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1. Problem formulation 
 
 Elastic-plastic steel bending plate subjected to a 
repeated variable load (RVL) is considered in this paper. 
RVL is the system of loads the each of which can inde-
pendently vary within the prescribed bounds. Ideal elastic-
plastic construction subjected by afore mentioned load can 
lose its exploitative suitability due to failure caused by 
progressive plastic and/or alternating straining. Usually 
both cases are denoted as cyclic plastic collapse. Note that 
structure can adapt to repeated variable load and subse-
quently response to RVL in elastic range. Shakedown 
analysis via numerical and mathematical programming 
methods of elastic-plastic any complexity structure, sub-
jected to RVL is relevant for civil engineering. This is con-
firmed by the growing number of investigations in this 
field [1]. However one can find only several works con-
cerning optimization of adapted structures. Therefore cur-
rent investigation is actual. 
 The solution of structure optimization problem at 
shakedown is complicated because stress-strain state of 
dissipative system (e.g. the plate plastic deforming) de-
pends on loading history [1-12]. The optimization problem 
is stated by involving extreme energy principles and meth-
ods of mathematical programming theory. New iterative 
algorithm of problem approximate solution for adapted 
flexural plates optimization based on Rosen project gradi-
ent method [13] is proposed in this paper. A mathematical 
model in static formulation is constructed to determine 
shakedown stress-strain state of flexural plates. The dual 
problem solution (kinematical formulation of the problem) 
is obtained by applying mathematical-mechanical interpre-
tation of Rosen criterion. This methodology previously 
was explained by authors in [14]. 
 The problem of determining optimal distribution 
of plate parameters at cyclic-plastic collapse is considered 
as a separate case of optimization at shakedown state. The 
relationship between afore mentioned mathematical mod-
els and iterative Rosen algorithm is employed to develop 
an approximate method for the solution of optimization 
problems.  
 
2. Plate analysis problem  
 

2.1. Plate discrete model, main equations and relationships 
 
 A discrete model is derived dividing the plate into 
s  finite elements, every of which contains  nodal points 

[15, 16]. Thus the total sections number of plate discrete 
model is 

ks

kss ×=ζ . So, yield conditions will be verified in 
aforementioned nodal points. Stress-strain field of discrete 
model is described by -size vectors of bending moments 
and strains 

n
( )T,...,, ζMMMM 21=  , 

respectively. 
( )T,...,, ζΘΘΘΘ 21=

 Let the degree of freedom of the plate equilibrium 
finite element to be denoted via . Then equilibrium 
equations taking into account boundary conditions pre-
sented in the general form are 

m

 
 k k

k
=∑ A M F  or  (1) FMA =

 s,...,,k 21= ;   Kk ∈  
 
here the size of the matrix of equilibrium equations coeffi-
cients  is (A nm× ), where  is total number of vector 
components vector of internal forces . 

n
M

 Geometrical equations for separate finite element 
read 
 
 ,   0=− kk

T
k MDuA Kk ∈  (2) 

 
then for the whole discrete system one obtains 
 
  (3) 0=− DMuA T

 
here D  is nn ×  size matrix of elemental flexibilities  

of the plate discrete model;  is dis-
placement vector. 

kD

( ) T
m...,,, uuuu 21=

 Huber-Mizes nonlinear yield condition reads: for 
rectangular plate ; for 

circular plate . Yield conditions 
are verified at all design sections of the plate (i.e. at every 
element node) 
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 ,    (4) 0≥−= klkl

T
klkkl C MΠMϕ ( 2

0kk MC = )
 s,...,,k 21= ;   ks,...,,l 21=   
 
here  is limit bending moment assumed to be constant 
per finite element area. Steel plate of continuous cross-

section is analyzed. Then 

kM 0

2
0 4

1 hM yσ= , where  denotes h
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plate thickness, yσ  denotes yield limit. Matrix of coeffi-
cients of the yield condition (4) for rectangular plate reads 
  
 1 - 0.5 0 

=klΠ  - 0.5 1 0 
 0 0 3 

 
here (  denote bending,  denote torsion). As 
only radial  and circular  moments describe the 

stress state of circular plate, the matrix  is simplified 

2211 M,M 12M

ρM θM

klΠ
  

1 -0.5 =klΠ  
-0.5 1 

 
 Mostly the variable repeated load  is defined 
not via particular loading history but only by constant 
bounds ,  of the upper and lower load variation. 
Then . Optimization problems of adapted 
plate is solved accounting only the load variation bounds. 
Then the structure, undergoing plastic strains  in the 
early loading cycles, further adapts to the load. Residual 
bending moments  conditioned by plastic strains  
ensure that the subsequent load variation does not cause 
the development of other plastic strains. Here subscript e  
denotes variables of elastic response, subscript 

( )tF

supF infF
( ) supinf t FFF ≤≤

pΘ

rM pΘ

r  denote 
residual internal forces, strains and deflections. 
 Then employing the aforementioned definitions 
the vector of total moments  (see yield conditions (4)) 
and taking into account elastic moments ) reads 

klM
( )teklM

 
 , ( ) ( ) rkleklkl tt MMM += s,...,,k 21= ;  (5) ks,...,,l 21=
 
here  is valid for the whole plate discrete 
model,  is the matrix of elastic response under bending 
moment influence. The -size volume of variation of 
elastic internal forces  taking into account possible 

combinations (the total number of them ) of loads 
,  is bounded by the convex and symmetric poly-

hedron. Denote the apexes of polyhedron via , 
; . Omitting the detailed investigation 

of loading history the yield conditions finally take the form 

( ) ( )ekl t =M αF t
α

m
( )ekl tM

mp 2=

infF supF

ejM
p,...,,j 21= Jj ∈

 
  (6) 0≥−= j,klkl

T
j,klkj,kl C MΠMϕ

   rklj,eklj,kl MMM +=

 ;   ;     s,...,,k 21= ks,...,,l 21= p...,,,j 21=
 
 It is convenient to pick out the residual bending 
moments , the displacements  and the strains 

 when analyzing the structure at shake-
down. The equilibrium (1) and geometrical (3) equations in 
this case read 

rM ru

prr ΘMDΘ +=

  or  (7) 0=∑ rk
k

kMA 0=rAM

 

and  
 

  (8) prr
T ΘMDuA +=

 
here the components of the vector of plastic strains 

( )T
pklp ΘΘ = are obtained by 

 ( ), ,
T

pkl kl j ekl j rkl kl j
j

,λ∇ϕ⎡= +⎣∑Θ M M ⎤
⎦  (9) 

 0≥j,klλ  

 s,...,,k 21= ;   ks,...,,l 21= ;     p...,,,j 21=
 
here j,klλ  is the plastic multiplier, ∇ϕ  is the gradient ma-
trix of yield conditions [17]. 
 
2.2. Mathematical model of analysis problem 
 
 The calculation of residual internal forces and 
strains of adapted plate for given RVL ( ) supinf t FFF ≤≤  is 
analyzed in the section. The plate parameters, including the 
limit bending moments  ( ), are prescribed val-
ues.  

k0M Kk ∈

 The problem in static formulation represents the 
minimum complementary energy principle reading: of all 
statically admissible vectors of residual bending moments 

 at shakedown is the minimum complementary energy 
corresponding one. The problem mathematical, model 
stated on the basis of above-mentioned principle, reads 

rM

find 

 1
2

T
rk k rk

k
min a∗=∑Μ D M  (10) 

 
subject to 

  (11) [ ] 0=∑ rk
k

kA M
 

 ( ) ( ) 0≥++−= rklj,eklkl
T

rklj,eklkj,kl C MMΠMMϕ  (12) 
 

 ( )2
0kk MC =  

 s,...,,k 21= ;   ks,...,,l 21= ,    (13) p...,,,j 21=
 
Conditions (11)–(13) define a field of convex admissible 
solutions of the problem (10)–(13). Plate bending limit 
moments  (  is considered to be constant in the 
finite element area) and bending moments of elastic re-
sponse  are prescribed (known) values in the convex 
mathematical programming problem (10)–(13). 

kM 0 kM 0

j,eklM

 The optimal solution ∗  of the problem (10)–
(13) is unique, i.e. the aforementioned residual bending 
moments ensure the plate adaptation to the fixed RVL 

rM

( ) supinf t FFF ≤≤ . The yield conditions for optimal solu-

tion , satisfied as equalities, are denoted to be the ac-
tive conditions. 

∗
rM

 The dual problem to the problem (10)–(13) reads 
find 
 

( )1
2

T
rk k rk j j ej r r

k j
max ∇

⎧ ⎡ ⎤− − +⎨ ⎣ ⎦⎩
∑ ∑M D M λ M M Mϕ −  
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  (14) (T
j j ej r

j

⎫⎡− − + ⎬⎣ ⎭
∑ λ C f M M ) ⎤

⎦

=

)

 
subject to 
 

  (15) ( ) T
T

r j ej r j r
j

∇⎡ ⎤+ + −⎣ ⎦∑DM M M λ A uϕ 0

 

 ,   ,    (16) 0≥jλ Kk ∈ Jj ∈
 
here 
 

 (17) ( ) ( )[ ] ( rejrejrejj MMΠMMΓMMf ++=+
 
Γ , Π  are the quasi-diagonal matrices. 
 The problem (14)–(16) corresponds the following 
energy principle: of all kinematically admissible residual 
displacements the vector  at shakedown is the minimum 
total potential energy corresponding one. 

ru

 The optimal solution of problem (14)–(16) are the 
vectors ,  and . The maximum value of dissi-
pated energy at shakedown is expressed by 

∗
rM ∗

ru
∗
jλ

 
  (18) 0

T
max j

j
D = ∑ λ M

 
The plate residual strains  

(strains  are calculated by formula (9)) and residual 

displacements  at shakedown can be nonunique: they 
depend on certain loading history . Thus, if the struc-
tural load is described only by it’s variation bounds , 

 the identification of exact residual displacements val-
ues becomes problematic. This is conditioned by non-
monotonic variation nature of aforementioned values at 
shakedown process. 

∗∗∗ += prr ΘDMΘ
∗
pΘ

∗
ru

( )tF

infF

supF

 
2.3. Rosen algorithm and dual solution of analysis problem 
 
 The mathematical and mechanical sense of Rosen 
design gradient algorithm optimality criterion, reading 
 

  (19) ( ){ 1T T∇ ∇ ∇ ∇ ∇
−

− =I ϕ ϕ ϕ ϕ F 0}
 

  (20) ( ) 1T∇ ∇ ∇ ∇
−

≥ϕ ϕ ϕ F 0

 
was explained in investigation [14]. In (19)–(20) the rela-
tion ∇ F  denote the gradient of the objective function 
(10). The equations (19) represent the compatibility equa-
tions of residual strains. The relations (20) represent the 
vector of plastic multipliers  which is related with active 
conditions of problem (10)–(13). 

λ

 On the other hand the paper [14] proved that 
Rosen optimality criterion corresponds the Kuhn-Tucker 
conditions for the minimization problem (10)–(13). Thus, 
when solving analysis problem in static formulation (10)–
(13) for adapted plate one simultaneously obtains the op-
timal solution  of the primal problem and the optimal 

solution , ,  (

∗
rM

∗
rM ∗

ru
∗
jλ Jj ∈ ) of the dual problem (14)–

(16). 
 
2.4. Residual displacements and influence matrices for 

bending moments  
 
 As the plastic strains  are known one can cal-
culate the residual displacements  and the bending mo-
ments . Here the influence matrices 

pΘ

ru

rM H  and G  are 
introduced [18, 19] 
 

( )
)21(

111

pp
T

pp
T

r

ΘHΘα

ΘDβAΘADADAu

==

=== −−−

 

 ( ) pp
T

r ΘGΘDADβADM =−= −−− 111  (22) 
 
where  is displacements influence matrix of the plate 
elastic response. Matrix G  is singular, i.e. it’s inverse ma-
trix does not exist. 

β

 Total displacements and internal forces of the 
plate subjected by RVL are calculated applying the formu-
lae 
 
 ( ) ( ) ( ) pre ttt HΘFβuuu +=+=  (23) 
 

 ( ) ( ) ( ) pre ttt ΘGFαMMM +=+=  (24) 
 

Extreme elastic displacements ,  can 
be calculated applying the formulae 

sup,eu inf,eu

 
 infinfsupsupsup,e FβFβu +=  (25) 
 

 supinfinfsupinf,e FβFβu +=  (26) 
 

The components of the matrix  are the ele-
ments 

supβ
0≥ijβ  of the matrix . Note that the components 

of the matrix  satisfy conditions 
β

infβ 0≤ijβ  
( infsup βββ += ). 
 Total extreme displacements then read 
 
 sup,rsup,esup uuu +=  (27) 
 

 inf,rinf,einf uuu +=  (28) 
 

Taking into account that residual displacements 
( )tru  in the loading process can vary non-monotonously 

one obtains  
 
 ( ) sup,rrinf,r t uuu ≤≤  (29) 
 

Creation of residual displacements vectors , 
 is exhaustively explained in the [11, 17]. Plate total 

bending moments are calculated applying the formula 

inf,ru

sup,ru

rj,ej MMM += , which was already employed in the 
mathematical models (10)–(13), (14)–(16). 
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3. Optimal bending plate project: cyclic-plastic collapse  
 
 An optimal bending plate project is to be found 
for prescribed RVL and plate geometry. Let us assume that 
the price of the plate material volume, summarized from 
the area unit of the middle plane of the plate and the limit 
bending moment  are directly proportional values. 
Then the theoretical plate price is 

0M

 

 ( ) 000 MLT
k

k
kk MAφM == ∑ω  (30) 

 
here  is scalar function of the limit bending moment 

unit, 
kφ

kA  is the area of the k-th finite element at middle 

surface,  is the vector of weight ratios 
of the optimality criterion. For the homogeneous plate 

T
s )L,...,L,L( 21=L

constφ = . In our calculations it was taken the 1=kφ . The 
components of the vector L  become proportional to the 
areas of plate discrete model elements. Then, estimating 
the optimality criterion the expression (30) can be rewrit-
ten by 
 
  (31) ( ) 00 MLTminMmin =ω
 

The admissible and sufficient construction of op-
timality criterion condition is the constancy of the energy 
dissipation velocity D  per unit volume of the construction 
(basing on Prager and Shield’s work [20]). Then 
 

 
0k k k

k

D const
φ A M

α= =
∑

,   (32) s,...,,k 21=

 
from here 
 
 0 0

T T
k k k

k
D φ A Mα α= = =∑ L M Λ M0  (33) 

 
where  is intensities vector of plastic strains velocities. 
The minimal value of the linear function (33), physically 
meaning the energy dissipation rate, is reached on the edge 
of admissible solutions field. Project problem formulation 
is based on the principle of cyclic plastic collapse reading: 
of all statically admissible residual bending moments  
at cyclic plastic collapse the actual is the one correspond-
ing to the minimum cycle energy dissipation rate 

 [21]. The optimization problem mathematical 
model following the above-mentioned principle reads 

Λ

rM

0MΛTD =

find 

  (34) ∑∑ =
k

kk
k

k
T
k minmin 00 MLMΛ

 
subject to  

  (35) ∑ =
k

rkk 0MA

 

( ) ( ) ( ) 02
0 ≥++−= rklj,eklkl

T
rklj,eklkj,kl M MMΠMMϕ  (36) 

 

 ;   ;     s...,,,k 21= ks,...,,l 21= p,...,,j 21=

Unknowns of the problem (34)–(36) are the vec-
tors of limit ( ) T

sM...,,M,M 002010 =M  and residual 
 bending moments. Optimal solution further is denoted 

via  and . Cyclic-plastic collapse corresponds to 
progressive or alternating plastic failures. Actual failure 
case can be defined by analyzing the solution of the opti-
mization problem in kinematical formulation (due to plas-
tic multipliers vector , 

rM
∗
0M

∗
rM

jλ Jj ∈ ). Bending moments at the 
cyclic-plastic collapse may not satisfy the criterion (10), 

i.e. ∗∗∗ > arr MDM
2
1 . Thus, one can meet a case of cyclic-

plastic collapse with existing elastic fields where plastic 
strains velocities . The theorem of the cyclic-
plastic collapse, on the basis of which is constructed the 
mathematical model (34)–(36), does not require a satisfy-
ing of the criterion (10). 

0=pΘ

 The plastic multipliers velocities can be obtained 
directly by applying the Rosen project gradient method for 
the problem (34)–(36) analysis. The type of collapse is 
identified having performed analysis of the solution [19]. 
The mathematical model (34)–(36) subsequently will be 
incorporated into structural unit of the iterative algorithm, 
developed for approximate analysis of adapted bending 
plate optimization problem. 
 
4. The problem of plate parameters distribution at 

shakedown 
 

4.1. Mathematical model of the problem 
 
 The adapted plate satisfies strength (yield) condi-
tions and is safe in respect to cyclic-plastic collapse [22]. 
However, residual displacements  can exist in the plate 
with developed plastic strains, even if loading is equal to 
zero. Sometimes residual displacements can be signifi-
cantly large even causing exploitation unsuitability of the 
structure (indeed in most cases the total deflections 

ru

re uuu +=  should be verified). Therefore it is important 
to define not only the stress state but also the strain state of 
the flexural plates at shakedown. The main mathematical 
models, constructed for optimization problems with 
strength and stiffness constraints at shakedown, are pre-
sented in the paper [23]. On the basis of these models the 
following mathematical model for determining optimal 
distribution of the parameters of adapted plate is con-
structed 
find 

  (37) 00 MLML T

k
kk minmin =∑

 

subject to 
 

 r
T
rrkk

k

T
rk minmin MDMMDΜ

2
1

2
1

=∑  (38) 

 

 0=rAM  (39) 
 

( ) ( ) ( ) 02
0 ≥++−= rklj,eklkl

T
rklj,eklkj,kl M MMΠMMϕ  (40) 

 

  (41) 0≥k0M
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  (42) max,rpmin,r uΘHu ≤≤
 

 ,   (43) ( )T
pklp ΘΘ = ( )[ j

j

T
rejjpkl λMMΘ ∑ +∇= ϕ ]

 

 ,   ( ) T
j,klj λ=λ 0≥j,klλ  (44) 

 
Let us consider the contents of the mathematical 

model (37)–(44) assigned for the plate optimization prob-
lem. The components of the vector  are 
the areas of finite elements of the plate discrete model. 
Though objective function (37) matches with the expres-
sion (34), there is no meaning of physical energy dissipa-
tion rate in the problem (37)–(44). This meaning “returns” 
if the stiffness conditions (42)–(44) are ignored in the 
mathematical model (37)–(44). Then the cyclic-plastic 
collapse conditions are obtained for optimization problem 
(34)–(36) (criterion (38) ensures only statically admissible 
residual bending moments  at cyclic-plastic collapse 
time and also minimizes the value of complimentary de-
formation energy). 

T
s )L,...,L,L( 21=L

∗
rM

 The main unknowns on the problem (37)–(44) are 
vectors of limit  and residual  bending moments 
and the vector plastic multipliers  ( ). The vectors 

,  are known in advance and describe the 
variation of the residual displacements . As it was men-
tioned above, in case of constraining the total displace-
ments the stiffness conditions (42) take the following form: 

0M rM

jλ Jj ∈

min,ru max,ru

ru

 
 ,    (45) rinf,emin uuu +≤ maxrsup,e uuu ≤+
 
here the plate residual displacements are defined via 

. pr ΘHu =
 However, the mathematical model (37)–(44) 
strictly speaking is not exhaustive (entirely completed). 

1. Thought when solving auxiliary problem (38)–
(40) plastic multipliers  can be obtained (Eq. (20)): λ

( ) 1T∇ ∇ ∇ ∇
−

=λ ϕ ϕ ϕ F ), the fact that these multipliers are 

obtained is not well-defined. The relation between residual 
bending moments  and plastic strain  (i.e. plastic 
multipliers ) was not employed in the mathematical 
model (37)–(44) as it is given in the formula (22). 

rM pΘ
λ

2. Residual displacements (deflections)  at shake-
down vary nonmonotonously. In other words, shakedown 
state (42) can be reached when the distribution of residual 
displacements is not unique. It is especially relevant for the 
beam structures and partially relevant for the plates too. 

ru

 Thus, there can be several variants of the mathe-
matical model to determine optimal distribution of plate 
parameters. The decision which should be applied depends 
on mathematical programming experience of the re-
searcher. 
 
4.2. Determination of variation bounds of residual dis-

placements 
 
 Residual internal forces  emerge under the 
influence of elastic-plastic strains in adapted structure. 

These internal forces ensure that new plastic strains  
will not develop from load variation. In general case the 
distribution of internal forces  of the adapted structure 
is not unique: it depends on the particular loading history. 
The residual displacements  depend on this history too. 
For the plastic strains, emerging moment at the j-th design 
section, the following dependency is valid 

rM

pΘ

rM

ru

 
 0=klϕ ,   0=j,klj,klλ ϕ ,   0>j,klλ  (46) 
 
 The value of plastic multiplier 0>j,klλ  varies 
during subsequent deformation process when slackness 
conditions (46) are satisfied, but remains the non-zero 
value till the end of loading process. During the plastic 
deformation process an unloading phenomenon of the 
cross-section is possible: at some deformation stages yield 
condition is satisfied as equality, i.e. 0=j,klϕ  for - th 
cross-section, in subsequent deformation stages it changes 
to inequality 

j

0>j,klϕ . So slackness conditions (46) are 
violated 0=klϕ , 0=j,klj,klλ ϕ , . At the solitary 
instance when the state of the structure is near cyclic-
plastic collapse the distribution of residual internal forces 

, obtained by solving the problem (10)–(13), is unique 
for each of the loading histories . How-

ever the distribution of residual displacements  still can 
be nonunique. Such a proposition is predetermined by the 
above-mentioned unloading phenomenon of the sections 
and the variation of nonmonotonous residual displace-
ments during loading process [19]. Minimum and maxi-
mum values of displacement vectors , , these 
being not related to the time 

0, >λ jkl

*
rM

( ) supinf t FFF ≤≤

ru

inf,ru sup,r  u
t , are introduced for the 

evaluation of nonmonotonous variation of the residual dis-
placements. The displacements bounds vectors *

inf,ru , 
*

sup,ru  are obtained by analyzing the all possible loading 
histories ( )tF . Meanwhile the vectors ,  are 
rather approximate comparing with safe bounds of residual 
displacement, defined by  

inf,ru sup,r  u

 
 ∗≤ inf,rinf,r uu ,    sup,rsup,r uu ≤∗  (47) 
 
 Further the mathematical model of bounds deter-
mination of residual displacements variation is formulated 
as the mathematical programming problem. The objective 
function of the problem depends on plastic strains, the con-
straints of this problem represent the static and kinematical 
admissibility conditions of residual displacements and 
strains.  
 The first problem. The components , 

 (
inf,ri

~u

sup,ri
~u m...,,,i 21= ) of the vector of kinematical residual 
displacements  are obtained via the solution of the fol-
lowing linear mathematical programming problem 

ru

find 
 

 ,    (48) ⎥
⎦

⎤
⎢
⎣

⎡
=

inf,ri

sup,ri
i u~

u~~~
min
max

λH mi ...,,2,1=
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subject to 
 

 ∗= rrλ
~ MBλB ,   0≥λ~  (49) 

 

 max
T D~~~

≤Cλ  (50) 
 

This mathematical model corresponds to fictitious 
structure, i.e. the displacements ,  at shakedown 
state “envelope” the displacements  of the given struc-

ture [19]. The distribution of residual internal forces  
for this structure is unique for any of loading histories 

. Unknowns of the problem (48)–(50) 

are the components of 

inf,r
~u sup,r

~u

ru
∗
rM

( ) supinf t FFF ≤≤

ζ - size vector λ~ , keeping in mind 

that the vectors , ∗
rM C~  and the value  are known. 

Further the solution algorithm of mathematical model 
(48)–(50) will be discussed in more details. 

maxD

 Thus, the vector  of the initial system defined 
by the limit bending moment vector  is obtained for the 
known RVL bounds , . Further, having introduced 

the new plasticity constants vector 

∗
rM

C
infF supF

C~ , a fictitious system 
is constructed. The vector C~  shows that one yield condi-
tion for the i -th plate design section is active, i.e. at least 
one condition is satisfied as a strict equality: 

. The limit bending mo-

ment 

( 0=+ )= rklj,eklklkj,kl MMC~ϕ − f

kC~ , corresponding to design section of the fictitious 
plate, is calculated by the following formula 
 
 ,   ,    (51) ( ) 0≥+= *

rejk maxC~ MMf Kk ∈ Jj ∈
 

The vector of elastic internal forces  of the 

yield conditions , which are 

satisfied by equality (51), and the vector C

*
ejM

0≥−= klkl
T
klkkl C MΠMϕ

~  are defined 
simultaneously. Then the following equality is valid 
 
  (52) ( *

r
*
ejkC~ MMf += )

 
It means that unloading phenomenon of the ficti-

tious elastic-plastic system sections will not occur for any 
loading history  within load variation bounds 

.  
( )tF

( ) supinf t FFF ≤≤

 The upper bound of dissipated energy maxD~  dur-
ing the shakedown process is obtained according to the 
optimal solution of the problem (14)–(16). The dissipated 
energy  also can be calculated applying the formula 
suggested by Koiter [24]. However, the method of ficti-
tious structure allows evaluating the residual displacements 
variation bounds ,  more exactly comparing 
with the ones obtained via Koiter’s global conditions.  

maxD

inf,r
~u sup,r

~u

 The matrix H~  employed in the objective function 
(48) is calculated according the formula 

. The equalities (49) ( * *
ek rk∇⎡= +⎣H Η M Mϕ 

  (53) ∗= rrp MBΘB
 

They are obtained by eliminating the residual dis-
placements  from the geometrical equations (15). Aim-

ing to create the matrices 
ru

B  and  the matrix  is 
divided into two sub-matrices, namely: quadratic matrix 

 (for which exist inverse matrix) and the rest part, de-
noted via . The same operation (decomposition into 
two parts) is performed for the flexibility matrix 

rB
TA

TA′
TA ′′

D  and 
the vector of plastic strains . Compatibility equations of 
geometrical strains and residual displacements then read 

pΘ

 
  pr

T
r

T ΘMDuA ′+′=′
 

  pr
T

r
T ΘMDuA ′′+′′=′′

 
The expression , being 

derived from the first equality, and the unit matrix 
( ) ( )pr

T
r ΘMDAu ′+′′=

−1

I  are 
introduced into the second equality. So, the equality (53) is 
obtained, where the matrices B  and  are expressed by rB
 
 ( )( )IAAB −′′′=

−
,

1TT  
 

 ( ) DDAAB ′′+′′′′−=
−1TT

r  
 
 The optimal solution of problem the (48)–(50) is 
vector 0≥∗λ~  components. This is another approach dif-
ferent to the one of the problem (14)–(16), may not repre-
sent the physical meaning of plastic multipliers.  
 The second problem. The principle of comple-
mentary energy minimum and the compatibility equations 
(53) for strains of elastic-plastic system are adequate. 
Thus, the problem of residual displacements variation 
bounds can be analyzed by applying the basic solution vec-
tors  of the strain compatibility equations 0≥0λ
 
  (54) ∗= rrλ MBλB 00

 
Basic variables 0≥′0λ  of the vector  can be deter-

mined according to the formula . Here 

quadratic 

0≥0λ

( ) ∗−∗′=′ rrλ MBBλ
1

0

( )00 kk ×  matrix  is the sub-matrix one of 

. If determinant of the matrix  is equal to zero, the 

statically determinate system corresponding to  is 
geometrically unstable. Generally, the number 

∗′λB
∗
λB

∗′λB
∗′λB

η  of the 

combinations, those constructing the sub-matrices , 
can be smaller or equal to 

∗′λB
( )[ !!! 00 kk/ − ]ζζ . After all λω  

vectors  (here subscript 0≥0λ λω  is omitted for vector 
) are found, selected are only satisfying energy condi-

tion (49) vectors. Denote the set of the vectors  
subscripts 

0λ
0≥ω,0λ

λ... ωω ,,2,1=  via Ω . The residual displace-
ments vectors  are calculated according to the follow-
ing formula 

ω,r0u
) ⎤

⎦
∗= rrλ

~ MBλB  correspond to the plate compatibility equa-
tions  
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 ,   ω,ω,r 00 λHu ∗= Ωω ∈  (55) 
 

The vectors ,  are constructed by pick-
ing components of all vectors  (

inf,ru sup,ru

ω,r0u Ωω ∈ ) with maxi-
mum and minimum values. It is easy to find that one of the 
vectors  will coincide with optimal solution 

 of the problem (14)–(16). Thus, it is possible to 
write a group of inequalities 

0≥ω,0λ

0≥∗λ

 
  (56) ( ) sup,rsup,rrinf,rinf,r

~t~ uuuuu ≤≤≤≤
 

The following sequence of inequalities is obtained 
taking in to account the inequalities (47) 
 

 ( ) sup,rsup,rinf,rrinfr,inf,rinf,r
~t~ uuuuuuu ≤≤≤≤≤≤ ∗∗  (57) 

 
The residual strains compatibility equations (49) 

 

 ∗= rrλ
~ MBλB ,   0≥λ~   

 
which are included in constraints of the residual displace-
ments variation bounds of the optimization problem (48)–
(50), can be obtained applying the formulae rp MΘG = , 

 and the matrix 

. Then 

( )[ j
j

T
rejjpkl

~λMMΘ ∑ +∇= ϕ ]

( ) DDAAB ′′+′′′′−=
−1TT

r
 

 ( )[ ] *
r

T* ~ MλMG =∇ϕ  (58) 
 

 ( )[ ] *
rr

T*
r

~ MBλMGB =∇ϕ  (59) 
 

Then strain compatibility equation is obtained by 
 

 ∗= rrλ
~ MBλB   

 

here matrix . ( )*
T

λ r ∇∗ ⎡ ⎤= ⎣ ⎦B B G Mϕ

 It is possible to change the constraints (49) of the 
residual displacements variation bounds optimization prob-
lem (48)–(50) by the condition (58) 
 

 ,   ( )* *
T

r∇⎡ ⎤ =⎣ ⎦G M λ Mϕ 0≥λ~  (60) 
 
having eliminated the linearly dependent equations in ad-
vance. However, it is more practical to use the compatibil-
ity equations of the residual strains (49): physical meaning 
of the second problem of residual displacements variation 
bounds ,  determination becomes then evident. 
Both the vectors ,  and ,  can be 
incorporated into stiffness constraints (57) of mathematical 
models of the optimization problem. 

inf,ru sup,ru

inf,ru sup,ru inf,r
~u sup,r

~u 

 
4.3. The modified model of optimization problem 
 
 The model is similar to that of (37)–(44), only the 
member ,  is intro-
duced into the condition (42) 

λH ~~minu iinf,ri = λH ~~maxu isup,ri =

find 

  (61) 00 MLT

k
kk minMLmin =∑

 
subject to 
 

 r
T
rrkk

k

T
rk minmin MDMMDΜ

2
1

2
1

=∑  (62) 
 

 0=rMA  (63) 
 

( ) ( ) ( ) 02
0 ≥++−= rklj,eklkl

T
rklj,eklkj,kl M MMΠMMϕ  (64) 

 

  (65) 00 ≥kM
 

 max,rpmin,r uHΘu ≤≤  (66) 
 

 ( )T
pklp ΘΘ = ,    (67) ( )[ ] j

j

T
rejjpkl λMMΘ ∑ +∇= ϕ

 

 ( ) T
j,klj λ=λ ;  0≥j,klλ ,  ,  ,  Kk ∈ Ll ∈ Jj ∈  (68) 

 

 λH ~~minu iνinf,ri = ,   λH ~~maxu iνsup,ri =   

 m...,,,i 21=  (69) 
 

 ∗= rrλ
~ MBλB ,   max

j

T
j D~~~

≤∑ Cλ ,   0≥λ~  (70) 

 

 inf,rmin,r uu ≤ ,   max,rsup,r uu ≤  (71) 
 
 The shortage of this model is that it is the verifi-
cation one: in fact the cyclic-plastic collapse problem (34)–
(36) is analyzed, but as distinct from the optimal bending 
plate project, there are verified the stiffness conditions (42) 
or (69)–(71) of certain accuracy at cyclic-plastic collapse 
(in each Rosen algorithm step). In other words, the main 
solution of the optimization problem is not directly influ-
enced by stiffness conditions.  
 One must note, that when applying the nonlinear 
Mizes yield condition, the residual bending moments have 
influence to the matrix   

depending on  ( , 

G ( ) KAKAKAKAG −=
−1TT

rM pr ΘGM = ( ) T
pklp ΘΘ = , 

== ∑
j

j.klklj,klpkl λ MΠΘ 2 ( ), ,

T

kl j kl j kl j,∇ϕ⎡ ⎤
⎣ ⎦M λ ). Here 

 and A K  are the equilibrium and physical matrices, re-
spectively. Thus, the residual bending moments and dis-
placements matrices G  and H  are determined standing 
behind of one iteration of analysis problem. 
 The first modified model of optimization problem 
is solved by stages (the solution algorithm scheme is pre-
sented in Fig. 1) freely introducing the objective function 
(37) variation step.  
 
4.4. Numerical example of iterative solving algorithm of 

the plate optimization problem 
 
 Let discuss the features of the algorithm of the 
analysis problem (61)–(71). One can find that the problem 
(61)–(71) is not a classical mathematical programming 
problem. Its composition includes the separate quadratic 
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programming problem (62)–(64) corresponding to analysis 
problem (10)–(13) for the residual bending moments . 
The distribution of optimal parameters of plate at cyclic-
plastic collapse will be obtained differently (without an 
employing he constrains (66)–(68) and (69)–(71)). 

rM

 Obviously the solution of the problem (61)–(71) 
is not reached per one iteration. Thus, one of the possible 

solution ways of plate optimization problem under pres-
ence of stiffness constraints is application of an iterative 
solving.  
 An application of iterative algorithm the problem 
(61)–(71) solving is presented via numerical solution of 
plate (see Fig. 1).  
 The circular plate of radius , sup-m.R 090=

 

Objective function
step is determinate
by the increment

Initial data introducing
 and forming

Choise of objective function
increment ΔD ν

Admissible objective
 function decrease

bound

      Analysis problem at shakedown (62)-(64)

                      To find:
To resolve:                    ,

Start stage 1=ν

At least one condition

satisfied as equality?

λH ~~u iminri min , ≤

max,rii u~~
 max ≤λH
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∑
ν

νΔD
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νDΔ

No
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No

Yes
1+=νν

Optimal solution

r
T
r MDM

2
1min

 Plate parameters optimization problem (61)-(71)

                       To find:
To resolve: plate physical matric, elastic solution

∑∑ ==
ν

νT

k
kk DML Δminminmin 00 ML

ν
k0M

00 MM =ν
k

Are stiffness constraints

violated?
maxrpminr  , , uHΘu ≤≤

νν ∗∗
rr λM ,

( )T
pklp ΘΘ = ( )[ ] j

j

T
pkl λMΘ ∑ ∗∇= ϕ

pr ΘHu =∗ν

νDΔ

*
k0M  

 

Fig. 1 Iterative solving algorithm of the plate optimization problem 
 
ported via hinges per outer contour is under considered 
(see Fig. 2). The material of the plate is steel (material 
physical   properties  are  presented  in Fig. 2). Plate is sub- 

jected by symmetrically and uniformly distributed loading 
 and uniformly distributed bending moment q M , applied 

at the plate outer contour. 
 

yσ  210 [MPa]  

E 210 [GPa]  
ν  1/3 - 
h 0.03 [m]  
R 0.9 [m]  

infq  100 [kN/m2] 

supq  95 [kN/m2] 

h

M Mq

RR

infM  36.25 [kN] 

 
Fig. 2 Plate load diagram and initial data 
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 The initial plate cross-section height is 
. Elastic bending moments ,  of 

the plate initial cross-section are calculated applying the 
internal forces matrix  of elastic analysis. Then 

, . When the total in-

ternal forces at the yield conditions (64) are calculated the 
elastic bending moments , being distributed at the con-
tour, are treated subsequently as constants.  

eMm030.h = min,eM max,eM

 Optimal solution of the problem is presented in 
the last row of the Table.  

α
minminmin,e qαM = maxmaxmax,e qαM =

 
         Table 

Convergence of the limit bending moments (kN) of plate elements  
 

1,0M 2,0M 3,0M 4,0M 5,0M 6,0M      
0ML

TSTAGE  

1=ν  53.06 52.77 52.53 52.29 52.05 51.81 132.78 

2=ν  52.92 52.18 51.40 49.80 48.85 47.90 125.93 

3=ν  52.91 52.10 51.35 49.74 48.43 47.39 125.21 

4=ν  52.87 51.91 51.23 49.61 47.39 46.11 123.40 

5=ν  52.77 51.71 51.07 49.39 47.08 44.23 121.52 

6=ν  52.37 51.56 50.65 48.72 46.02 42.64 119.07 

 
9. Tin-Loi, F. Optimum shakedown design under residual 

displacement constraints.-Structural and Multidiscipli-
nary Optimization, 2000, v.19, p.130-139. 

5. Conclusions 
 
 The mathematical model of flexural plate optimi-
zation problem at shakedown conjoins the verification 
problem for plate analysis and the verification of stiffness 
conditions. Algorithms for the solution of two problems 
are presented in current investigation. The more exact re-
sults are obtained when plastic multipliers as the main un-
knowns are introduced. It is evident that the suggested and 
subsequently developed algorithms for solving the investi-
gated class of problems should be introduced into the soft-
ware for the analysis of object-oriented structures. 

10. Aliavdin, P. V. Limit Analysis of Structures under 
Variable Loads.- Minsk: UP Technoprint, 2005.-282p. 
(in Russian). 

11. Atkočiūnas, J., Jarmolajeva, E., Merkevičiūtė, D. 
Optimal shakedown loading for circular plates.-
Structural and Multidisciplinary Optimization, 2004, 
v.27, No3, p.178-188. 

12. Atkočiūnas, J., Rimkus, L., Jarmolajeva, E. Shake-
down loading optimization for circular plates.-Metal 
Structures–Design, Fabrication, Economy. Proceedings 
of the International Conference on Metal Structures-
ICMS-03. Miscolc, Hungary, April 3-5, Rotterdam: 
Millpress, 2003, p.251-258. 
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J. Atkočiūnas, L. Rimkus, V. Skaržauskas, E. Jarmolajeva 

PLOKŠČIŲ OPTIMIZAVIMAS PRISITAIKOMUMO 
SĄLYGOMIS 

R e z i u m ė 

 Straipsnyje nagrinėjamos tampriosios plastinės 
lenkiamos metalinės plokštės, veikiamos kintamos kartoti-
nės apkrovos. Plokštės geometrijos forma yra žinoma, ap-
krova apibūdinama tik viršutinėmis ir apatinėmis nuo laiko 
nepriklausančiomis kitimo ribomis. Ieškoma optimalaus 
plokštės projekto, atsižvelgiant į plokštės stiprumo ir stan-
dumo reikalavimus. Optimizuojamais parametrais laikomi 
ribinis plokštės momentas ar būdingas skerspjūvio mat-
muo. Siūlomas naujas iteracinis prisitaikančių lenkiamų 
plokščių optimizavimo uždavinių apytikrio sprendimo al-
goritmas, kurio pagrindas yra Rozeno projektuojamųjų gra-
dientų metodas. Tuo tikslu sudarytas lenkiamos plokštės 
prisitaikomumo būvio įtempių ir deformacijų skaičiavimo 
(analizės) uždavinio statinės formuluotės matematinis mo-
delis. Siūlomas algoritmas iliustruojamas apvalios plokštės 
optimalaus projekto uždavinio sprendimu. Tyrimai atlikti ir 
skaitinių eksperimentų rezultatai gauti, laikantis mažų po-
slinkių prielaidos. 

J. Atkočiūnas, L. Rimkus, V. Skaržauskas, E. Jarmolajeva 

OPTIMAL SHAKEDOWN DESIGN OF PLATES 

S u m m a r y 

In this paper the optimal shakedown of perfectly 
elastic-plastic bending metallic plates with strength and 
stiffness constraints are considered. The geometry of the 

plate and its acting variable repeated load are known. Here 
optimal distribution of limit bending moments or charac-
teristic dimension of cross-section for adapted bending 
plate is to be found. In the paper a new iterative approxi-
mate solution algorithm based on Rosen project gradient is 
proposed for optimal shakedown design of the plates. 
While solving the static formulation of the analysis prob-
lem their dual (kinematic formulation) solution is deter-
mined by using the Rosen criterion mathematical-
mechanical interpretation, which is explained before by the 
authors. The solution algorithm is illustrated by the nu-
merical example of optimal project calculation of circular 
plate. The investigations are performed and results of nu-
merical experiments are obtained according to assumptions 
of small displacements. 

Ю. Аткочюнас, Л. Римкус, В. Скаржаускас,  
Э. Ярмолаева 

ОПТИМИЗАЦИЯ ПЛАСТИН В УСЛОВИЯХ 
ПРИСПОСОБЛЯЕМОСТИ 

Р е з ю м е 

Рассматриваются идеально упруго-пластичес-
кие металлические пластины заданной геометрии под 
действием повторно-переменной нагрузки. Нагрузка 
характеризуется только независящими от времени 
верхними и нижними пределами ее изменения. Задача 
оптимизации параметров пластины реализуется при 
наличии как прочностных, так и жесткостных ограни-
чений. Оптимизируемые параметры – предельные уси-
лия изгибаемых пластин либо характерный размер се-
чения. Предлагается новый итерационный алгоритм 
решения проектной задачи оптимизации пластин в ус-
ловиях приспособляемости с использованием алго-
ритма проектируемых градиентов Розена. С этой це-
лью строится математическая модель задачи опреде-
ления напряженно-деформируемого состояния изгиба-
емых пластин (задача анализа) в статической формули-
ровке. Предлагаемый алгоритм иллюстрируется при-
мером решения задачи оптимизации круглой пласти-
ны. Пластина рассчитывается в соответствии с упро-
щенной технической теорией вместе с предпосылкой о 
малых деформациях.  
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