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1. Problem formulation

Elastic-plastic steel bending plate subjected to a
repeated variable load (RVL) is considered in this paper.
RVL is the system of loads the each of which can inde-
pendently vary within the prescribed bounds. Ideal elastic-
plastic construction subjected by afore mentioned load can
lose its exploitative suitability due to failure caused by
progressive plastic and/or alternating straining. Usually
both cases are denoted as cyclic plastic collapse. Note that
structure can adapt to repeated variable load and subse-
quently response to RVL in elastic range. Shakedown
analysis via numerical and mathematical programming
methods of elastic-plastic any complexity structure, sub-
jected to RVL is relevant for civil engineering. This is con-
firmed by the growing number of investigations in this
field [1]. However one can find only several works con-
cerning optimization of adapted structures. Therefore cur-
rent investigation is actual.

The solution of structure optimization problem at
shakedown is complicated because stress-strain state of
dissipative system (e.g. the plate plastic deforming) de-
pends on loading history [1-12]. The optimization problem
is stated by involving extreme energy principles and meth-
ods of mathematical programming theory. New iterative
algorithm of problem approximate solution for adapted
flexural plates optimization based on Rosen project gradi-
ent method [13] is proposed in this paper. A mathematical
model in static formulation is constructed to determine
shakedown stress-strain state of flexural plates. The dual
problem solution (kinematical formulation of the problem)
is obtained by applying mathematical-mechanical interpre-
tation of Rosen criterion. This methodology previously
was explained by authors in [14].

The problem of determining optimal distribution
of plate parameters at cyclic-plastic collapse is considered
as a separate case of optimization at shakedown state. The
relationship between afore mentioned mathematical mod-
els and iterative Rosen algorithm is employed to develop
an approximate method for the solution of optimization
problems.

2. Plate analysis problem

2.1. Plate discrete model, main equations and relationships

A discrete model is derived dividing the plate into
s finite elements, every of which contains s, nodal points

[15, 16]. Thus the total sections number of plate discrete
model is ¢ =sxs, . So, yield conditions will be verified in

aforementioned nodal points. Stress-strain field of discrete
model is described by 7 -size vectors of bending moments

and strains M =(M,M,,...M,)" 0=(0,0,..0,),

respectively.

Let the degree of freedom of the plate equilibrium
finite element to be denoted via m. Then equilibrium
equations taking into account boundary conditions pre-
sented in the general form are

YA M, =F or AM=F )
k

k=12,.,5s; kekK

here the size of the matrix of equilibrium equations coeffi-
cients A is (mxn), where n is total number of vector

components vector of internal forces M .
Geometrical equations for separate finite element
read

Alu-DM, =0, kek 2
then for the whole discrete system one obtains
A"u—-DM =0 3)

here D is nxn size matrix of elemental flexibilities D,

of the plate discrete model; uz(u,, u,, .., um)T is dis-

placement vector.
Huber-Mizes nonlinear yield condition reads: for

rectangular plate M — M, M,, + M}, +3M} <M} ; for
circular plate M, —M M,+M; <M, . Yield conditions

are verified at all design sections of the plate (i.e. at every
element node)

@k/zck_MkT/HuMklZOs Ck:(MOk)2 4)
k=12,.,s; [=12..s,

here M, is limit bending moment assumed to be constant
per finite element area. Steel plate of continuous cross-

section is analyzed. Then M = %O'yh2 , where A denotes



plate thickness, o, denotes yield limit. Matrix of coeffi-

cients of the yield condition (4) for rectangular plate reads

1 -0.5
-0.5

0
0

Hkl

0

here (M,;,M,, denote bending, M,, denote torsion). As
only radial M, and circular M, moments describe the

stress state of circular plate, the matrix I7,, is simplified

1 -0.5
-0.5 1

I, =

Mostly the variable repeated load F(¢) is defined

not via particular loading history but only by constant
bounds F,,, F,, of the upper and lower load variation.

sup ?
Then F,, <F (t)<F wp - Optimization problems of adapted
plate is solved accounting only the load variation bounds.
Then the structure, undergoing plastic strains @, in the
early loading cycles, further adapts to the load. Residual
bending moments M, conditioned by plastic strains @,
ensure that the subsequent load variation does not cause
the development of other plastic strains. Here subscript e
denotes variables of elastic response, subscript » denote
residual internal forces, strains and deflections.

Then employing the aforementioned definitions
the vector of total moments M, (see yield conditions (4))

and taking into account elastic moments M ,, (t)) reads
M, (t)=M,, )+ M,,, k=12,.,s; =125, (5

here M, (t)=aF (t) is valid for the whole plate discrete
model, a is the matrix of elastic response under bending
moment influence. The m-size volume of variation of
elastic internal forces M., (1) taking into account possible

combinations (the total number of them p=2") of loads
F, ., F

inf 2 sup

hedron. Denote the apexes of polyhedron via M

is bounded by the convex and symmetric poly-
¢
j=L2,.., p; jeJ.Omitting the detailed investigation
of loading history the yield conditions finally take the form

Py, = Gy _Mle,ijz Mkl,j 20 (6)
M, =M, +M,
k=12,.,s; [=12,...,8,; j=L2,..,p

It is convenient to pick out the residual bending
moments M,, the displacements u, and the strains

O, =DM, +6, when analyzing the structure at shake-

down. The equilibrium (1) and geometrical (3) equations in
this case read

> AM, =0or AM, =0 @)
k
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and
A'u. =DM, +0, (®)

here the components of the vector of plastic strains

(0] b= (@ p,d)Tare obtained by
O =X Vou, (M, +M,y) |2, )
2,20
k=12,..,s; I1=12,..,5,; j=1L2,..,p

here 4, ; is the plastic multiplier, Vo is the gradient ma-

trix of yield conditions [17].
2.2. Mathematical model of analysis problem

The calculation of residual internal forces and
strains of adapted plate for given RVL F, . < F (t)< F  is

inf — = % sup
analyzed in the section. The plate parameters, including the
limit bending moments M, (k € K ), are prescribed val-

ues.

The problem in static formulation represents the
minimum complementary energy principle reading: of all
statically admissible vectors of residual bending moments
M, at shakedown is the minimum complementary energy
corresponding one. The problem mathematical, model

stated on the basis of above-mentioned principle, reads
find

min %ZM;DkM,k —d (10)
k
subject to
Z[Ak]Mrk:O an

k

ou, =G, _(Mekl,j +Mrk/)THk/(Mekl,j +Mrk/)20 (12)

Cy :(Z\/[oxc)2

k=12,.,s; I=12,...,s,, j=12,.. (13)
Conditions (11)—~(13) define a field of convex admissible
solutions of the problem (10)—(13). Plate bending limit

moments M, (M,, is considered to be constant in the

> P

finite element area) and bending moments of elastic re-
sponse M, ; are prescribed (known) values in the convex
mathematical programming problem (10)—(13).

The optimal solution M, of the problem (10)-

(13) is unique, i.e. the aforementioned residual bending
moments ensure the plate adaptation to the fixed RVL

F, < F(t)< F,,, . The yield conditions for optimal solu-
tion M, satisfied as equalities, are denoted to be the ac-

tive conditions.
The dual problem to the problem (10)—(13) reads
find

max {_%ZM;DkMrk _ZAJ[V?/‘ (Mff +Mr)}M, -
P j



_ZZ;[C—fj(MejJer”} (14)

subject to
DM, + X[ Vo, (M, +M,) ] 2,~A"u =0 (15)
J

420,

J

kek, jeJ (16)

here
fj(Mej +M"):[F(Mej +MV)]H(Mej +M") (17)

I', Il are the quasi-diagonal matrices.

The problem (14)—(16) corresponds the following
energy principle: of all kinematically admissible residual
displacements the vector u, at shakedown is the minimum
total potential energy corresponding one.

The optimal solution of problem (14)—(16) are the

vectors M, u; and Z;. The maximum value of dissi-

pated energy at shakedown is expressed by

D,, = ZlfMo (18)
J

The plate residual strains @ =DM, +@,
(strains 0; are calculated by formula (9)) and residual

displacements u at shakedown can be nonunique: they
depend on certain loading history F (t) Thus, if the struc-

tural load is described only by it’s variation bounds F,,,

F,,, the identification of exact residual displacements val-

ues becomes problematic. This is conditioned by non-
monotonic variation nature of aforementioned values at
shakedown process.

2.3. Rosen algorithm and dual solution of analysis problem

The mathematical and mechanical sense of Rosen
design gradient algorithm optimality criterion, reading

{I—VT¢( VoV e )_1\7(0}‘7%:0 (19)

(Vov’e )71 VoV.7 >0 (20)

was explained in investigation [14]. In (19)—(20) the rela-
tion V.# denote the gradient of the objective function
(10). The equations (19) represent the compatibility equa-
tions of residual strains. The relations (20) represent the
vector of plastic multipliers 4 which is related with active
conditions of problem (10)—(13).

On the other hand the paper [14] proved that
Rosen optimality criterion corresponds the Kuhn-Tucker
conditions for the minimization problem (10)—(13). Thus,
when solving analysis problem in static formulation (10)—
(13) for adapted plate one simultaneously obtains the op-

timal solution M of the primal problem and the optimal
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solution M, u;, A; (jeJ) of the dual problem (14)-
(16).

2.4. Residual displacements and influence matrices for
bending moments

As the plastic strains @, are known one can cal-
culate the residual displacements #, and the bending mo-

ments M, . Here the influence matrices H and G are
introduced [18, 19]

u,=(AD"4") " 4DO,=paD "0, -

=a'0,=HO, 1)

_ -1 _
M,=(D"4"p4D" -D")0, =GO, 22)

where f is displacements influence matrix of the plate

elastic response. Matrix G is singular, i.e. it’s inverse ma-
trix does not exist.

Total displacements and internal forces of the
plate subjected by RVL are calculated applying the formu-
lae

u(t)=u,(t)+u, = pF()+ HO, (23)
M(t)=M,()+ M, =aF(t)+GO, (24)
Extreme elastic displacements u, ,,,, u,,, can

be calculated applying the formulae
Moy = BupFop + By Fiy (25)
Uy ig = By + By (26)

The components of the matrix g, are the ele-

ments S, >0 of the matrix f. Note that the components

of the matrix g, satisfy conditions g, <0
(ﬂ = ﬂsup +ﬂinf )
Total extreme displacements then read
u.&'up = ue,.yup ur, sup (27)
uirgf = ue’, inf + ur, inf (28)

Taking into account that residual displacements
u, (t) in the loading process can vary non-monotonously

one obtains

u,, <ul(t)<u (29)

r, sup

Creation of residual displacements vectors u

rinf 2

u is exhaustively explained in the [11, 17]. Plate total

r, sup

bending moments are calculated applying the formula
M,=M,,+M,, which was already employed in the

mathematical models (10)—(13), (14)—(16).



3. Optimal bending plate project: cyclic-plastic collapse

An optimal bending plate project is to be found
for prescribed RVL and plate geometry. Let us assume that
the price of the plate material volume, summarized from
the area unit of the middle plane of the plate and the limit
bending moment M, are directly proportional values.

Then the theoretical plate price is

w(Mo)=Z(/’kaM0k=LTMo (30)
3

here ¢, is scalar function of the limit bending moment
unit, A, is the area of the k-th finite element at middle

surface, L=(L,,L,,..,L,)" is the vector of weight ratios

of the optimality criterion. For the homogeneous plate
@ = const . In our calculations it was taken the ¢, =1. The

components of the vector L become proportional to the
areas of plate discrete model elements. Then, estimating
the optimality criterion the expression (30) can be rewrit-
ten by

min a)(MO)zmin L'M, (€28

The admissible and sufficient construction of op-
timality criterion condition is the constancy of the energy

dissipation velocity D per unit volume of the construction
(basing on Prager and Shield’s work [20]). Then

D —const, k=12...5 (32)
Zk:¢kAkM0k
from here
D=aY p A M, =al'M,=A"M, (33)
k

where A is intensities vector of plastic strains velocities.
The minimal value of the linear function (33), physically
meaning the energy dissipation rate, is reached on the edge
of admissible solutions field. Project problem formulation
is based on the principle of cyclic plastic collapse reading:
of all statically admissible residual bending moments M,

at cyclic plastic collapse the actual is the one correspond-
ing to the minimum cycle energy dissipation rate

D=A"M o [21]. The optimization problem mathematical

model following the above-mentioned principle reads
find

min Y A My, =min Y LM, (34)
k k
subject to
2 AM, =0 (35)
k
2 T
D = (MOk) _(Mekl,j +Mrkl) Hkl(Mekl,/ +Mrk1)2 0 (36)
k=12,..,s; I=1,2..,s:; j=L2,..,p
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Unknowns of the problem (34)—(36) are the vec-
tors of limit M,=(M,, M,,,.., M, )" and residual

M, bending moments. Optimal solution further is denoted

via M; and M . Cyclic-plastic collapse corresponds to

progressive or alternating plastic failures. Actual failure
case can be defined by analyzing the solution of the opti-
mization problem in kinematical formulation (due to plas-

tic multipliers vector i/ , j €J). Bending moments at the

cyclic-plastic collapse may not satisfy the criterion (10),
ie. %M,*D M > a" . Thus, one can meet a case of cyclic-

plastic collapse with existing elastic fields where plastic
strains velocities @'p =0. The theorem of the cyclic-

plastic collapse, on the basis of which is constructed the
mathematical model (34)—(36), does not require a satisfy-
ing of the criterion (10).

The plastic multipliers velocities can be obtained
directly by applying the Rosen project gradient method for
the problem (34)-(36) analysis. The type of collapse is
identified having performed analysis of the solution [19].
The mathematical model (34)~(36) subsequently will be
incorporated into structural unit of the iterative algorithm,
developed for approximate analysis of adapted bending
plate optimization problem.

4. The problem of plate parameters distribution at
shakedown

4.1. Mathematical model of the problem

The adapted plate satisfies strength (yield) condi-
tions and is safe in respect to cyclic-plastic collapse [22].
However, residual displacements u, can exist in the plate

with developed plastic strains, even if loading is equal to
zero. Sometimes residual displacements can be signifi-
cantly large even causing exploitation unsuitability of the
structure (indeed in most cases the total deflections
u=u,+u, should be verified). Therefore it is important

to define not only the stress state but also the strain state of
the flexural plates at shakedown. The main mathematical
models, constructed for optimization problems with
strength and stiffness constraints at shakedown, are pre-
sented in the paper [23]. On the basis of these models the
following mathematical model for determining optimal
distribution of the parameters of adapted plate is con-
structed

find

min Y LM, = min L'M, 37

k
subject to
1 T I G
min EZMrkaMrk =min EMVDMV (39)
k
AM . =0 (39)

Puj = (Mok)2 _(Mekl,j + Mrkl)THkl(Me/d,' + Mrkl)z 0 (40)

J

M, >0 (41)



u (42)

r, min

i SH@pSu

0,= (@pkl)T’ 0 :Z[V¢’./ (Me.f + Mr)] T'l./ (43)
J

A =

J

(h))"s A, 20 (44)

Let us consider the contents of the mathematical
model (37)—(44) assigned for the plate optimization prob-

lem. The components of the vector L=(L,,L,,... L, )"

the areas of finite elements of the plate discrete model.
Though objective function (37) matches with the expres-
sion (34), there is no meaning of physical energy dissipa-
tion rate in the problem (37)—(44). This meaning “returns”
if the stiffness conditions (42)—(44) are ignored in the
mathematical model (37)—(44). Then the cyclic-plastic
collapse conditions are obtained for optimization problem
(34)—(36) (criterion (38) ensures only statically admissible

residual bending moments M at cyclic-plastic collapse

time and also minimizes the value of complimentary de-
formation energy).

The main unknowns on the problem (37)—(44) are
vectors of limit M, and residual M, bending moments

and the vector plastic multipliers 4, (j € J ). The vectors

u u are known in advance and describe the

r, min 2 r, max

variation of the residual displacements u, . As it was men-

tioned above, in case of constraining the total displace-
ments the stiffness conditions (42) take the following form:
u (45)

Su,etu,, U

min e, sup r
here the plate residual displacements are defined via
u =HO,.
However, the mathematical model (37)-(44)
strictly speaking is not exhaustive (entirely completed).
1. Thought when solving auxiliary problem (38)—
(40) plastic multipliers 4 can be obtained (Eq. (20)):

A= ( V¢VT¢) B VoV F ), the fact that these multipliers are

obtained is not well-defined. The relation between residual
bending moments M, and plastic strain @, (i.e. plastic

multipliers 1) was not employed in the mathematical
model (37)—(44) as it is given in the formula (22).
2. Residual displacements (deflections) u, at shake-

down vary nonmonotonously. In other words, shakedown
state (42) can be reached when the distribution of residual
displacements is not unique. It is especially relevant for the
beam structures and partially relevant for the plates too.

Thus, there can be several variants of the mathe-
matical model to determine optimal distribution of plate
parameters. The decision which should be applied depends
on mathematical programming experience of the re-
searcher.

4.2. Determination of variation bounds of residual dis-
placements

Residual internal forces M, emerge under the
influence of elastic-plastic strains in adapted structure.
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These internal forces ensure that new plastic strains @,

will not develop from load variation. In general case the
distribution of internal forces M, of the adapted structure

is not unique: it depends on the particular loading history.
The residual displacements #, depend on this history too.

For the plastic strains, emerging moment at the j-th design
section, the following dependency is valid
=0, Ay, Pu; =0, 4;,;>0

D (46)

The value of plastic multiplier 4,,, >0 varies

during subsequent deformation process when slackness
conditions (46) are satisfied, but remains the non-zero
value till the end of loading process. During the plastic
deformation process an unloading phenomenon of the
cross-section is possible: at some deformation stages yield
condition is satisfied as equality, i.e. ¢, ;=0 for j-th

cross-section, in subsequent deformation stages it changes
to inequality ¢, > 0. So slackness conditions (46) are

violated ¢, =0, 4, ,¢,, =0, Ay ; >0. At the solitary

instance when the state of the structure is near cyclic-
plastic collapse the distribution of residual internal forces

M, obtained by solving the problem (10)—(13), is unique
F, <F()<F,, . How-

for each of the loading histories F,, < p -

ever the distribution of residual displacements u, still can

be nonunique. Such a proposition is predetermined by the
above-mentioned unloading phenomenon of the sections
and the variation of nonmonotonous residual displace-
ments during loading process [19]. Minimum and maxi-
mum values of displacement vectors u u these

rinf > r, sup
being not related to the time ¢, are introduced for the
evaluation of nonmonotonous variation of the residual dis-
u

rinf >

placements. The displacements bounds vectors

—_—F
ur,sup

are obtained by analyzing the all possible loading

histories F(¢). Meanwhile the vectors u u

r, sup

rinf > are

rather approximate comparing with safe bounds of residual
displacement, defined by

W <u (47)

uninf < ur*,inf’ r,sup — r, sup

Further the mathematical model of bounds deter-
mination of residual displacements variation is formulated
as the mathematical programming problem. The objective
function of the problem depends on plastic strains, the con-
straints of this problem represent the static and kinematical
admissibility conditions of residual displacements and
strains.

The first problem. The components u

ri, inf >
u, ., (i=1,2,.., m) of the vector of kinematical residual
displacements u, are obtained via the solution of the fol-

lowing linear mathematical programming problem
find

(48)



subject to
B, i=BM , 720 (49)
i'Cc<D,, (50)

This mathematical model corresponds to fictitious

structure, i.e. the displacements &, ., u at shakedown

r, sup

state “envelope” the displacements u, of the given struc-

ture [19]. The distribution of residual internal forces M
for this structure is unique for any of loading histories
F,<F (t)S F,,, . Unknowns of the problem (48)-(50)

are the components of § - size vector 7, keeping in mind

that the vectors M, C and the value D,,.. are known.

Further the solution algorithm of mathematical model
(48)—(50) will be discussed in more details.

Thus, the vector M of the initial system defined

by the limit bending moment vector C is obtained for the
known RVL bounds F,,, F, . Further, having introduced

inf > * sup
the new plasticity constants vector C, a fictitious system

is constructed. The vector C shows that one yield condi-
tion for the 7 -th plate design section is active, i.e. at least
one condition is satisfied as a strict equality:

Ou; = Ek —Jfu (Mek,'j +M,,U)=0. The limit bending mo-

ment ék , corresponding to design section of the fictitious
plate, is calculated by the following formula

Co=max f(M,+M )20, kek, jeJ (51)

of the
yield conditions ¢, =C, — M/ I, M,, >0, which are

The vector of elastic internal forces M;

satisfied by equality (51), and the vector C are defined
simultaneously. Then the following equality is valid

C,=fm; +m;) (52)
It means that unloading phenomenon of the ficti-

tious elastic-plastic system sections will not occur for any
loading history F(¢) within load variation bounds

En/ < F(t) < Erup .

dur-

The upper bound of dissipated energy Bm
ing the shakedown process is obtained according to the
optimal solution of the problem (14)—(16). The dissipated

energy D, also can be calculated applying the formula

suggested by Koiter [24]. However, the method of ficti-
tious structure allows evaluating the residual displacements
variation bounds u u more exactly comparing

rinf > r, sup
with the ones obtained via Koiter’s global conditions.

The matrix H employed in the objective function
is  calculated  according the  formula

The (49)

(43)

H= H[ Vo (M*k +M, )J : equalities

e

B, A= B.M correspond to the plate compatibility equa-
tions
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BO,=BM; (33)

They are obtained by eliminating the residual dis-
placements u, from the geometrical equations (15). Aim-
ing to create the matrices B and B, the matrix A’ is
divided into two sub-matrices, namely: quadratic matrix
A'" (for which exist inverse matrix) and the rest part, de-

noted via A4”". The same operation (decomposition into
two parts) is performed for the flexibility matrix D and
the vector of plastic strains @, . Compatibility equations of

geometrical strains and residual displacements then read
A'u,=D"M, +0,

nT _ nT "
Au, =D""M, +0!

The expression u, = (A'T)fl(D'Mr +0'p), being

derived from the first equality, and the unit matrix I are
introduced into the second equality. So, the equality (53) is
obtained, where the matrices B and B, are expressed by

B=(ar(a7)" -1
B =-a"(4")' D+ D

The optimal solution of problem the (48)—(50) is

vector 4* >0 components. This is another approach dif-
ferent to the one of the problem (14)—(16), may not repre-
sent the physical meaning of plastic multipliers.

The second problem. The principle of comple-
mentary energy minimum and the compatibility equations
(53) for strains of elastic-plastic system are adequate.
Thus, the problem of residual displacements variation
bounds can be analyzed by applying the basic solution vec-
tors A, = 0 of the strain compatibility equations

B, A, =B.M; (54)

Basic variables 4, >0 of the vector 4, > 0 can be deter-
mined according to the formula A; = (B}f‘)fl B.M . Here
quadratic (koxko) matrix B," is the sub-matrix one of
B; . If determinant of the matrix B}" is equal to zero, the
statically determinate system corresponding to B" is
geometrically unstable. Generally, the number 7 of the
combinations, those constructing the sub-matrices B)",
can be smaller or equal to ¢! /[k, (¢ —k, )] . After all ,
vectors A, = 0 (here subscript @, is omitted for vector
4,) are found, selected are only satisfying energy condi-
tion (49) vectors. Denote the set of the vectors 4, , >0
subscripts @ =1, 2, .., w, via £2. The residual displace-

ments vectors u are calculated according to the follow-

r0, ®

ing formula



u H) we R (55)

r0,m 0, *

The vectors u u are constructed by pick-

r,inf > *r, sup

ing components of all vectors u (w € ) with maxi-

r0, w
mum and minimum values. It is easy to find that one of the
vectors 4, ,2 0 will coincide with optimal solution

A" >0 of the problem (14)—(16). Thus, it is possible to
write a group of inequalities

Tlr, inf < ur, inf < ur (t) < u, < ﬁ (56)

r, sup r, sup

The following sequence of inequalities is obtained
taking in to account the inequalities (47)

~ —_—k —_—k ~
ur. inf < ur.inf < ur’ inf < ur (t) < ur, inf <u <u (57)

r, sup r, sup
The residual strains compatibility equations (49)
B,i=BM', 7>0

which are included in constraints of the residual displace-
ments variation bounds of the optimization problem (48)—
(50), can be obtained applying the formulae GO, =M,

0, =Z[V¢j (Mej +My)] "2, and the matrix
J
B, =-A4""(4")" D'+ D" Then
G[ve (M) 7 =M (58)
B.G[ve (M) i=BM: (59)

Then strain compatibility equation is obtained by

B,7.=BM;

here matrix B; = BrG[W’ (M*)JT

It is possible to change the constraints (49) of the
residual displacements variation bounds optimization prob-
lem (48)—(50) by the condition (58)

G[V¢(M*)JT1=M:, 72>0 (60)
having eliminated the linearly dependent equations in ad-
vance. However, it is more practical to use the compatibil-
ity equations of the residual strains (49): physical meaning
of the second problem of residual displacements variation
bounds # u determination becomes then evident.

roinf > %r, sup

Both the vectors u, u and u,, , U can be

r,inf > r, sup r, sup
incorporated into stiffness constraints (57) of mathematical
models of the optimization problem.

4.3. The modified model of optimization problem

The model is similar to that of (37)—(44), only the
iy = 1IN }NI[I , U = max ﬁj
duced into the condition (42)

member u is intro-

ri, sup

find

min ZLkMOk =min L'M, (61)
k
subject to
1 T I
min EZM,,kaM,,k =min EMrDMr (62)
k
AM, =0 (63)

D = (Mok )2 - (Mekl,j +M,, )T 11, (Mekl,/ +M,, ) 20 (64)
My 20 (65)
(66)

ur,min r,max

SHQPSM

0,= (@pk/)T Oy = Z[W"j (Mej +M;~)]le (67)
J

2 =(h,)"s Ay, 20, kek, IeL, jeJ (63)

J

Upi iup = min H, 7 s Uy g, = Max HI.I

i=12 ..,m (69)

BZi=BM;, Yi'C<D,,, ix0 (70)
J

ur,min S ur,inf > u < u (71)

r,osup — Ur, max

The shortage of this model is that it is the verifi-
cation one: in fact the cyclic-plastic collapse problem (34)—
(36) is analyzed, but as distinct from the optimal bending
plate project, there are verified the stiffness conditions (42)
or (69)—(71) of certain accuracy at cyclic-plastic collapse
(in each Rosen algorithm step). In other words, the main
solution of the optimization problem is not directly influ-
enced by stiffness conditions.

One must note, that when applying the nonlinear
Mizes yield condition, the residual bending moments have

influence to the matrix G G = KA T(AKA T)_l AK - K
T
r (Mr:G@p’ sz(@pkl) :

@pkl = ZZ /lkl,ijlel.j = [‘7§0k1,j (Mkl,j ) J ' /Ikz,j )
J

A and K are the equilibrium and physical matrices, re-
spectively. Thus, the residual bending moments and dis-
placements matrices G and H are determined standing
behind of one iteration of analysis problem.

The first modified model of optimization problem
is solved by stages (the solution algorithm scheme is pre-
sented in Fig. 1) freely introducing the objective function
(37) variation step.

depending on M

Here

4.4. Numerical example of iterative solving algorithm of
the plate optimization problem

Let discuss the features of the algorithm of the
analysis problem (61)—(71). One can find that the problem
(61)—(71) is not a classical mathematical programming
problem. Its composition includes the separate quadratic



programming problem (62)—(64) corresponding to analysis
problem (10)—(13) for the residual bending moments M, .
The distribution of optimal parameters of plate at cyclic-
plastic collapse will be obtained differently (without an
employing he constrains (66)—(68) and (69)—(71)).
Obviously the solution of the problem (61)—(71)
is not reached per one iteration. Thus, one of the possible

Initial data introducing
and forming

v
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solution ways of plate optimization problem under pres-
ence of stiffness constraints is application of an iterative
solving.

An application of iterative algorithm the problem
(61)—(71) solving is presented via numerical solution of
plate (see Fig. 1).

The circular plate of radius R =0.90m, sup-

Start stage v =1

Choise of objective function

increment ADV

#l

Y

Plate parameters optimization problem (61)-(71)
min ZL,{MOA, =min L'M, = minZAD”
To find: My, '

A

A

uri, mi;

Admissible objective To resolve: plate physical matric, elastic solution
function decrease My =M, Objective function
bound + step is determinate
ADY by the increment
Z Analysis problem at shakedown (62)-(64) ADY
v !
A mlnEM,,TD M, A
To find: M.", 2" .
. T *
To resolve: 0,= (@pkl),@pk[ = Z[Vw(M )] i
w'=HO, ’
I
Next stage Are stiffzess conitraints Yes Decreasing
v=v+l1 U, in - ng SU ax AD"
violated?

At least one condition
<min H ;4

n

maxH,A<u
satisfied as equality?

ri, max

Optimal solution M,

Fig. 1 Iterative solving algorithm of the plate optimization problem

ported via hinges per outer contour is under considered
(see Fig.2). The material of the plate is steel (material
physical properties are presented in Fig. 2). Plate is sub-

jected by symmetrically and uniformly distributed loading
g and uniformly distributed bending moment M , applied

at the plate outer contour.

~

ITTTTITRTITITIT

Y

R R

T, 210 [MPa]
E 210 [GPa]
M v 1/3 -
h 0.03 [m]
R 0.9 [m]
Gins 100 [KN/m?]
qsup 95 [kN/mz]
M;,, 36.25 [kN]

Fig. 2 Plate load diagram and initial data



is
of

the plate initial cross-section are calculated applying the
internal forces matrix a of elastic analysis. Then

The initial plate cross-section
h =0.03m . Elastic bending moments M

height
M

e, min ? e, max
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ternal forces at the yield conditions (64) are calculated the
elastic bending moments M, , being distributed at the con-
tour, are treated subsequently as constants.

Optimal solution of the problem is presented in
the last row of the Table.

M, . =C i s M, e = O 4,0 - When the total in-
Table
Convergence of the limit bending moments (kN) of plate elements
STAGE | Mg, | My, | Mys | Moy | Mys | Mys | L'M,
V= 53.06 52.77 52.53 52.29 52.05 51.81 132.78
v=2 52.92 52.18 51.40 49.80 48.85 47.90 125.93
v=3 5291 52.10 51.35 49.74 48.43 47.39 125.21
v=4 52.87 51.91 51.23 49.61 47.39 46.11 123.40
v=>5 52.77 51.71 51.07 49.39 47.08 44.23 121.52
v==6 52.37 51.56 50.65 48.72 46.02 42.64 119.07

5. Conclusions

The mathematical model of flexural plate optimi-
zation problem at shakedown conjoins the verification
problem for plate analysis and the verification of stiffness
conditions. Algorithms for the solution of two problems
are presented in current investigation. The more exact re-
sults are obtained when plastic multipliers as the main un-
knowns are introduced. It is evident that the suggested and
subsequently developed algorithms for solving the investi-
gated class of problems should be introduced into the soft-
ware for the analysis of object-oriented structures.
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J. Atkociiinas, L. Rimkus, V. Skarzauskas, E. Jarmolajeva

PLOKSCIU OPTIMIZAVIMAS PRISITAIKOMUMO
SALYGOMIS

Reziumé

Straipsnyje nagrinéjamos tampriosios plastinés
lenkiamos metalinés plokstés, veikiamos kintamos kartoti-
nés apkrovos. Plokstés geometrijos forma yra Zinoma, ap-
krova apibtdinama tik virSutinémis ir apatinémis nuo laiko
nepriklausanciomis kitimo ribomis. IeSkoma optimalaus
plokstés projekto, atsizvelgiant | plokstés stiprumo ir stan-
dumo reikalavimus. Optimizuojamais parametrais laikomi
ribinis plokstés momentas ar biidingas skerspjiivio mat-
muo. Siiilomas naujas iteracinis prisitaikanciy lenkiamy
plokséiy optimizavimo uzdaviniy apytikrio sprendimo al-
goritmas, kurio pagrindas yra Rozeno projektuojamyjy gra-
dienty metodas. Tuo tikslu sudarytas lenkiamos plokstés
prisitaikomumo biivio itempiy ir deformacijy skaic¢iavimo
(analizés) uzdavinio statinés formuluotés matematinis mo-
delis. Sitlomas algoritmas iliustruojamas apvalios plokstés
optimalaus projekto uzdavinio sprendimu. Tyrimai atlikti ir
skaitiniy eksperimenty rezultatai gauti, laikantis mazy po-
slinkiy prielaidos.

J. Atkocitinas, L. Rimkus, V. Skarzauskas, E. Jarmolajeva
OPTIMAL SHAKEDOWN DESIGN OF PLATES
Summary

In this paper the optimal shakedown of perfectly

elastic-plastic bending metallic plates with strength and
stiffness constraints are considered. The geometry of the

23

plate and its acting variable repeated load are known. Here
optimal distribution of limit bending moments or charac-
teristic dimension of cross-section for adapted bending
plate is to be found. In the paper a new iterative approxi-
mate solution algorithm based on Rosen project gradient is
proposed for optimal shakedown design of the plates.
While solving the static formulation of the analysis prob-
lem their dual (kinematic formulation) solution is deter-
mined by using the Rosen criterion mathematical-
mechanical interpretation, which is explained before by the
authors. The solution algorithm is illustrated by the nu-
merical example of optimal project calculation of circular
plate. The investigations are performed and results of nu-
merical experiments are obtained according to assumptions
of small displacements.

10. Atkouronac, JI. Pumkyc, B. Ckapkayckac,
3. SIpmornaena

OIITUMUBAIUA INTACTHUH B YCJIIOBUAX
[MPUCIIOCOBJIIEMOCTHN

Pesmome

PaccmaTpuBaroTcst uaeadbHO YHPYTrO-TIacTHYec-
KM€ METalIMYEeCKUe IUIACTUHBI 33/IaHHOM T€OMETPHHU MO
JIeWCTBHEM TIOBTOPHO-TIEpEeMEHHON Harpy3ku. Harpyska
XapaKTepU3yeTcsl TOJBKO HE3aBHCAIIMMH OT BpPEMEHH
BEPXHMMH U HIDKHHUMH TIpeliellaMH €€ U3MEHEHHMs. 3ajada
ONTHMU3AIMN T1APaMETPOB IUIACTHHBI PEAM3yeTcsl IPH
HaJIMYUHM KaK MPOYHOCTHBIX, TaK U KCCTKOCTHBIX OI'paHU-
yeHni. ONTUMHU3HpPYEMBIe TapaMeTPhl — MpeAeIbHbIE YCH-
JIUST M3TH0AaeMBbIX TUIACTHH JINOO XapaKTepHBIN pa3Mmep ce-
yeHust. [lpemymaraercsi HOBBIM HMTEPALIMOHHBIA aITOPUTM
pelIeHus MPOEKTHON 3aJauil ONTHUMHU3ALMHY IIACTHH B yC-
JIOBUSIX TIPHCHOCOOJISIEMOCTH C HCIIOJIB30BAHHEM  ajro-
pUTMa TPOEKTHPYEeMBIX IpaaueHToB Pozena. C sToi 1e-
JBIO CTPOMTCS MaTeMaTH4YecKas MOJENb 3aJadd OIpere-
JICHUS] HAaNPsHKEHHO-Ie(GOPMHUPYEMOTO COCTOSIHUS U3ruda-
€MBIX TUIACTHH (3a/1a4a aHaJIn3a) B CTaTHYecKoi Gopmynu-
poBke. llpennaraemplii alnropuT™M WIIOCTPUPYETCS IIPH-
MEpOM pElICHHs 3a7a4d ONTHMHU3AIMU KPYIJIOH IUIacTu-
Hbl. [lmacThHa paccunTHIBAE€TCS B COOTBETCTBHU C YIIPO-
LIEHHOW TEXHUYECKON Teopuel BMecTe ¢ MPEeANOoChUIKON O
MaJIbIX JiehopManusx.
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