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1. Introduction 

 
In the last four decades, the Finite Element 

Method (FEM) was the most popular numerical technology 
used in mechanical analysis of various solids and engineer-
ing structures. Recently, the Discrete Element Method 
(DEM) has opened new vistas for numerical simulation of 
dynamic behaviour. 

A concept of the discrete, originally distinct, ele-
ment method is referred basically to the original work of 
Cundall and Strack [1]. It was aimed to describe mechani-
cal behaviour of granular assemblies composed of discrete 
elements, i.e. discs, and (later) spheres, in particular. 

The main difference between both FEM and DEM 
lies in a different space discretisation concept. FEM oper-
ates upon assemblies of finite elements, while discrete pa-
rameters are attached to nodal points located within a con-
tinuous element. An algebraic model deals simultaneously 
with all elements covering the entire solution domain. 
Time tracking of dynamic processes and a rapid change of 
the structure’s geometry and topology presents additional 
difficulties. 

DEM operates on the basis of the single-point ap-
proach. A discrete element is considered separately and 
presents a material particle with the prescribed characteris-
tics, where all parameters are associated with the centre of 
the particle. 

A particular state of an individual DEM is as-
sumed to be time-dependent, while tracking of particle 
temporal behaviour is the main goal of any DEM simula-
tion. Tracing of each particle in time is defined by dynamic 
equilibrium of forces acting on the particle and described 
by a system of fully deterministic equations of motion of 
classical mechanics. A large number of particles as well as 
time integration steps and variable topology are essential 
attributes of DEM. Application of DEM for brittle cracking 
of solids characterized by shock type behaviour appears to 
be area of numerical simulation. 

Careful interpretation of the DEM and its com-
parison with FEM showed not only external differences, 
but some conceptual similarities as well. Inter-particle 
forces may be interpreted as internal forces of continuum 
in terms of network forces, where the network line is con-
sidered as one-dimensional FE. Therefore, this analogy 
was elaborated for the application of DEM for discretisa-
tion of structures and solids.  

The simplest DEM approach is merely a modifi-
cation of structural analysis. A particular contribution pre-
sented in the earlier work of Kawai [2] could be mentioned 
in this respect. A short review of this approach and its ap-
plication to the nonlinear static analysis of plane framed 
structures is presented by [3, 4]. 

Different approaches and methodologies applied 
to the analyses of homogeneous and heterogeneous solids 
appeared during the past decade. A concept of the particu-
late media composed by polygonal particles prevailed in 
the work of D‘Addetta and Ramm [5]. There, an interface 
enhanced FEM methodology was introduced and com-
bined with the particle methodology. Interface elements 
comprise a fixed number of normal and tangential spring 
sets being directly defined at the particle edges. A combi-
nation of discs and hexagonal DE for fracture of rock is 
developed by [6]. 

Straightforward application of the standard DEM 
to fracture of sandstone is presented by [7]. Poly-dispersed 
assembly of conventional spherical particles with normal 
and tangential contact was applied to the modelling of con-
crete [8, 9] or aglomerates [10]. 

Here, the characteristics of the connection ele-
ment are chosen experimentally. 

Generally, discretisation of solids by DEM em-
ploys a particle-network concept. An approach which al-
lows a straightforward application of the spring-force con-
cept to continua is also called lattice-type model. A num-
ber of modifications of connection elements between the 
nodes of the lattice grid, exploring beam analogy, have 
been suggested. The rods or springs which are the simplest 
elements described by the nodal translation displacements 
are compatible, however, with classical continuum theo-
ries. Brittle fracture and dynamic post-fracture behaviour 
of 1D continuum was considered by [11], where the influ-
ence of space discretisation as well as the effect of damp-
ing and local nonlinearity were investigated. The simplest 
truss analogy was also extended to 2D problems in [12]. 
There, additional calibration of the spring stiffness was 
performed from the comparison with the FEM simulations. 

The application of shear elements [13] and Euler-
Bernoulli beam elements described in terms of rotation 
DOF [14, 15] would require the higher order continuum 
models. 

Some attempts have been made to develop con-
tinuum-based lattice models for DEM. Normal and tangen-
tial spring stiffness for 2D hexagonal lattice in the plane 
stress and plane strain problem without theoretical expla-
nation was considered by Savamoto et al. [16]. Probably, 
the first most comprehensive study of this type was pub-
lished by Mustoe [17] and Griffiths and Mustoe [18]. They 
introduced the one-dimensional element comprising axial 
and shear deformation modes. Both plane strain and plane 
stress examples were presented and good agreement be-
tween displacements obtained from the discrete element 
formulation and analytical and/or solid finite element solu-
tions was observed. The dependence on grid geometry and 
Poisson’s ratio was also found. However, from the theo-
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retical point of view, the presence of shear stiffness was 
hardly compatible with the classical elasticity theory. 

This energy-based deformation methodology was 
later extended for 2D hexagonal and square lattice [19], 
including anisotropy as applied by [20], while for cubic 
lattice it was used by [21]. There, the hybrid DEM/FEM 
model, increasing the domain of application of the particle 
models, and extending the possibilities of calibra-
tion/development of DEM was proposed and the approach 
similar to that applied to fracture analysis was given in 
[22]. 

The present paper addresses a single axial spring-
based lattice model applied to the build-up of DEM. The 
Poisson’s ratio dependent stiffness parameter of the spring 
compatible with continuum displacement field was derived 
by applying virtual work principle. Consistency of the ap-
proach was considered by solving dynamic problems and 
comparison with FEM simulations. The application for the 
simulation of brittle fracture is also presented. 

The paper is arranged as follows. Computational 
methodology is presented in Section 2. Derivation of the 
single-spring stiffness is described in Section 3. Validation 
examples are given in Section 4. The application for simu-
lation of brittle fracture during compression is illustrated in 
Section 5, while conclusions are given in Section 6.  

 
2. Computational methodology  

 
General statements. The time-driven DEM is ap-

plied to the simulation of dynamic behaviour of the elastic 
two-dimensional solid. Actually, the present work is re-
stricted to the plane stress problem, but the extension to 
plane strain would be a rather formal task. Consequently, 
the plate of constant thickness s is regarded here as two-
dimensional solid. It is subjected to in plane loads attached 
to the middle plane. The solid is considered in plane Oxy 
of the Cartesian co-ordinates, while axis Oz points thick-
ness direction. 

Generally, elasticity properties of solids are de-
fined by elasticity tensor and may be described in terms of 
3×3-order elasticity matrix. In the case of an isotropic ma-
terial, the elasticity properties are defined by elasticity 
modulus E and Poisson’s ratio ν. Density of the material is 
characterised by ρ. If the material is assumed to be hetero-
geneous, the material constants may be defined as position 
x = {x, y}T dependent variables. 

Discretisation approach. The DEM discretisation 
approach relies on the concept applied to the description of 
granular material. The 2D solid is regarded as a system of 
the finite number N of deformable material particles i 
(i = 1, …, N).  

The discrete model is implemented by covering a 
computational domain with the hexagonal lattice grid. The 
lattice is constructed by equilateral triangles (Fig. 1, a). 
Each particle i represents a hexagon composed of six equal 
triangles. The hexagon encompasses a half of each connec-
tion line. The location of the particle coincides with the 
lattice node and is defined by the global co-ordinates 
xi = {xi, yi}T, while the geometry of the particle is defined 
by a characteristic dimension L of the grid. 

The density of the material is constant within the 
particle and is assumed to be constant ρi. Mass of the solid 
is described by a set of lumped masses mi, concentrated in 
the centres of particles.  

Generally, lattice concept replaces continuum by 
discrete network of single bars or springs. The discrete 
model is just fictitious-imaginary model has to be energy- 
equivalent to continuum. Real interparticle contact is here 
not considered and is simple replaced by equilibrium of 
selected nodes. 

Consequently, the interaction of particles i and j is 
described by the connection element i–j. The connection 
element presents a line segment of the lattice grid. Consti-
tutive properties of the solid are assigned to particular 
lines. The connection element may generally reflect a 
highly complicated model of continuum, including non-
linearity, time-dependence, degradation, etc. It should be 
noted, that a definition and explicit characterisation of the 
discrete elasticity parameters presents the key issue of the 
DEM simulations.  

The developed DEM approach assumes a descrip-
tion of the discrete model by applying the single normally 
deformed spring (Fig. 1, b). The suggested element may be 
easily extended by adding damping or fracture properties. 
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Fig. 1 Illustration of discrete model: a – a fragment of the 
lattice; b – inter-particle forces of particle i; c – a 
model of the connection element i–j 

 
Governing equations. DEM is a numerical tech-

nique aimed at tracking the dynamic behaviour of individ-
ual particles with their mass, geometry and constitutive 
properties. Governing equations present dynamic equilib-
rium, or motion, of all material particles. They are defined 
for each individual particle and considered separately. 

Generally, governing equations are presented by a 
traditional DEM approach used for the simulation of 
granular materials [1, 23, 24] described in work [11]. The 
motion of particle i in time t is considered by applying the 
Newton’s second law.  

In terms of continuum mechanics, a motion of the 
material particle of the two-dimensional solid is character-
ised by two independent translations, therefore, two equa-
tions of translation, or dynamic equilibrium, expressed in 
terms of the forces acting at the centre of the particle, are 
as follows 
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presents the resultant of all external  and particle 
interaction forces. Interparticle forces , acting on the 
particle i, are illustrated in Fig. 1, b. Hereafter, a subscript j 
denotes six neighbouring particles. 

exti  ,F

ijF

Hence, the interparticle force vector  is actu-
ally composed of normal forces acting along the connec-
tion line and defined in local co-ordinates attached to the 
grid line. Their explicit evaluation by using the single 
spring approach will be presented below. 

ijF

Time integration. The motion of each particle i, 
or, more definitely, tracking of its position , velocity 

 and acceleration 
( )tix

( ) ( )tt ii xv ≡ ( ) (tt ii xa ≡ )  in time t is per-
formed by using the Eq. (1). 

The incremental approach is used for time inte-
gration of the equation of motion, while the explicit time 
integration schemes present the most proper technique 
used in DEM. The Verlet velocity algorithm is currently 
applied to integration [23]. 

Implementation. The DEM approach described 
above was implemented into the original software code. 
The code presents a modified version of the DEM code 
DEMMAT developed in the Laboratory of Numerical 
Modelling of Vilnius Gediminas Technical University, see 
[24, 25]. 

 
3. A single-spring model 

 
The suggested continuum consistent single-spring 

lattice model manifests that all interparticle forces 
 in expression (3) are elastic forces defined by a 

single elasticity constant, more precisely, by axial stiffness 
 of the interparticle spring. The single-spring model 

assumes additionally equality of all springs, thus, 

ij,elij FF  ≡

ijK

ijK K.=  
Consequently, the local constitutive relationship is as-
sumed to be linear and is defined as  

 

ijij KhF =  (4) 
 

where, hij presents interparticle displacement as elongation 
of the connection line i–j  

 

ninjij uuh −=  (5) 
 

being expressed in terms of the local longitudinal dis-
placements  and  of the connected nodes i and j of 
the grid. 

iu iu

Continuum-consistent single-spring elasticity 
constant K will be derived by applying the principle of the 
virtual work. 

Let us consider two-dimensional linear elastic 
continuum. Restricting ourselves to the plane stress prob-
lem we analyze the continuum presenting a plate of thick-
ness s. A constitutive relationship between stresses 

 and strains   { 11 22 12
T, ,σ σ τ=σ } { }11 22 12

T, ,ε ε γ=ε
 
[ ]εDσ C=  (6) 

 
is defined by the symmetric elasticity matrix 
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Assuming the virtual displacement approach, vir-

tual work ( )iCC UU xδ≡δ  done by the virtual strains 
( )ixεε δ≡δ in the point  of continuum reads as ix
 

( ) [ ] εDε δδ CCU T=  (8) 
 
Explicitly, 
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The elastic virtual work for a discrete parti-

cle i imposed by virtual interaction with neighbouring par-
ticles may be presented in terms of normal forces and 
elongations of springs. Taking into account the Eqs. (4)-(5) 
it may be defined as  

DiUδ

 

1

1
2

p

Di ij
j

U K h ijhδ δ
=

= ∑  (10) 

 
The factor ½ indicates that only half of the de-

formation work of spring ij is assigned to particle i.  
Looking for analogy with continuum model (8), 

the equivalent discrete specific virtual work is suggested 
by averaging of (10) over the volume of particle Vi
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i

D U
V

U 1
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where particle volume (Fig. 1, a) is expressed as 
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The normal local displacement uni or unj of parti-

cles i or j may be expressed in terms of the global dis-

placements { }T

i ix iyu ,u=u  and the direction matrix [ ]ijn , 
respectively, as 

 
T
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Denoting cosines of the normal and tangential di-
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Referring to Fig. 1, b, six direction matrices of the 
lattice grid may be defined as 
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Defining the global interaction displacements 

, they may be expressed in 

terms of strains and the geometric matrix 
{ T

ij jx ix jy iyu u ,u uΔ = − −u }
[ ]ijB  in this way 

 
[ ] ijijij εBu =Δ  (15) 

 
Assuming small rotations, the influence of shear 

strain was neglected, while the geometric matrix was sim-
plified 
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By making simple manipulations, we may express 

it in terms of interparticle distance Lij and direction cosines 
[ ]ijn . 
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Taking into account the transformations (13) and 

(15), the discrete virtual work, the expression (11) may be 
presented in the form of continuum. 
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where, the discrete elasticity matrix is as follows 
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Actually, (18) reads 
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Substituting of Eqs. (12), (14) and (17) into 

Eq. (18), yields explicitly 
 

,
s
Kdd DD 4

3
2211 ==

s
KdD 4

3
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The equality of continuous and discrete virtual 

works 
 

CD UU δδ =  (20) 
 

or, more precisely, of the elasticity matrices  
 

[ ] [ ]CD DD =  (21) 
 

provides the necessary conditions for evaluating of spring 
stiffness.  

However, the derivation of the spring model is not 
a formal and simple task because it requires physical as 
well as mathematical consistency of both continuous and 
discrete approaches. Consequently, the number of un-
knowns has to be equal to the number of equations. In this 
case, apart from the ignoring of the shear strain term, we 
have a single-spring constant and two equations. 

Application of the equality yields the 
expression  

1111 CD dd =
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Application of the equality yields the 

expression  
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The equality of both solutions is achieved, when 

the value ν = 0.33. A peculiarity of this specific point was 
already indicated by two-parameter solution of in [16, 17, 
19], when considering normal stiffness KGn, KGs
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 (24) 

 
The obtained stiffness presents Poisson’s ratio 

dependent parameters, while the variations are depicted in 
Fig. 2. 
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Fig. 2 Variation of stiffness parameters against the Pois-

son’s ratio 
 
Graphs in Fig. 2 clearly exhibit the equality of all 

expressions for K1, K2 and KGN, as well as indicate zero 
value of shear stiffness KGs.  

Considering the above results, it may be stated 
that single-spring model is physically and mathematically 
consistent only for Poisson’s ratio ν = 0.33, while the va-
lidity of the model in the vicinity of this point would be 
checked by numerical experiments. 

 
4. Investigation of deformation behaviour 

 
The performance of the developed single-spring 

lattice model was examined by considering elastodynamic 
deformation behaviour. The spring stiffness (22) was im-
plemented into DEMMAT code and applied to simulation 
problems. 

The two-dimensional rectangular solid domain 
was considered as a representative example. The geometry 
of the domain is defined by two characteristic dimensions 
H = 400 mm and B = 100 mm (Fig. 3). Actually, the do-
main may be treated as in-plane loaded thin plate, while 
thickness s = 10 mm is prescribed. 

The plate boundaries AB and CD are assumed to 
be connected to rigid walls, while AC and BD are free 
boundaries. The external compressing loading is imple-
mented via the displacement of boundary CD, i.e. u(t), 
thus, loading is defined as a time-dependent phenomenon 
controlled by the prescribed displacement u (t) = 
= 0 ÷ 2.0 mm (at constant velocity vCD(t) = 1 m/s). 

EB
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u(t)

B=
10

0

H=400
s=

10

y

 
Fig. 3 Geometry of the plate with boundary conditions and 

loading 
 

An elastic material is characterized by the follow-
ing properties. Density of the material is ρ = 2500 kg/m3, 
while its modulus of elasticity E = 17.1 GPa. 

The numerical analysis was made in the following 
manner. The rectangular domain was covered by a hex-
agonal lattice. The lattice grid serves as the base for both 
DEM and FEM models. The DEM model is developed 
according to the described methodology, while the FEM 
presents an assembly of linear triangular elements.  

K
/E

s 

The lattice grid, having a characteristic dimension 
Lij = H/nx = 400/126 = 3.175 mm (here, nx is the number 
of subdivisions along x axis), has been employed. The 
DEM model contains 13717 connection elements and 4681 
particles with 9362 degrees of freedom. It should by noted 
that the geometry of interacting particles at the boundary is 
slightly modified. 

The FEM model contains 9072 triangular ele-
ments with the same number of nodes and degrees of free-
dom. The finite element analysis is performed using 
ANSYS software [26]. 

ν 

The loading for both models is implemented in 
g = 44069 time steps with time increment Δt = 4.538·10-8s. 

Two representative variables - longitudinal uE and 
transversal displacement qE of the mid-side point E are 
examined in detail. The emphasis is on the evaluation of 
the influence of Poisson’s ratio ν. 

Simulation results obtained by both DEM and 
FEM for different ν values in the form of time histories are 
depicted in Fig. 4.  
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Fig. 4 Time histories of longitudinal displacement uE for 
various ν: a – ν=0.10; 0.20; 0.30; 0.33; 0.40  
b – ν=0.33 

 
Time histories of the longitudinal displacement qE 

obtained for various ν values ranging between 0.1 and 0.4, 
are plotted in Fig. 4. The illustration is restricted to a short 
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loading period, where uCD=2.00 mm. The FEM results il-
lustrated by curves are practically insensitive to Poisson’s 
ratio. It could be observed from the graph that DEM results 
yield more extensive variation. It is confirmed that both 
methods provide the identical results, when ν=0.33 
(Fig. 4, b). 

Here, the variation of the average values is plotted 
against Poisson’s ratio. Higher sensitivity of the DEM re-
sults can be clearly seen, however, the difference between 
the approximated DEM and “exact” FEM results (Fig. 5) 
varies in the range 3-5 %. 

It can be concluded that the suggested single-
spring model is able to capture longitudinal deformation 
behavior. 
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Fig. 5 Variation of average longitudinal displacements 

against Poisson’s ratio 
 

A transversal displacement of the point E is con-
sidered in the same manner. Time histories are plotted in 
Fig. 6.  

It could be stated that FEM results show the same 
order of sensitivity as that observed for longitudinal dis-
placement, while DEM results exhibited considerable scat-
tering. The variation of displacements against Poisson’s 
ratio is plotted in Fig. 7.  

Considering the above graph, we can see that the 
DEM results are accurate for ν=0.33, while being dramati-
cally diverging for other values. Thus, for ν=0.25, the dif-
ference makes 4.3 %, while, for ν=0.20, the difference of 
4.6 %, could be hardly acceptable. In conclusion, it can be 
stated that the single–spring model may be applied to par-
ticular loading cases. However, for complex shapes and 
loading histories a correction of the model could be re-
quired. 
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Fig. 6 Time histories of transversal displacement qE for 

different values of Poisson’s ratio 
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Fig. 7 Variation of average transversal displacement 

against Poisson’s ratio 
 

5. Applications to brittle fracture 
 
The developed single-spring lattice model was 

implemented into DEM code and was applied to simulate 
the dynamic behaviour in brittle fracture. 

The fracture is considered as brittle rupture of in-
ter-particle connection element i-j under tension. This fea-
ture is added to elasticity properties (Fig. 1, c). Formally, it 
is defined by the condition 

ijij RF =  (25) 

The fracture leading to debonding of the 
neighbouring particles occurs, when the tensile force ex-
ceeds the element’s load carrying capacity 

 
eff
ij

n
ij AR 0σ=  (26) 

 
where 0σ  is tensile strength, while 

 

LsAeff
ij 3

3
=  (27) 

 
is the effective section area. 

When the condition (25) is not fulfilled, i.e. 
, the connection element works as a spring and 

interaction of particles is allowed. When the condition (25) 
is satisfied, debond (disconnection) of the element occurs 
and the interelement stiffness is removed from the equation 
of motion (3). In the case of repeated interaction of parti-
cles, i.e. 

n
ij

n
ij RF <

 
0≤n

ijh  
 

the connection element is restored again. 
The described rectangular plate under compres-

sion loading (Fig. 3) will be investigated. Here, the con-
trolled displacement of wall CD will be increased up to 
2.5 mm. The elasticity properties are characterized by the 
elasticity modulus E = 17.1 GPa and by the fixed value of 
Poisson’s ratio ν = 0.33.  

Two types of tensile strength were examined 
against fracture. A homogeneous material is characterized 
by the constant strength value σ0 = 250 MPa. A heteroge-
neous material is defined by the average value 
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σ0 = 250 MPa, while random heterogeneity is governed by 
Gaussian distribution. Hence, tensile strength values ij0σ  
of any connection element ij are assumed to be a random 
parameter, ranging between ( ) ( )ασσσα +≤≤− 11 000 ij  
and being generated computationally, using the random 
number generator. Here, α stands for heterogeneity fraction 
( 10 ≤≤ )α , while their value is assumed to be α = 0.2. 

A relatively fine grid with the characteristic size 
L = 1.6667 mm was used in fracture analysis. The DEM 
lattice scheme contains 50640 connection elements, 
n = 17076 nodes and 34152 degrees of freedom.  

The possibilities of the DEM are illustrated by the 
reaction force of the wall AB (Fig. 8). 
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Fig. 8 Time variation of the reaction forces acting on the 

wall AB 
 

 
    a 

 
    b 

 
    c 
Fig. 9 Cracking pattern of the homogeneous plate at vari-

ous time moments: a – t = 1.70 ms, b – t = 2.00 ms, 
c – t = 2.30 ms 

 
The ascending branch illustrates dynamic behav-

iour of the plate during loading, while the descending 
branch reflects unloading caused by fracture behaviour. It 
was found that the first debonding of the connection ele-
ments occurred in the vicinity of the imitated defect in the 
middle of the plate. For a homogeneous plate it occurs at 
the time moment t1 = 1.685 ms with the failure load value 
and displacement value, while, for a heterogeneous plate, 

the failure occurs at the time instance t2 = 1.675 ms. The 
delay in Fig. 8 is explained by the time required to move 
the shock wave from the centre to the support.  

The duration of the fracture of the homogeneous 
plate is 2.5 times shorter compared to that of the heteroge-
neous plate. 

 

 
    a 

 
    b 

 
    c 
Fig. 10 Cracking pattern of the heterogeneous plate at 

various time moments: a – t = 1.70 ms,  
b – t = 2.00 ms, c – t = 2.30 ms 

 
The propagation of cracking from the initial state 

up to failure is presented in Fig. 9 for the homogeneous 
plate, and, in Fig. 10, for the heterogeneous plate. Here, 
debonded connections are shown by thick lines.  

The fracture of the homogeneous plate (Fig. 9) is 
of regular pattern and is symmetric with respect to a longer 
side (axis Ox). The propagation direction is generally pre-
defined by the lattice geometry. The formation of the regu-
lar inclined and normal cracks was detected. The fracture 
of the heterogeneous plate (Fig. 10) is much more compli-
cated. Multiple cracking of random character and forma-
tion of several irregular magistral cracks is observed.  

 
6. Conclusions 

 
The developed continuum consistent single-spring 

lattice model was applied to DEM simulations and imple-
mented into DEMMAT code.  

The model operates using the single-spring stiff-
ness which is a parameter dependent on Poisson’s ratio ν. 
It was observed that longitudinal deformation is practically 
precisely described independently on the values of Pois-
son’s ratio. 

The obtained values of a transverse displacement 
show that the above model is accurate for the value 
ν = 0.33, as expected while the occurring differences are 
asymptotically increasing for other values. Considering the 
results obtained for the compression plate, it was found 
that, for the most popular materials with reduced ν = 0.25, 
the transversal displacements may be obtained with 22% 
error. 
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The model was applied to simulation of dynamic 
fracture of 2D solid plate with random properties. The re-
sults obtained show that the method is an effective simula-
tion tool for qualitative investigation of brittle fracture be-
haviour. It is able to capture naturally occuring multiple 
cracking patterns with randomly oriented cracks. 
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V. Vadluga, R. Kačianauskas 

DVIMAČIO KŪNO MODELIAVIMAS DISKREČIŲJŲ 
ELEMENTŲ METODU TAIKANT VIENOS 
SPYRUOKLĖS TINKLELĮ  

R e z i u m ė 
 

Šiame darbe nagrinėjama tampraus dvimačio kū-
no dinaminis modeliavimas diskrečiųjų elementų metodu 
(DEM). Diskretinis modelis sudarytas iš šešiakampio tink-
lelio. Spyruoklės standumo koeficiento priklausomybė nuo 
Puasono koeficiento išvesta virtualiųjų poslinkių metodu. 
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Pasiūlyto modelio tinkamumas patikrintas gautus rezulta-
tus lyginant su BEM rezultatais. Parodytas šio modelio 
tinkamumas trapiajam irimui modeliuoti. Čia kaip pavyz-
dys pasirinkta gniuždoma plokštelė su atsitiktinai pasi-
skirsčiusia stiprumo riba. Dinaminio irimo procesas pa-
vaizduotas yrančios plokštelės vaizdais atskirais laiko 
momentais. Gauti irimo vaizdai palyginti su vienalytės 
medžiagos rezultatais. 
 
 
V. Vadluga, R. Kačianauskas 

INVESTIGATION OF THE SINGLE-SPRING LATTICE 
MODEL IN SIMULATION OF 2D SOLID PROBLEMS 
BY DEM 

S u m m a r y 

Simulation of the elastodynamic behaviour of 
two-dimensional solid is considered by the Discrete Ele-
ment Method (DEM). The discrete approach is imple-
mented in the form of the hexagonal lattice. The single-
spring model yielding Poisson’s ratio dependent stiffness 
was derived by the virtual displacement method. Suitabil-
ity of the suggested model was verified by comparing it 
with the FEM results. The application of the model to brit-
tle fracture is demonstrated. Cracking of the plate under 
compression with randomly distributed tensile strength 
properties of the material is considered as a case study. The 
dynamic fracture behaviour is illustrated by time variation 
of forces and the cracking pattern of the element network. 

The results obtained are compared with the behaviour of a 
homogeneous plate. 

 
 

В. Вадлуга, Р. Качанаускас 
 
МОДЕЛЬ РЕШЕТКИ С ЕДИНСТВЕННОЙ 
ПРУЖИНОЙ ДЛЯ ОПИСАНИЯ ДВУХМЕРНЫХ 
СРЕД МЕТОДОМ ДИСКРЕТНЫХ ЭЛЕМЕНТОВ 

 
Р е з ю м е 

 
Рассматривается моделирование упругого ди-

намического деформирования двухмерной среды мето-
дом дискретных элементов (МДЭ). Дискретная модель 
представлена в форме гексагональной решетки. Мо-
дель единственной пружины, приводящей к параметру 
жесткости, зависящему от коэффициента Пуассона, 
выводится методом виртуальных перемещений. Пред-
ложенная модель проверена сопоставлением с резуль-
татами расчёта по МКЭ. Дальше метод применен для 
моделирования хрупкого разрушения пластины. Плас-
тина с неоднородным случайным распределением пре-
дела прочности на растяжение, рассматривается в ка-
честве примера. Динамический характер разрушения 
иллюстрируется временным изменением опорной ре-
акции, а так же структуры разрушения. Результат рас-
чёта неоднородной пластины сравнивается с резуль-
татами расчёта однородной пластины. 
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