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in normal sections of structural members

1. Zidonis

Siauliai University, Vilniaus str. 141, 76353 Siauliai, Lithuania, E-mail: ipolitaz@splius.It

1. Introduction

Analysis of stress-strain state in cross-sections of
reinforced concrete members is often required for the de-
sign and investigation of structures. It is performed for
different loading stages of reinforced concrete members:
before cracking, in cracking stage, in the service stage of
reinforced concrete members with cracks, for the failure
stage of the member. For the calculation of parameters of
these states, simple but very conventional and inaccurate
stress diagrams are used: triangular, rectangular, rectangu-
lar-curved line (the curved line diagrams are not clearly
defined).

Since there is no general method of the analysis
and quite distorted calculation diagrams are employed the
calculation has many defects [1].

Many of the problems may be solved using more
realistic nonlinear stress-strain diagrams for materials [2-
4]. Nonlinear diagrams are proposed in the regulations [5,
6]. In the latter years much attention is being payed to the
generation and application of nonlinear diagrams [7-16].
The existing general methods for the calculation of stress-
strain state parameters, with all their great possibilities,
cannot replace simpler but more convenient models for the
solution of specific problems. Unfortunately, there is no
such general but convenient method for direct use of non-
linear stress-strain relationships without replacing them,
for instance, by broken lines comprised of segments of a
straight line [10] and that would take into account the pos-
sible deviations of the strains of the materials from the
hypothesis (Bernoulli’s) of the plane sections [11].

This paper develops the method published in [1],
created for the calculation of stress-strain state parameters
in normal sections. The new method presented in this pa-
per is more general in comparison with the aforementioned
one since it gives us a possibility to analyze layered struc-
tures. The method can be applied for analysis of concrete,
reinforced concrete, timber, metal and other structural
members in various loading stages. At present, it is very
important to have a method enabling us to use curvilinear
strain-stress relationships. In the case of concrete and rein-
forcement, the relationships of the Eurocode [5] are
adopted in the regulation [6].

2. Definitions and symbols used in the paper

Structural member (hereafter - member) is flex-
ural, eccentrically compressed or eccentrically tensioned
bar made of concrete, reinforced concrete, metal, wood or
other materials;

the main material of the member is material con-
stituting the biggest part of the member into which materi-
als of other parts are reduced for the analysis: in case of

concrete and reinforced concrete — concrete, in case of
timber members — timber, etc.;

effective cross-section is the part of cross-
sectional area of the member that is allowed for in the
analysis and at the time considered is subject to the normal
stress;

Z, and Z, are the zones of effective cross-

sectional area of the member in compression and tension

respectively; for the zone Z characteristics for materials

in compression are applied, while for the zone Z, — char-

acteristics for these in tension;

member strengthening is strengthened parts of the
members; e.g. stronger members imbedded in to concrete
members or fixed to the timber member;

member weakening is ducts in the member, e.g.
for the prestressed reinforcement, etc.;

cross-section layer is rectangular layer in the ef-
fective cross-section of the member, with dimensions and
characteristics of materials typical to the layer;

first edge of the cross-section layer (marked by
Index 1) is the edge with the lowest arithmetical value of
acting stress*;

second edge of the cross-section layer (marked by
Index 2) is the edge with the highest arithmetical value of
acting stress™;

values of the parameters X;, v,, w;, @; of the
first edge are marked by Index 1; while these of the second
edge are marked by Index 2;

symbols i, j, k, n are used to mark the number
of layer in the cross-section, the number of strengthening
(weakening), the number of reinforcement;

symbol f is used to mark the parameter of

strengthening (weakening), and symbol S is used to mark
the parameter of reinforcement;

regular crack is a crack caused by the forces con-
sidered;

random crack is an irregular crack caused not by
the forces considered;

N o is random crack depth (see Fig. 1);

h

cr

h is depth of the member;

0—0 is neutral axis;

W—W is axis parallel to the neutral axis; it is ex-
pedient to place it on the edge of the cross-section with the
lowest arithmetical value of strain;

a—a is any axis parallel to the axis 0—0;
U—u is any layers of the material of the member

is regular crack depth;

* For the zone Z,negative values are taken



that are parallel to the axis 0—0 and whose strain &, is

assumed in the equations of static equilibrium;

X, 1s distance® from the neutral axis 0—-0 to the

axis W—w;

a, is distance from the axis W—Ww to the axis
a-a;

a, is distance from the axis W—w to the layers
u—u of the member;

symbols of other dimensions are shown in the
Fig. 1;

E., Eq, E
of the main material in cross-section (e.g. layers of the
concrete), strengthening (weakening) of the cross-section,
reinforcement, selected materials of the equivalent cross-
section; it is expedient to take E equal to the value E; of

«» E are elasticity moduli of the layers

the modulus of the main material at the most important
layer;

g, =B g Ei., B
el E k4 efi E > esi E >
A; is cross-sectional area of strengthening

(weakening), area of weakening is negative;
A 1is cross-sectional area of reinforcement (the

reinforcement may be prestressed);

parts of cross-section is areas of the layers of the
member, strengthening (weakening) and reinforcement in
the cross-section;

equivalent cross-section is cross-section with ar-
eas of parts of its effective cross-section multiplied by re-
spective coefficients ¢, .

Strain diagrams (see Fig. 1):

straight line &, —0— ¢, is diagram of linear strains
for the material of transformed section (conforming to the

hypothesis Bernoulli’s that the plane sections remain
plane);
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line &, —0—¢, (not necessarily a straight line) is
strain diagram for the main material of the cross-section;
symbols € and t stand for compression and tension respec-
tively;

line &, —0— ¢, (not necessarily a straight line) is
reinforcement strain diagram.

&, &, & &, are strains of layers of the main
material of the cross-section, strengthening (weakening),
reinforcement, selected material of transformed section
respectively;

&, 1s absolute value of the strain* corresponding

to the value of the maximum stress* o, (e.g. concrete
strength* f . ); linear strain* of the concrete layer i in
compression &, = &y

O,

, 1s stress* corresponding to the value of the

limiting strain* &, (e.g. of concrete &, );
& 1s prestrain of reinforcement;

o, 1s prestress of reinforcement;

pi
&g 1s strain* of reinforcement caused by external
forces;

0.

i 1S stress® of reinforcement caused by external

forces;

&5 =&, t&g Is total strain of reinforcement
measured from the initial (zero) state of the reinforcement;

o =0, +0 s total stress of the reinforcement
measured from the zero state of the reinforcement;

Vi =04,/Egs vg =04 /Eg;

E,, E,, E, are secant elasticity (strain) moduli:

E =viE =via,E, Ef =viE; =viauE,
E =vsEs =vgaeE
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Fig. 1 Cross-section of the member and stress-strain diagrams assumed for analysis
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Xi2 Xi2

Ew Eoi £ i & si Eomi .
=—=—=—-=—>=—" (seeFig. 1); o= | obdx = K,y by, X, dx, =
T X% X Xy Xy (see Fig. 1) X.[] XJ:ICDE. bV
ki:i’ kmi:ia kfi:i’ ksizﬁ' :gDEkaelbl(w X wiliizl) (5)
o omi Eofi Eosi

Here and hereafter the dash over X (X) indicates
3. The essence of the method that the effective part of the cross-section layer is taken,
i.e. the part subjected to the action of stress o;; numbers

The paper deals with the case of the analysis of 1 and 2 denote edges of the effective part of member
structural members subjected to the action of bending mo- layer i : 1 — the edge subjected mathematically to the low-

meqts and axial forces in the symmetry plane of cross- est o;, and 2 — the edge subjected mathematically to the
section of the members.

Conditions of static equilibrium in respect to the lighest ;.
axis a—a of forces and bending moments, acting the ef- Moment of force N,; with respect to the neutral

fective cross-section (see Fig. 1) give (for simplicity, in-  axis 0—0 can be expressed by the formula

n
stead of 21 the symbol 2 is written)
1=

ei™iviN

Xi2 Xi2
M, = [oibxdx = [pEkaybyxdx =
IN+ 2N +2Ng +2N; =0 ) Xi1 Xi1
= gEkiab (wiziisz _wniﬁ) (6)
M +2M 5 + 2M g + 2Nie,; + M, =0 (2
Eccentricity of force N,; with respect to the neu-
The following easy-to-integrate relationship  {ra] axis 0— 0 is as follows
oj —¢j for the layers of the main material is selected

_ e = M, _ @, % — @, % 7
E E = Qe Ek; i€oiVi = (/Ek NG (3) “ N xi a)iziizz - a)ilfﬁ
where here
& =kigi =kio-x; 1 ¢,
o =—+—2 A2y SBlpd p sy 8
I/ e i ] 7 ®)
Vi =140y +Cynp +Cyp) +Cynpyt +- 4
1 Cli 2i 2 3.3 C4i 4
Wy =—+—n +—/—1 —n +t—n +t (9)
. . . 3 4 5 6 7
For instance, v; for the concrete in compression
zone can be taken from [9]. 7= S Ki€oi —k. X ~ X (10)
The resultant force of stresses o, of the cross- Yen KnEom < Xm X
section layer i, which is of b; in width and of h; in depth
(see Fig. 1), is Values of coefficients ¢; for the concrete in com-
pression zone Z_ may be taken either from [9, 15, 16,]
3 3
Ci = {2(77ri 1) (1=77q ) + (77 —1) O +|:(577ri =3)a,; +115 (31, _5):|Vmi}/{77ri (74 =1) } (1D

{7 4 41) 1 =)+ (17 =203 Yt 2 (V0 =573t 43 (5= =03) i 2 (=1} 12)

G ={2(77n' +l)(1_77n‘ )3 +(77§ 1 _2) O +|:(577r2i +513 _4)044' +1f; (477§ =51, —5)]1/”,}/{77,% (7% _1)3= (13)

G = {2, =1) + (1= )t +2[ (1= 2 ) 423 (2=1) v}/ {72 (1 = 1)') (14)
Egs. (11-14) are described in papers [9, 15, 16]. It is assumed that within the limits of layer i
Symbols in Egs. (1 1-14) (Fig. 2): & & + &y k,

E,=tanf: B, =tan(-7); @y =E, /By 0w =Eqeys N o o ey, o A ke = sl
Oori = B s Oci = fomis Vi =V = 0 /O'ceua For the analysis when 7, =7,, o =, and
Vi = 0gi | Ogeis @ =V [ vy =Bl @, =y, it is assumed that X; = X;, ; for the analysis when

/Bri = O /O'cli; i = €eri /5c1| .
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=1, ® =0, and @ =@,, it is assumed that G
Xi=X,. Xy=8+X,, X;=X;, but X, <X, <X,
d;=a,+h, (see Fig.1); x,=d;+X,, X,=X,, but
Xcu Siiz SXtu' Xcu =m; Xtu =80i7 but Xtu gacr T Awo
@ ®
where
acr = a'cr,O - hcr =h- hcr,O - hcr 5 ﬁm
amm:xcu—xw,a =X —X 5
aiu = ai b but amm < alu < amax s
diu = di H but amln < dlu < amax 5
iil :aiu+xw' _i2:diu+xw' o
F
When values of X;; and X, are put in the Egs. (5) 0 £ Eql Egul Eer
and (6), Egs. (15) and (16) are obtained Fig. 2 Stress-strain relationship for concrete (Eq. (3))
in =¢Ek aelbl( |2 |2 a)ll |1) Q)Ek aEIbI I:( wil)x\fv+2(wi2diu _wilaiu)xw—i_(a)izdii _a)llaizu ):| (15)
M_.=N_e Ek o b X |(a, + X Ek o b X a+x—M—
axi — ' Vxi a><| (0 |ae| |( 12 |2 a)ll |l)( a w ) §0 |ae| |( 12 |2 a)ll |l) a W a)lzxzz—a)llfj -
— gEka {[( a’.l)_(wiz _wil)xjv+[aa(wiz_0%1)+2(wi2diu _wilaiu)_3(wi2diu _wnaiu)]xiﬂf ]} (16)
[Za (a’lzdlu I )+ (@zdii - a)llaizu )_ 3(wi2dii - ZUnaizu )]Xw + [aa (a)izdiﬁ - a)ilaizu )_ (wizdi3u - wna?u )
Normal force acting the area Ay s =&y T &g =5 K = £ HKG0K (19)
Ng=04A4 = EfigfiAfi =viEeaAq = 0g =Egeq =vgEgeg = aqEvgeg =
=V e Ek fi ‘90 fiMi — (pEk i Aefi Aflvfl X = = Qi E Vsi (gpi + kSi ¢XSi ):
= gEK i Agvilag, + X, )= i %
ﬁ el ( fu ) = Qg Evplgpl S +¢ksiaesi EVSi Xsi (20)
= gEKG o AV, + PEK @i AV X,y (17) Vi
Moment of force Ny with respect to the neutral Prestressing force
axis —
P = O'piAsi = EsiAsigpi :VpiEsiAsigpi =
— Y — v2 _ V..
Mg =NgXg = gBK g Agv Xy = = A EAV €, _aesiEAsiVSigin_pl 1
= PEK i Agvy (afiu + Xw)z (18) Si
When Xcu = Xfl Xtu or am|n = afl < amax > then s EAsiVSigpi = PI &
V .
X5 =Xg and ag, =ag; i
when X, >X; or X;>X, or ag,>a; or L Em __fm . _ , .
A > Qg > then Ay =N =M =0. ox M agtx, v k(ag+x,) "
By analogy one can determine normal force Ng ey, 1k, g, 1k, g%, 1k -
= X = = £ £
acting in the area A;. Strains of reinforcement here are a, +X, W a +X, *u a, +Xx, (22)
always measured from the value of 0, i.e. from the begin-
ning of loading, thus:
Total force acting in the tension reinforcement is determined by (23)
= Vsi 7 vsi P 7
Ng =05A; = Egeg Ay = aEAV; <5pi + 5si): P =+ gk Agvs Xy = ¢E _E"‘ KiQei AiVsiXs | =
Vi Vi
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i . Pox, vs P 1
= ¢7E v E5_+ Kqi si Xesi AsiVS| (asm +X ):| (DE V_SEWXW + I(si s AsiVS| Qg T Kq siPesi AsiVSi Xy | =
L Vpi w pi shw ! Re
a, + X,
I Pvg /v, Pvg /v,
= ¢E ( i As|VS| ﬁ]xw + I(si Ui '%iVSiasiu +#ag:| (23)

Moment of the force N around the axis a —a

Ee, /k Ee /k

&

i |/V i I:’iv i/V i
M i~ NSI( sm)_ |:( s A5|VS| #J w +ksiaesi Asivsia‘siu +#a€ :|(aa _asiu):

PiVSi/Vpi PiVSi/Vpi
=¢E I(si()(esiAsi‘/Si)(w_|' /K Xw+ksiaesiAsiVSiasiu+Wag (aa_asiu)=
Pvsi /vy
=¢E ksiaesiAsiV& (asm +X ) W(as—i_xw) (aa_asiu) (24)
When X, <X, or a,, <a, then X; =X, and when Xeu > Xy or Qin > Ay 5 then
i :asi;xsi_asiu+xwﬂ Asi:NSi:MaSiZO'
. : N, , N, N,
N. = gE—L= X, =¢F———x ——(a, +X,)= —X,, + —a, 25
' (pE(pE (pEEgW " {pEEngw/k ‘”EEgg/kg(‘ ) {/,E(Egg/kg Ee, /K, J )
a, + X,
M. M, M, M. M. M.
M, = pF — = pE —-x, = pE—————X, —(a, + X, )= —— X, + —a 26
' ¢E¢E ‘”EEgW N (’)EEsng/k q’EEgg/kg(‘f 2 (pE[Egg/kg " Ee, Ik, ] (26)
a, +X
IM, +3N;e, = 2M, + 3N, ( )= ZgE /ik (ag+xw)+2¢>E /k (a, +x,)a,—&)=
I 2M; 2N; ZMi+ZNi(aa_ei)
= a. + X, )+ a, —e ka. + X = a. +X,)=
e T Wﬂ e MM ce)y )
oM, N, M, SN
= X, + —(a, —& )x, + —a_+ —(a,—e)a, |=
q)E_Egé_/kE " Egé_/kg(al e Ee, 1k, °© E(‘,‘E/kg(a ) g}
=(pE ZMi+2Ni(aa_ei)xw+2Mi+2Ni(aa_ei)ag (27)
i Ee, /k, Ee, /K,
After inserting the respective values in Eq. (1) the following conditions of static equilibrium are arrived at
P . N,
Eq)Ek ae|b< ) |2 wllxll)+E¢Ekflaef|Aflvflel +E§0E __+ksiaesiAsiVSiXsi +2¢E_:0 (28)
pi (DE (DE
S(Rvg /vy )+ 2N,
2klaelbl( Wi, )X + ZZklaelbl( @,y _a)ilaiu)+2kfiaefiAfini+2ksiaesiAsiVSi+ Ez /K Xy +
88 &
5 5 E(I:’ivSi/vpi)+2Ni
+Zkiaeibi(wi2diu_wilaiu)+2kfiaefiAfiniafiu+2ksiaesiAsiVSiasiu+ a, =0 (29)

Ee,./k, ¢

When a, =0 and ¢,/ k, = &, then the plane equation is

2kiagib; (a’iz -y, )X\i + |:22kiaeibi (wizdiu -0, &, )"' 2K gt E
£

2(Pvg /vy )+ 2N,
AV + 2K Agvs + Xy +
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+ 2K, b( o,,d;, a’laizu)+2kfiaefiAﬁVﬁafiu + 2K e Ajvsidg, =0 (30)

ei™i
After inserting the respective values in to Eq. (2 ) the following conditions of static equilibrium are arrived at

-2 o2
2K, (a)izxi2 —a)HX“Xaa + Xw)_(wilez wuxu)]“‘z(knaen AV Xy K Agv g, Xaa — Ay )"‘

/k

& &

Pve/ Vi
+2 ksiaesi AsiVSi + E Xw + ksia,esi Asivsiasiu
&

2M; +2Ni(aa_ei)x +2]\/Ii +2Ni(aa_ei)

+ Mag :|(aa — Ay, )} +
Ee, /k,

= 1
Ez k. " ok 0 31
Zkaelbl ( @iy = |1) ( Wiy — )] +2kae|b| ( @i — @, il)aa+2(a)i2diu _wilaiu)_3(wi2diu —@;3 |u)]x +
Zkiaeibi [2 (oizd (ollalu a +( wl]alu) (wizdii _wi]aizu )]+
2\Pvg /v, 2N, )+ M.
" +2kfiaefiAfivfi<aa_afiu)+2k5 aeS|A5|VS|( a 5|u)+ ( IVSI /VDIX SIU)+ ( el)+ I XW+
Ee, /K,
+ 2k, (a) di, — o8, (w,2d3 ~@;8;, )]+2kf|aefiAfiniafiu<aa_afiu)+
Pvg / 2N.(a, —e )+ 2M.
+2ksiaesiAsiVSiasiu(aa_asiu)+ ( s VP'Xa 5'“ + I(aa el)+ Iag =0 (32)
Ee, /K,
When a, =—X,, , then moment of forces in respect to the neutral axis 0—0
Py /vy )+ N, ],
Zklaelbl( i2 )X + 32k|ae|b|( i2 d wlaiu)+2kfiaefiAfivfi +stiaesiAsiVSi + E /k Xw+
gg &
E(PiVSi Vi Xasiu +ag)+ZNi(ei +ag)_2Mi
SZk aelbl( | d |l |u )+ 22kf|aef| Afivfiafiu +22ksiaesi AsiVSiasiu + E /k Xw +
glf &
J\Pve /v Ja. +2N.e. — IM.
+ 2k, (W dy - i3u)+2kfiaefiAfiVﬁa?iu + 3K 0o AVsiad, + ( AL )asm ek -a, =0 (33)

Ee, /k, ¢

When a, =0, then moment of forces in respect to the axis w—w

Sk, b[(

i“ei™i i“ei™i

+{2klaelbl |: ( |2dii _wilaizu )_(a)izdii - |1a|u )j|+ Ekflaefl Aflvflaflu +2k5|a95| AS|VS|a5|u

+ 2k b, (a5,

el

|1 |u )+Ekf|a

efi

When a, =0 and a, =0 and ¢,/ k, =¢,,

Xk, b[(

iei™i

wn)—(w JX + 2k, b,[3 @,d, —@

iei

{Zk,ae,b{ ( ,dz —w“aizu)—(a),zd -, a;, )}+Zkf,aeﬂAf,vf,anu+st,aes,As,vslas,u

Anvid gy + 2K AgVsia

@)~ (@, - @) X + Tkiab [ 3(@,d, — @8, )~ 20,0, — o, ) X2+

siu

Ee, Ik,

I(Pvg Ivy)ag, + ENig - SM, }
X, +

Z(Pvg I vy )ag, + ENg - IM,

siu

Ee, k.

Siu aSIU +

a =0 (34)

, then moment of forces in respect to the axis W—w

il |u) 2((0i2diu_wi]aiu):|xvzvﬁL

siu

Es,

(Pil/si/V )a +ZNe—ZM}
X, +

+2k0‘e|b|( @4y, - )+2k e AgV s, + K Avgag, =0 (35)

For example, when in the equations of static equi-
librium strains of the compressed edge are assumed, then
in Egs. (22)-(27) and (29) and in Egs. (31)-(34) a, =0 and
e 1k, =¢.1k, =¢,;
equilibrium correspond to the strains of the member rein-
forcement group i then in Egs. (22)-(27) and (29) and in
Egs. (31)-(34) a, =a, ande, /K, =¢,4 1k

and when the equations of static

SI’

4. Case of singly reinforced (nonprestressed) beam of
rectangular cross-section

The case whenN; =P =A; =0, b,=b, n=1,
a, =0, d;, =h, i=1 (further on this unity is omitted) and

the strains of the concrete in tension and the compression
zones of the beam do not exceed the limiting values of



strains, i.e. &,, <&, < &y, (Fig. 3) is presented

(k,@, —k,@, Jox2 + (2k,@,bh + k cr, AV X, +

+k,m,bh* + ko Avea, =0 (36)

when a, =a,, a, =a, and ¢, /k, =&,/ Kk, then

[kz (a)2 —zvz)—k1 (a)1 —wl)]x\i, +
+[(k2a)2 -k )a, +k, (20, —3wz)h} X+

M
+{kz [2w2a5+<w2—3m>h1“+m}x“
+k, (0,8, @ h)h2+&:0 GD
2\"72%s 2 bEgs/ks

when a, =a,, a, =0 and ¢, /k, =¢,, then

K, [(wz —a,)—k (o —w])]xa, +
+[(k2a)2 -k )a, +k, (20, —3mz)hJ X, +

}

When the stresses of concrete in the tension zone
are ignored (Fig. 3), in Egs. (36)-(38) w, =@, =0

X, T

W

M
+{k2 [Za)zaS +( o, —3172)th+ bE 7.

+k, (@38, —a,h) h* =0 (38)

K, bx] — K. a AV X, — K Avsay, =0 (39)

su

3 2
k (o —@,) X, +k @ax;, -

30

MM (40)
bEeg, /K, bEeg, /K,

2 M
kl(a)l—wl)xw+k1a)1asxw—E:0 (41)

w

In Egs. (37), (38), (40) and (41) the moments of
forces were taken in respect to the axis S—5.

When the member is not reinforced, from Eq. (36)
we get

(ky@, —k @, )X + 2k,@,hx,, +Kk,@,h* =0 (42)

and from Eq. (33) we get
(k,@, — k@, )X +3k,@,hx +

+(3k2w2h2 - ]xw+k2zvzh3 =0 (43)

bE ¢ 1k,

(k,@, —k@, )X, +3k,a,hx;, +

M J
X, +

bE &, / k,
Mh
A
bEe, /K,
In Egs. (43) and (44) the moments of forces were
taken in respect to the axis 0—0.
In Egs. (36)-(44), coefficient of the compressive
zone k; = k;, and coefficient of the tensile zone k; =k, .

+[3k2w2h2 -

+k,a,h’ — (44)

An example of drawing up the equations of equi-
librium and their use for the calculation of the member
strength when the plane sections hypothesis is not applied
is presented in the work [16].

Fig. 3 Cross-section of the member and stress-strain diagrams assumed for calculation

5. Conclusions

1. At present, we still do not have a simple and
practical method for calculating stress-strain state parame-
ters at normal sections of members that would rely on

nonlinear stress-strain relations of materials presented by
solid curves without replacing them by broken lines com-
prised of segments of a straight line; and that would take
into account the deviations of the strains from the ones
defined by the plain sections hypothesis.



2. The paper presents a method for calculating
stress-strain state parameters at normal sections when
outer forces (bending moment and/or axial force) act on
the plane of the cross-section symmetry axis of the mem-
ber. Material strain diagrams can be linear as well. Using
the proposed method and relying on the strains of concrete
or reinforcement of compressed or tension zone it is possi-
ble to calculate bending moment or longitudinal force. The
method is also suitable for making calculations for vari-
ously reinforced members of different materials including
layered members. With the help of the presented method,
any stage of loading can be analyzed.
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1. Zidonis

ALTERNATYVUS METODAS STRYPINIU
ELEMENTU ITEMPIU-DEFORMACIU BUVIUI
NORMALINIUOSE PJUVIUOSE APSKAICIUOTI

Reziumé

Pateikiamas gana universalus, vientisas nuosek-
laus artéjimo (iteracinis) metodas konstrukciniy elementy
itempiy-deformacijy buvio parametrams apskaiciuoti pagal
medziagy jtempiy diagramas elementy asiai statmenuose
(normaliniuose) pjuviuose be plysiy, ties plysiu, tarp ply-
Siy, kai lenkimo momentas ir (arba) iSilginé jéga veikia
elemento skerspjiivio simetrijos asies plokStumoje. Galima
atsizvelgti i medziagy deformacijy nukrypima nuo ploks-
¢iy pjuviy hipotezés, | skirtingas elemento sluoksniy me-
dziagy charakteristikas. Metodas tinka jvairiai armuotiems
ivairiy medziagy, taip pat ir sluoksniuotiems, elementams
skaiCiuoti. Galima nagrinéti bet kuria apkrovimo stadija
nuo pradzios iki elemento suirimo, net ir elemento stipru-
mo maz¢jimo stadija. Gali biiti imamos ir nekreivinés me-
dziagy itempiy diagramos.



I. Zidonis

ALTERNATIVE METHOD FOR THE CALCULATION
OF STRESS-STRAIN STATE PARAMETERS IN
NORMAL SECTIONS OF STRUCTURAL MEMBERS

Summary

The paper presents a rather universal, integral
method of sequential approximation (iterative method) for
the calculation of parameters of stress-strain state in struc-
tural components at normal sections before cracking, at the
crack, between the cracks when bending moment and (or)
longitudinal force act on the plane of the cross-section
symmetry axis of structural components. It is possible to
take into account the deviation of the strain of materials
from the plane sections hypothesis and different character-
istics of the materials of the layers of the member. The
method can be also applied for variously reinforced mem-
bers made of different materials including layered mem-
bers. Using this method, any stage of loading can be ana-
lyzed, even the stage of the weakening of the bearing force
of the member. Employing the presented method, it is also
possible to use linear stress diagrams of materials.
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H. Kunouunc

AJIbTEPHATUBHBI METOJ] PACUETA
ITAPAMETPOB HAIIPS>KEHHO-
JE®OPMIPOBAHHOI'O COCTOSHUA
3JIEMEHTOB KOHCTPYKIIUI IT0 HOPMAJIbHBIM
CEYEHUAM

Peszome

[IpencraBnsieTcss AOBOJIBHO YHHUBEPCAIbHBIA M
enuHbIl (000OIIEHHBIH) METOH MOCIEeNOBATEIbHBIX INPHU-
OmmKeHH (METOI UTepaunuii) Iy BBIYMCICHUS HapaMmer-
POB HaIPSHKEHHO-1€)OPMUPOBAHHOT'O COCTOSHHS IO HOP-
MaJIbHBIM CEUYEHUSIM 3JIEMEHTOB KOHCTPYKIMH 0e3 Tpe-
IIVH, N0 TPEUIMHE, MEeXAY TpelIMHAMU MPH KPUBOJIMHEH-
HBIX 3ITIOpax HaNpsDKEHWH, KOTAa BHEIIHUE YCHIHS (U3TH-
Oaromuii MOMEHT W/WIH TPOJIONbHAS CHIIA) ICHCTBYIOT B
TUTOCKOCTH OCH CHMMETPHH CEYEHUs 3eMeHTa. EcTh BO3-
MOXKHOCTh y4Ye€Ta OTKJIOHEHHH IeopManuii MaTepuasioB
OT TUIOTE3bI IUNIOCKUX CEUCHHUH, ydeTa HEOANHAKOBBIX Xa-
PaKTEpPUCTUK MaTepHAaJOB CIIOEB 3JIeMEHTa. MeTon Ipu-
MEHHM JUId pacdeTa pa3IMiyHO apMHUPOBAHHBIX 3JIEMEHTOB
13 pa3IMYHBIX MaTepPHUajIoOB, TAKXKe IS CIIOMCTBIX AJIEMEH-
TOB. MOKHO HCCIIEIOBATh JIIOOYIO CTA/INI0 HArPYKEHUS OT
Hayvana A0 pa3pylIeHUs dJIEMEHTa, AaXe CTaJUI CHUXKE-
HUSI HEeCyIel criocoOHOCTH 3rieMeHTa. MoryT IpHHAMATh-
Cs1 1 HEKPHUBOJIMHEIHBIE S0Pl HANPSHXKEHUI MaTepHasoB.
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