that the case with multiple 

damages detection needs longer calculation time. 

For multiple damages detection, the objective 

function of Case 4 against calculated generation is show in 

Fig. 5. It shows that the value of objective function Fobj 

jumps to the minimum value 0 after 50 generation iteration 

last, and the the real damage state is found sucessfully. The 

local minimums of objective function Fobj at the 18th and 44th 

iteration is also shown in Fig. 5. 

 

Fig. 5 Objective function of Case 4 

6. Conclusions 

In this paper, a connection damage detection 

approach for double beam system combined the structural 

dynamic responses with genetic algorithm is proposed and 

verified through numerical studies. The dynamic model of 

the double beam system subjected to moving load is 

presented and the responses of both beam are calculated by 

the Newmark-β method. The process of the proposed 

connection damage detection approach is proposed herien, 

and its feasibility is numerically investigated through simple 

damage and multiple damages cases. No matter the damage 

location and damage degree can be identified sucessfully. For 

the sophisticated damage conditions, it indicates that the 

calculated generation is much bigger, and it means the 

detection process needs much longer time. In the future 

studies, the feasibility of the proposed detection approach 

will be adopted for a double beam model in laboratory to 

verify the damage detection results.  
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H. Zhang, R. Song, J. Yang, D. Wu, Y. Wang 

CONNECTION DAMAGE DETECTION OF DOUBLE 

BEAM SYSTEM UNDER MOVING LOAD WITH 

GENETIC ALGORITHM  

S u m m a r y 

In this paper, a novel damage detection approach 

for the spring connection of the double beam system using 

the dynamic response of the beam and genetic algorithm is 

presented. The double beam system is regarded as both 

Bernoulli-Euler beams with simply supported ends, the 

upper and lower beams are connected by a series of linear 

springs with certain intervals. With the genetic algorithm, 

the dynamic acceleration response of double beam system 

under moving load, which can be solved by the Newmark-

β integration procedure, is used as the input data to detect 

the connection damage. Thus the dynamic response of the 

double beam system with a certain damage pattern can be 

calculated employing the moving load model. If the calcu-

lated result is quite close to the recorded response of the 

damaged bridge, this damage pattern will be the solution. 

The connection damage detection process of the proposed 

approach is presented herein, and its feasibility is studied 

from the numerical investigation with simple and multiple 

damages detection. It is concluded that the sophisticated 

damage conditions need much longer time to detect suc-

cessfully. 

Keywords: double beam system, connection damage de-

tection, moving load, genetic algorithm. 
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