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1. Introduction 

During designing of reinforced concrete beams, it 

is important to know formulas from design codes and also 

to understand the physical meaning of a phenomenon. The 

applying the real deformation laws of materials is unusual 

and irrational for an engineer. In this paper proposed calcu-

lation method is a compromise between high accuracy and 

volume of costs. 

Generally, reinforced concrete structures at dif-

ferent deformation stages are considered: elastic, inelastic, 

when cracks occurred by using a cracked structural mem-

ber at the destruction moment. On each of the stages it is 

important to properly determine the values of mechanical 

state parameters. Both in valid design codes of West Eu-

rope (EN 1992, etc.) and in East Europe (Russian SNiP, 

Ukrainian DBN, etc.) the stress distribution in a cross sec-

tion is simplified and expressed by a triangle or rectangle 

shape. Such approximate is acceptable for many civil engi-

neers, but it is non-universal and inaccurate, and some-

times may be incorrect. 

Nowadays the finite element method is very 

popular in a structural analysis. However, it has some defi-

ciencies: an exact model may be complex enough; an ap-

proximation level of results depends on skills of a design-

er; each next problem needs to be re-modelled, etc. In de-

sign and expertise companies, in addition to finite element 

software, to verify the given results, more accurate analyti-

cal engineering methods are applied, one of which is pre-

sented by this paper, i.e. the ZI method. 

Ehsani et al. [1] experimentally investigated 4 re-

inforced concrete beams, two of which contained 2% of 

steel fibres. There were load-strain graphs presented. The 

authors compared the given results for structural members 

with different mechanical properties of materials. Slaitas et 

al. [2] during experiments tested 6 reinforced concrete 

beams. The flexural strengths were calculated by 7 various 

methods (one of which was the ZI method). There were 

bearing capacity reserves and crack depths investigated. A 

comparison was made. Some experimental investigations 

of this problem were early presented by Jokūbaitis et al. [3] 

and others [4]. In Golyshev et al. [5, 6] and Gvozdev‘s [7] 

a review of XX century analytical methods and experi-

mental tests in East Europe is presented. 

Filatov and Suvorov [8] presented a stepper-

interactive algorithm, which considers the stress state of a 

normal section, by using diagrams - of real materials. 

The damaged zone with cracks was also investigated. 

Modern computer algebra software was applied. The pro-

posed decision is precise in load-history aspects, but it is 

complicated enough for an engineer. 

Raue and Timmler presented [9] a geometrically 

and physically non-linear model, which is based on the 

analysis of the potential energy. An example of a column 

under compression and bending was presented, taking into 

account the development of cracks. Such general model is 

difficult for the direct usage by engineers in practice, be-

cause of integration and optimization processes. 

The presented paper is an extension in the applied 

direction of monographs [10, 11] about the ZI method, key 

solutions of which are based on the classic engineering 

theory of the beam section stress/strain state (Fig. 1). 
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Fig. 1 A scheme of a beam with cracks under compression with bending: a) side view; b) section view 

 

Here, cross sections are acting by a combination 

of an axial force and the bending moment, real - dia-

grams of using materials are directly applied. Such analysis 

is very actual one for reinforced concrete, because of the 

non-linear character of stress distribution and cracks. 

The ZI method has many advantages: simple in 
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the usage, obvious for an engineer, universal, practical, 

continuous, using real properties of materials, etc. The re-

sults, determined by this method, were compared with ex-

perimental ones, and with calculations according the de-

sign codes EN 1992. A high compliance of the results was 

observed [12, 13]. 

On the other hand, the ZI method allows simply 

calculating with reliability 50, 95 or 100% [14]. Next 

possibilities of the usage of the ZI method should be inves-

tigated. 

The aim of the paper is to analyse the mechanical 

state of various sections of reinforced concrete beams with 

cracks. The more general aim is to explain the suitability 

and convenience of the ZI method, among the usage of 

other methods. A special attention has been paid to the 

description of the algorithm and to illustrate the calculation 

results of examples. 

2. Main concept, assumptions 

When a reinforced beam is loaded, the compres-

sive stress diagram in the cross section changes the shape: 

at the elastic stage it is close to a triangular one; beyond 

the point of the strength limit it is becoming more and 

more like a rectangle one; before destruction the crack area 

decreases the compressive zone and change the stress dis-

tribution. In a general formulation the problem is non-

linear. A practical engineer is interested in a simple result: 

the load-bearing capacity and the required reinforcement in 

a cross-section under a load combination of an axial force 

and bending moment. The question of the cracking history 

is irrelevant for him. Namely, such kind of the approach is 

considered in the design codes, in which non-linear dia-

grams - are presented (Fig. 2), but any exact method for 

applying of these general functions is not explained. 
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Fig. 2 The compressive concrete stress/strain relation from 

the design code EN 1992 

 

Since a cross section is subjected only by normal 

stresses  of an axial force N and bending moment M, the 

one-direction mechanical state is acted in each node of the 

cross section. Therefore, to use uniaxial test diagrams of 

materials it is very appropriate. Reinforced concrete is a 

non-homogeneous material, and additionally the cracks 

appear, so under loading a complex stress state is formed. 

There are some assumptions in our investigation: 

 the curve - (Fig. 2) is described by a polynomial; 

 the polynomial of 3rd order is applied for concrete un-

der compression and under tension; 

 for reinforcement steel Prandtl’s diagram is used; 

 Bernoulli’s hypothesis of plane sections is valid; 

 maximal stresses of the compressive zone can be fcm; 

 maximal strains of the compressive zone can be c1 for 

concrete or y in the tensile zone for steel; 

 Young’s modulus is the same for compressive concrete 

and for tensile concrete [5]. 

As we can see (Fig. 1), when the cracks appear, 

two cross sections become the main ones: at the crack and 

in the middle between the cracks. Other neighbouring sec-

tions are in intermediate states. 

Examples in the monograph [10, 11] consider two 

ways to calculate the cross sections in the middle between 

cracks of a beam: 

I. Prof. A. Rozenblium‘s method [15], where the plane 

section hypothesis is applied to the whole cross section, 

and the strains of tensile concrete is determined by the 

limit strain, which saves even with increasing load. 

Bernoulli’s hypothesis is not applied for tensile rein-

forcement steel. 

II. The ZI author‘s method [10, 11], when the plane sec-

tion hypothesis is applied to compressive concrete and 

tensile reinforcement, but it is not applied for tensile 

concrete. It is assumed, that for tensile concrete the 

limit stress (not limit strain) is used the same one, when 

even the load values are increasing. 

In our opinion, the first method does not take into 

account the fact, that the tensile concrete is placed between 

two cracks, so the assumption of homogeneity is not valid 

for such case and the mechanical conditions are different 

(unlike the non-cracked reinforced concrete). 

By solving the task by the second method, we 

consider, that the tensile concrete is represented by a ten-

sile reinforcement, which ensures kinematic consistency 

through the whole cross section and saves the plane of the 

deformed section. This way is more appropriate to design 

code EN 1992, and it is a more logical one [10, 11]. 

In the beam cross section at the crack, Bernoulli’s 

hypothesis applies to both compressive and tensile con-

crete together with tensile reinforcement. 

In the paper, two problems are solved by the ZI 

method: 

1. cross section at the crack (index crc is used); 

2. cross section in the middle between two cracks. 

In EN 1992 no recommendations are given to de-

scribe the relation - of tensile concrete. 

3. Stress/strain equation in design code EN 1992 

In the design code EN 1992 the stress/strain rela-

tion (Fig. 2) is presented by such function: 
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Parameters fcm, Ecm, c1 are chosen from EN 1992. 

4. An alternative stress/strain equation, applying to the 

cross-sectional distribution of the stresses 

In the ZI method, a below-presented 3rd order 

polynomial non-dimensional function is used as a correc-

tion factor p < 1 for the Young’s law: 

     2

1 21c c cp c c         . (4) 

It is applied for the curved stress/strain relation 

() during the compressive stress interval from 0 to fcm 

(Fig. 2): 

   c c c c cE p      , (5) 

where: Ec = 1.05Ecm is tangent modulus (angle  on 

Fig. 2) of elasticity of normal concrete. The coefficients c1 

and c2 in Eq. (4) are expressed by formulas: 

1

1
3 2c

k
   and 2

1
1 2c

k
   . (6) 

In the cross-sectional x-direction of the height h, 

the strain function c = c(x) is variable, because it depends 

on co-ordinate x. Hence, the stresses depend on x also: 

     c c cx E x p x    . (7) 

An internal force and bending moment are inte-

grated through the height of the cross-sectional compres-

sive zone (Fig. 1): 

   
0

d
wx

c cN x x b x   , (8 a) 

   
0

d
wx

c cM x x b x x    . (8 b) 

Here, the co-ordinate xw describes the top of the 

cross section. In fact, a distance from 0 to xw is the height 

hc of the concrete compressive zone. After mathematical 

operations the internal actions are found: 

   c nc w c wN x x E b x      , (9 a) 

    2

c mc w c wM x x E b x      . (9 b) 

Here, the compressive strain w describes the 

maximal value at the top of the cross section. Results of 

integration operations are expressed by following formu-

las: 
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1 2

1 1 1
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3 4 5
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where: coefficients c1 and c2 have been at Eq. (6). 

5. Solution algorithm 

In the classic manner, this algorithm is presented 

by three stages (Fig. 3): input, main stage of an iterative 

solving, output. For realisation the computer algebra soft-

ware Maple has been used. 

At the prior stage, information about key parame-

ters, assumptions and initial technical data (geometrical 

characteristics, forces, materials and so on) are stated. For 

the first step an unknown maximal strain w in the cross-

sectional compressive zone is preliminary set. 

During the iterative stage, above-described by 

Eqs. (4 – 9), the integral force Nc and moment Mc are de-

termined by using algebraic expressions Eq. (10). In the 

same way Nt and Mt for the tensile zone are given, actions 

Ns and Ms for reinforcement are solved by analytic formu-

las. Later, the formation of equilibrium equations and for-

mulation of a polynomial for xw are followed. After solv-

ing, we should choose a real value and re-calculate w(xw). 

Next, a tolerance w of the strain is checked. In case of a 

false result, we repeat the calculation. In case of a true one, 

static equilibrium equations (N) and (M) are checked. 

The main accent of the cycle calculations is to determinate 

a location of the neutral line, where  = 0. 

The last stage is the presentation of results and 

comparison with the experimental ones. 

6. Calculations examples using the ZI method 

In experiments the used beams [16, 17] were se-

lected for calculation by the ZI method. Three groups 

No. 7, 8 and 9 (Table 1) of reinforced concrete beams were 

tested to the destruction (2 beams in each group). 

The elastic modulus of reinforcement was 

Es = 205 GPa, the yield strength was y = 428 MPa, for all 

tested reinforced concrete beams. The calculations have 

considered the stage of maintenance of cracked structures. 

During the testing, the middle part of the beam, subjected 

only to increasing bending moment and constant axial 

force was checked (Fig. 4). The destruction moment 

26.0 kNm was fixed for the beams of the 7th group, 

30.8 kNm – for the 8th group, 30.0 kNm – for the 9th 

group. 

Table 1 

Initial data from experiments 

Group 

No. 

b,  

mm 

h,  

mm 

a,  

mm 

As,  

cm2 

fcm, 

MPa 

NEm, 

kNm 

7 112 244 37.5 3.2 25.6 +7.9 

8 110 242 32.0 3.3 34.8 +0.7 

9 111 239 32.0 3.3 42.0 –2.9 
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Fig. 4 The testing scheme of beams 
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Fig. 3 The algorithm of the mechanical state analysis of a reinforced beam by the ZI method 

 

START 

END 

FALSE 

TRUE 

Initial governing data 

Axial forces and  

bending moments  

in the cross section 

Main assumptions of the task 

Technical  

characteristics  

of materials 

FALSE 

% 50< .w

 

TRUE 

Data for designers 

FALSE 

Check:  (M) = 0 

Results: xw, w, w, s, s, , r, and other 

Check:  (N) = 0 

Cross-sectional  

geometrical  

characteristics 

All required other derived parameters 

Set an initial value of the strain: initial,ww  =  

wstart,w  =  

 

The integral force of the compression stresses: Eq. (9a), (10a) 

 

The integral moment of the compression stresses: Eq. (9b), (10b) 

The equilibrium equation for forces: ( ) 0=+++=∑ Emstc NNNNN  

The equilibrium equation for moments: ( ) 0=+++=∑ Emstc MMMMM  

3 2

3 2 1 0 0x w x w x w xb x b x b x b        321    ,   , www xxx  real →wx  

( )
www x =   

TRUE 

Comparison with results of experiments 

IN
P

U
T

  
S

T
A

G
E

 
O

U
T

P
U

T
  

S
T

A
G

E
 



 163 

In the cross section at the crack, the reinforced 

concrete beam becomes a steel-concrete complex structure, 

in which steel bars have no direct contact with the concrete 

and work mechanically separately (Fig. 1). Immediately 

after the crack formation, the redistribution of stresses oc-

curs. Due to the cracks, the kinematic boundary conditions 

of the Theory of the Deformable Body are changed: the 

tensile concrete at the cracks becomes loose, and the ten-

sile concrete in the middle between cracks still remains 

tensed together with the reinforcement steel. When the 

concrete cracks, the steel itself reacts in its own manner – 

the strains increase at the free space in the crack. 

In the cross section between the cracks, the forces 

of the direct contact between reinforcement and concrete 

act. The distance between the cracks (Fig. 1) is usually 

expressed by 2 anchoring lengths of the reinforcement, so 

the strains are accumulated from crack to crack. When the 

cracks open, the cracking process is stabilized. The states 

of all other adjacent sections are intermediate ones. 

To explain the results according to the calculation 

by the ZI method of the 7th group of the experimental 

beams, when the moment 14.0 kNm is acted, equilibrium 

of cross-sectional forces, strain and stress diagrams are 

presented for the cross section at the crack (Fig. 5) and for 

the cross section between cracks (Fig. 6). 

The relation of parameters, depending of chang-

ing of the bending moment, has been investigated, starting 

from 1/5 (when cracks occurred) of the limit moment 

Mtest to the destruction of the beam. 

In the formed Soviet Union in 1965 according to 

prof. A. Gvozdev [18], there is no method to link cracks in 

a reinforced concrete beam and tensile concrete layer with 

beam deflections. Such kind of problems was solved by 

prof. A. Rozenblium (Lithuania), and the ZI method ex-

tends this calculation.  
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Fig. 5 The calculation scheme and results of the beam cross section at the crack: a) section view; b) side view; c) cross-

sectional forces; d) diagram of strains; e) diagram of stresses 
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Fig. 6 The calculation scheme and results of the beam cross section in the middle between cracks: a) section view; b) side 

view; c) cross-sectional forces; d) diagram of strains; e) diagram of stresses 

 

At the first, for above-described beam groups 

No. 7, 8 and 9 the variation of the relative cross-sectional 

height hc/d of the compressive zone, the relative height 

hct/d of the tensile zone and the relative height hcrc/d of the 

crack deep, depending on the relative bending moment 

MEm/Mtest, have been considered (Fig. 7). To compare the 

values, the “working” cross-sectional height d = h – a of 

the reinforced concrete beam (Fig. 1) is chosen, which is 

an ordinary and acceptable for a civil engineer. 

On the graph (Fig. 7), the continuous lines show 

the results of the 7th beam group, the dashed lines are for 

8th group, and the dotted ones are for 9th group. The same 

marking has been used for lines on Figs. 8, 9 and 12. 

The graph (Fig. 7) points, that the hc/d value is the 

highest 0.422–0.469 at the prime relative bending moment 

0.15–0.20. As the moment increases to 0.5, the ratio hc/d 

decreases to 0.348–0.392, and near the relative moment 1.0 

it slowly increases again to 0.362–0.413. When the crack 

occurs at the moment 0.15–0.20, the tensile layer is the 

thickest of 0.302–0.318, and the crack is the smallest, i.e. 

0.410–0.438. Near the middle of the graph, when the mo-

ment is about 0.6, the value hct/d decreases rapidly to 
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0.065–0.078, and the crack hcrc/d increases to 0.715–0.727. 

At the moment 1.0, the ratio hct/d is only 0.036–0.046, and 

the crack increases to 0.729–0.748. The curvature of all 

lines shows, that as the bending moment grows, the distri-

bution of forces is non-linearly changed. The most im-

portant influence on the process has the decrease of the 

thickness of the tensile concrete layer. 

 

Fig. 7 The variation of relative cross-sectional height of 

zones, depending on the relative bending moment:  

1 – compressive layer; 2 – tensile layer; 3 – crack 

deep 

Second, the relation of relative strains c/c1 at the 

top on the cross section at the crack of beams for the 7, 8 

and 9th groups, depending of the relative moment 

MEm/Mtest, has been investigated (Fig. 8). The value of con-

crete strains c/c1 at the relative bending moment 0.15–

0.20 is 10–14% and during the loading process increases 

evenly with lowly curvature to 63, 71 ir 79%, depending of 

the strength of concrete (for stronger concrete, the value of 

c/c1 is lower). The relative strains s/y of the reinforce-

ment increase almost linearly from 11–16 to 103–119%. 

As we can see, the relative values of concrete are lower in 

comparison with the relative values of reinforcement, so 

the limit state of the reinforcement steel is reached earlier 

than in concrete, for such kind of beams. 

 

Fig. 8 The variation of relative strains, depending on the 

relative bending moment 1 – the top point of con-

crete; 2 – reinforcement; 3 – experimental data 

Comparison of concrete relative strains c/c1 ob-

tained from calculations with experimentally given 

c, test/c1 shows (Fig. 8), that the differences are the follow 

(Table 2). Comparison of the relative reinforcement strains 

s/y with experimental ones s, test/y shows the following 

differences (Table 3). Thus, in the cross-sectional calcula-

tion, the distribution of strains between concrete and rein-

forcement steel deviates by 16–25%. Probably, a cross-

sectional distortion appears, because strains deviate from 

the plane section, although this hypothesis is considered as 

an underlying one in the ZI method. Of course, there may 

be other reasons, such as scale factor, etc. 

Table 2 

Differences of relative strains of concrete 

Group 

No. testM

M
 c,  

% testM

M
 c,  

% testM

M
 c,  

% 

7 0.308 +30 0.538 +45 0.846 +52 

8 0.260 +3 0.455 +13 0.714 +36 

9 0.267 +7 0.467 +25 0.733 +45 

Table 3 

Differences of relative strains of reinforcement 

Group 

No. testM

M
 s,  

% testM

M
 s,  

% testM

M
 s,  

% 

7 0.308 –33 0.538 –10 0.846 +1 

8 0.260 –44 0.455 –13 0.714 +14 

9 0.267 –33 0.467 –3 0.733 +21 

 

Third, variation of the relative stresses c/fcm at 

the top cross-sectional layer and the relative stresses in the 

reinforcement steel s/y, depending of changing of the 

relative bending moment MEm/Mtest have been investigated 

(Fig. 9). The stress analysis shows, that the value of rela-

tive concrete stresses c/fcm at the relative bending moment 

0.15–0.20 is 18–23% and all the loading time increases 

evenly to 85, 92 ir 97% with insignificant deflection, de-

pending of the concrete strength (for stronger concrete, the 

value c/fcm is lower). The relative stresses s/y of the 

reinforcement steel increase by the almost linear depend-

ence from 11–16 to 103–119%. 

 

Fig. 9 The variation of relative stresses, depending on the 

relative bending moment: 1 – the top point of con-

crete; 2 – reinforcement 

Similarly, like the cross section at the crack, the 

cross section at the middle between two cracks on each of 

modelled beams (Table 1) has been calculated. For exam-

ple, when the beams of the 7th group have been acted by 

the bending moment from 5.0 to 26.0 kNm, the change of 

heights for compressive and tensile cross-sectional zones 

as well as values of strains and stresses have been ana-

lysed. Considering of the distribution (Fig. 10) of the rela-

tive stresses (x)/fcm trough the relative cross-sectional 

height x/h, we see, that as the bending moment increases, 



 165 

the diagram line bends and deviates from the forward di-

rection, i.e. non-linear properties have been more and more 

developed in concrete. At the same time, with the growing 

bending moment, we see a change of the position of the 

cross-sectional neutral line. 

 

Fig. 10 The distribution of relative stresses in the direction 

of the cross-sectional height, when the bending 

moment 5.0, 8.0, 14.0, 20.0 and 26.0 kNm:  

1 – black lines mark the section with cracks,  

2 – gray lines denote the whole section 

On the stress graph (Fig. 10), the stresses of the 

whole cross section “delay” in comparison with the stress-

es in the cracked cross section. At the same time, it can be 

seen, that the compressive zone of the whole cross section 

is always higher than the compressive zone in the cross 

section with the crack. 

7. The plane section hypothesis in the ZI method 

The deviation from the plane section of the real 

strains in the tensile reinforcement steel in a cross section 

of a bending reinforced concrete beam is expressed by us-

ing the correction factor ks. As it was discussed early, in 

the cross section at the crack, the assumption of the plane 

section has been applied to all strains: εc, εct and εs. In the 

cross section between the cracks this assumption has not 

been used for strains εct of the tensile concrete. That the 

tensile stresses ct(x) are close to the limit tensile strength 

ctu of the concrete, is evidenced by the appearance of new 

cracks. It is assumed, that strains in the tensile concrete are 

geometrically described by another plane section, which 

does not coincide with the plane section of the whole cross 

section. 

The main role in describing of beam cross-

sectional strains is played by the concrete compressive 

zone, because there the strains are completely correspond-

ing to the plane section hypothesis. In the cross-sectional 

tensile zone, the assumption of material homogeneity is not 

valid near cracks. Stress and strain fields are also deflected 

under local laws, taking into account the adhesion contact 

between concrete and reinforcement steel. Therefore, in the 

cross section with the crack, a strain lag from the plane 

section is evaluated by the coefficient ks, crc < 1, and in the 

cross section at the middle between the cracks, we increase 

the coefficient ks, mid > 1 accordingly. From the point of 

view of engineering accuracy, it is sufficient to use the 

linear relation: 

2=+ mid  ,scrc,s kk . (11) 

Experimental results show [19], that values 

ks, crc < 0.6 and respectively ks, mid > 1.4 can occur only dur-

ing the slip of the reinforcement, which also can appear. 

Thus, the change of the beam mechanical state pa-

rameters, depending on the coefficient ks, has been investi-

gated. Values of this coefficient for the cross section at the 

crack from 0.5 to 1.0 and for cross section at the middle 

between cracks from 1.0 to 1.5 have been chosen. It has 

been calculated for moments 8.0 kNm (continuous lines), 

14.0 kNm (dashed lines) and 22.0 kNm (dotted lines). The 

graph (Fig. 11) shows the results of the 7th beam group. 

The calculation results of the cross section at the 

crack (ks from 0.5 to 1.0) show, that the relative height hc/d 

of the compressive concrete layer changes from 31–32 to 

39–40%, the relative height hct/d of the tensile concrete 

zone increases from 3–9 to 5–15%, the crack relative depth 

decreases from 78–83 to 63–74%. So, the height of the 

compressive concrete zone almost does not depend on the 

value of the bending moment. The height of the tensile 

concrete zone and the corresponding depth of the crack 

depend on the acting moment and therefore change. 

The results of the calculation of the cross section 

at the middle between cracks (ks from 1.0 to 1.5) show, that 

hc/d increases from 43–50 to 49–55%, the values hct/d de-

creased from 68–75 to 63–70%. Both hc/d and hct/d de-

pends on the values of the bending moment as they change. 

All graph lines are closed straight lines. A separate paper is 

needed to describe the effect of the coefficient ks. 

 

Fig. 11 The variation of the relative cross-sectional height, depending on the coefficient ks (7th beam group): 1 – height of 

the compressive layer; 2 – height of the tensile layer; 3 – the crack deep 
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The beam cross section at the crack (Fig. 5) and 

the cross section at the middle between two cracks (Fig. 6) 

have been curved different, even in our case of pure bend-

ing without shear (Fig. 4). To determine the stiffness of a 

beam, the principle of the average of curvatures ( + crc)/2 

has been applied, which is sufficient from the point of view 

of technical accuracy. The dependence of the averaged 

(c + c, crc)/2fcm relative stresses on the top of the cross 

section for the 7, 8 and 9th beam groups via relative curva-

ture mid/max has been investigated. Here, max has been 

chosen, when the maximum moment Mtest has been. 

 

Fig. 12 The variation of relative stresses via the relative 

curvature (the marks show the numbers of beam 

groups) 

The results indicate (Fig. 12), that the values of 

the relative stresses on the top of cross-sectional compres-

sive concrete for all groups of beams, when the primary 

relative bending moment is acting, are 15–20% and locate 

near each other. As the moment is increasing to the maxi-

mal value, the curves are moving away from each other 

and at the end the values are 96, 82 and 75%, respectively. 

The line of the 7th beam group is more distorted than the 

others. It indicates, that the concrete stresses approach the 

strength limit fcm faster, the curves are not coincidentally 

close to diagram - (Fig. 2). 

 

8. Conclusions and perspectives 

Based on the presented investigation of the me-

chanical state of the reinforced concrete beams the follow-

ing conclusions have been made: 

1. The ZI method can be developed to solve var-

ious problems for different cross sections. This method is a 

convenient practical tool for investigation of the mechani-

cal state of beams. 

2. The relations of the height hc of the compres-

sive zone, the height hct of the tensile zone and the depth of 

the opened crack hcrc of the cross section at the crack of 

three groups of reinforced concrete beams under bending 

and axial force have been presented. 

3. The relations of the maximal compressive 

strains on the top of the beam cross section and strains in 

the reinforcement steel, depending of the bending moment, 

have been investigated. The calculation results have been 

compared with laboratory tests of such beams. 

4. The relations of the maximal compressive 

stresses on the top of the beam cross section and stresses in 

the reinforcement steel, depending of the bending moment, 

have been described. The calculation results of the cross 

section at the crack (cross-sectional zones, strains, stresses, 

curvatures, etc.) have been compared with the results, giv-

en for the cross section between cracks. 

5. The possibility to consider the problem of 

strain deviation from the plane section for the reinforce-

ment steel has been illustrated by the correction factor ks. 

6. The considered ZI method is especially effec-

tive when it is necessary to exactly determine the strain 

state parameters as curvatures, deflections, etc., because 

the accuracy of this method is higher than the engineering 

methods currently used in design codes, mainly based on 

experimental tests. 

7. The ZI method lets make a more accurate 

analysis of the mechanical state of a cross section, when 

diagrams of materials are non-linear. In structural design-

ing, it is useful to use the ZI method as an alternative to the 

currently used method in design codes, and it would be 

especially convenient for an engineer to automate calcula-

tions, of course. 
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M. Samofalov, I. Židonis 

 

INVESTIGATION OF MECHANICAL STATE OF 

REINFORCED BEAMS WITH CRACKS BY 

THE ZI METHOD: ALGORITHM AND 

CALCULATION RESULTS 

S u m m a r y 

The mechanical state of reinforcement concrete 

beams with cracks, which are acted by axial force and 

bending moment, is investigated. The considered ZI meth-

od is a compromise between high accuracy and volume of 

costs, when real curve diagrams are applied to describe the 

properties of materials and solution is rationally simplified 

by engineering assumptions. The paper presents the main 

formulas and algorithm for solving of engineering prob-

lems by using the ZI method. Three groups of beams have 

been calculated to represent the results. Two cross sections 

of cracked reinforced concrete beams have been analysed: 

at the crack and in the middle between cracks. Depending 

on increasing of the bending moment, the change of the 

location of the neutral line has been determined, diagrams 

of strains and stresses have been made. The possibility to 

take into account the deviations of the reinforcement 

strains from the plane section has been illustrated. The 

values of the bending curvatures of the beams have been 

also determined. The calculation results have been com-

pared with the results of laboratory experiments, conclu-

sions have been presented. 

Keywords: ZI method, stress/strain state, reinforced struc-

tural members, non-linear properties of materials. 
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