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Nomenclature 

 

a - absorption or extinction coefficient of fluid, m
-1

;  

B -magnetic field, tesla; B0 - magnetic rate, positive con-

stant; Br - Brinkman number (= μuw(x)
2
/ΔTk); C(ε) - po-

rous medium inertia coefficient, m
-1

; Cf - Skin friction co-

efficient (= -(2(m+1)/Rex)
0.5

fηη(0)); Cp - specific heat at 

constant pressure, J/(kgK); dp - particle diameter, m;  

Dp -geometric parameter of porous medium; Ec - Eckert 

number (= uw(x)
2
/Cp(Tw-T∞)); f - dimensionless velocity 

variable (= Ψ(x,y)(Rex)
0.5

/uw(x)); g - gravitational accelera-

tion, m/s
2
; Grx - Grashof number (= g(Tw-T∞)β/ν

2
);  

Ha - Hartman number (= B0x(σ/μ)
0.5

); K(ε) - porous medi-

um permeability, m
2
; k - thermal conductivity, W/(mK); 

m - index of power law velocity, positive constant;  

M - magnetic parameter (= 2σB0
2
/ρ∞b(m+1)); Nu - Nusselt 

number (= -(0.5(m+1)Rex)
0.5

θη(0)); Ns -Entropy generation 

number; Pr - Prandtl number (= μCp/k); qrad - radiation flux 

distribution, W/m
2
; R - Radiation parameter; Rex - local 

Reynolds number (= ρuw(x)x/μ); T - temperature, K; u - ve-

locity in x-direction, m/s; v - velocity in y-direction, m/s; 

x - horizontal coordinate, m; x - vertical coordinate, m; 

γ - plate inclination angle, degrees; α - thermal diffusivity, 

m
2
/s; θ - dimensionless temperature variable  

(= (T-T∞)/(Tw-T∞)); μ - dynamic viscosity, kg/(ms); υ - kin-

ematic viscosity, m
2
/s; ρ - density, kg/m

3
; σ - electrical 

conductivity, mho/s; Ω - dimensionless temperature differ-

ence (= ΔT/T∞=(T-Tw)/T∞);
 
Ψ - stream function, m

2
/s; η -

 similarity variable (= (y/x)(0.5Rex(m+1))
0.5

); β - thermal 

expansion coefficient, 1/K. 

Subscripts: 

e - effective; ef - effective for porous medium; f - friction; 

p - constant pressure, particle; r - radiation heat flux; rad - 

radiation; s - entropy; x - local x-coordinate; w - plate or 

sheet; ∞ - far away from the plate. 

 

1. Introduction 

 

In the last three decades, fluid convection in po-

rous medium has been one of the interesting subjects in 

heat transfer field. The researches show that the presence 

of porous medium makes the thermal conditions much 

better. Furthermore, another subject in heat transfer field 

which has been considerably taken into account by scien-

tists and engineers is the use of nanofluids for the en-

hancement of conductive heat transfer coefficient and fi-

nally increasing the convective heat transfer rate. The con-

vective heat transfer of fluid over an inclined plate which 

is embedded in a porous medium due to solar radiation has 

many applications such as petroleum material production, 

separation processes in chemical engineering, solar collec-

tors, thermal insulation systems, buildings and nuclear 

reactors. Many works have been done in this field, some 

which are pointed out here. 

Cheng and Minkowycz [1] studied the natural 

convection over a plate embedded in porous medium with 

surface temperature variation. Bejan and Polikakos [2] 

investigated the free convective boundary layer in porous 

medium for non-Darcian regime. The mixed convective 

flow boundary layer over a vertical plate in porous medium 

was analysed by Merkin [3]. Kim and Vafai [4] studied the 

natural convective flow over a vertical plate embedded in 

porous medium. Chamkha [5] investigated the free convec-

tive flow in porous medium with uniform porosity ratio 

due to solar radiation flux. The magneto hydrodynamic 

(MHD) mixed convective flow over a vertical porous plate 

in porous saturated medium and assuming non-Darcian 

model was studied by Takhar and Beg [6]. Ranganathan 

and Viskanta [7] investigated the fluid mixed convective 

boundary layer over a vertical plate embedded in porous 

medium. They claimed that the viscous effects are signifi-

cant and cannot be neglected. Kayhani, Khaje and Sadi [8] 

studied the natural convection boundary layer along im-

permeable inclined surfaces embedded in porous medium. 

Chamkha et al. [9] also presented a nonsimilarity solution 

for natural convective flow over an inclined plate in porous 

medium due to solar radiation. Forced convection over a 

vertical plate in a porous medium was studied by Murthy 

et al. [10] with a non-Darcian model. They showed that the 

increase of solar radiation flux and also suction causes the 

increase of Nusselt number and heat transfer rate. Kayhani, 

Abbasi and Sadi [11] studied local thermal nonequilibrium 

in porous media due to temperature sudden change and 

heat generation. 

Entropy generation is related to randomness and 

thermodynamic irreversibility, which is encountered in all 

heat transfer processes. There are various sources for en-

tropy generation such as heat transfer and viscous dissipa-

tion [12, 13]. The investigation of entropy generation in a 

liquid film falling along an inclined plate was performed 

by Saouli and Aı Boud-Saouli [14]. Mahmud et al. [15] 

studied the case of mixed convection in a channel consi-
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dering the effect of a magnetic field on the entropy genera-

tion. The effects of magnetic field and viscous dissipation 

on entropy generation in a falling liquid film were studied 

by Aı boud-Saouli et al. [16, 17]. 

In this paper, the MHD mixed convection flow 

and entropy generation have been studied over a non-

linearly stretching inclined transparent plate embedded in a 

porous medium with uniform porosity due to solar radia-

tion flux. The boundary layer equations have been trans-

formed by similarity transformation to two coupled non-

linear equations. These equations have been reduced to 

five first order nonlinear equations and then they have been 

transformed with an implicit method called Keller-Box and 

finally have been solved. 

 

2. Mathematical analysis 

 

Two-dimensional steady state boundary layer 

mixed convection MHD flow and entropy analysis has 

been considered over a smooth nonlinearly stretching in-

clined transparent plate embedded in a porous medium 

with constant porosity due to solar radiation and assuming 

viscous dissipation and variable magnetic field. An incom-

pressible fixed fluid with electrical conductivity in pres-

ence of magnetic field B(x) has been considered perpen-

dicular to the plate. Fig. 1 shows the schematics of the 

physical model and system coordinates. 

 

 

Fig. 1 The schematics of the physical model 

It is assumed that the x and y coordinates are the 

flow directions on the plate and perpendicular to the plate 

respectively. The plate temperature (Tw) is assumed con-

stant and it is considered higher than the ambient tempera-

ture (T∞). Assuming incompressible viscous fluid and 

Boussinesq approximation, the governing equations are as 

follows 
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where b is the stretching rate which is a constant u and v 

are the velocity components in x and y directions respec-

tively, σ is the electric conductivity, γ is the plate inclina-

tion angle, μ, ρ and β are the effective dynamic viscosity, 

effective density and effective thermal expansion coeffi-

cient of fluid respectively. 

Also K(ε) and C(ε) are the porous medium perme-

ability and inertia coefficient which have the following 

relations for uniform porosity [18] 
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here μ is the dynamic viscosity of the fluid, β is the thermal 

conductivity of the fluid and ε is the porosity and also ρ, Cp 

are the fluid density, specific heat of the fluid. ε is the po-

rosity of porous medium which is constant assuming uni-

form distribution of solid components and dp is the diame-

ter of porous medium solid particles. 

k is the effective thermal conductivity of porous 

medium and the Pr number is obtained using this effective 

conductivity and qrad is the solar radiation flux. Assuming 

that some of the solar radiation energy reaching the plate 

surface is absorbed by the fluid, the Beer law can be used 

in radiation absorption and written 

       0 1q y q exp ay     (7) 

where )(yq   is the radiation flux reached to the distance y 

from the plate, is the incident flux to the plate and a is the 

extinction coefficient of the fluid. Also here the magnetic 

field function has been considered as follows [19, 20] 

  1

0

mB x B x   (8) 

The following similarity variable have been used 

to transform the governing equations to ordinary differen-

tial equations 

1
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x

y m
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The dimensionless stream and temperature func-

tions are as follows 
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The stream function satisfies continuity equation 
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By the use of similarity parameters and their re-

placement in momentum and energy equations, the govern-

ing equations become 
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And the transformed boundary conditions become 
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The dimensionless parameters in the equations, R, 

ae, Mn, Dp, Rex, Pr, Ec, Gr/Rex
2
, Cf and Nu are radiation 

parameter, extinction parameter, magnetic parameter, po-

rous medium geometric parameter and dimensionless 

Reynolds, Prandtl, Eckert, Richardson numbers, skin fric-

tion coefficient and Nusselt number respectively 
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3. Analysis of entropy generation 

 

According to Woods [21], the local volumetric 

rate of entropy generation in the presence of a magnetic 

field is given by the following relation 
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Eq. (18) shows that the entropy generation is 

composed of three sources. The first term on the right-hand 

side of Eq. (18) is the entropy generation due to heat trans-

fer across a finite temperature difference; the second term 

is the local entropy generation due to viscous dissipation, 

while the third term is the local entropy generation due to 

the effect of the magnetic field. It is appropriate to define 

dimensionless number for entropy generation rate NS. The 

entropy generation number is defined by dividing the local 

volumetric entropy generation rate SG to a characteristic 

entropy generation rate (SG)0. For prescribed boundary 

conditions the characteristic entropy generation rate can be 

written as 
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Thus the entropy generation number is written as 
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Using Eqs. (9)-(11) and (18) entropy generation 

number is given by the following relation in terms of di-

mensionless velocity and temperature variables 

 
2

2 2 2

s

Br HaBr Re
N f f Re  

 
    (21) 

where 

1
2 2

0, ,wu T
Br Ha B x

k T T

  


 

 
    

 
. (22) 

4. Numerical method 

 

Two dimensional equations of flow and energy 

for a vertical, nonlinear stretching plate have been consi-

dered. These equations include the viscous dissipation and 

variable (nonlinear) MHD. Then, they are transformed into 

similarity form. From similarity method, two nonlinear 

coupled equations are derived. The transformed coupled 

nonlinear ordinary differential Eqs. (14) and (15) subject to 

boundary conditions (16) are solved numericallyby using 

Keller-Box method. This method is second order accurate 

and allows nonuniform grid size. 

First, the coupled boundary value problem of (14) 

and (15) in f and θ are reduced to a first order system of 

five simultaneous ordinary differential equations. Next, 

after choosing η∞, the numerical infinity, a grid for the 

closed interval [0, η∞] is chosen and the system of first 

order equations are transformed into a system of finite dif-

ference equations (FDEs) by replacing the differential 

terms by forward difference approximation and the non-

differential terms by the average of two adjacent grid 

points. The numerical method gives approximate values of 

f, fη, fηη and θ, θη at all the grid points. By adding the 

boundary conditions (16) to the system of FDEs, we obtain 

a nonlinear system of algebraic equations in which the 

number of equations and unknowns are the same. Subse-

quently, the linearization of these FDEs was done by New-

ton’s method [22, 23, 24]. The resulting systems of linear 

equations were solved by a block tri-diagonal solver. The 

step size Δη in η and the position of the edge of the bound-

ary layer in η∞ are to be adjusted for different values of the 

parameters to maintain accuracy. A step size of Δη = 0.005 

is selected which satisfies the convergence criterion of 10
-4

 

in all cases. In this solution, η∞ = 5 is sufficient to apply 
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the perfect effect of boundary layer. 

 

5. Results and discussions 

 

In this study, the entropy generation for two- di-

mensional steady-state boundary layer magneto- hydrody-

namic mixed convection flow has been considered over a 

smooth nonlinearly stretching inclined transparent plate 

embedded in a porous medium due to solar radiation and 

with viscous dissipation and variable magnetic field. 

The dimensionless temperature and velocity dia-

grams are plotted in terms of similarity variable for differ-

ent values of governing parameters and in x = 0.1 and have 

been discussed in details. Some tables have also been pre-

sented for Nusselt number Nu and skin friction coefficient 

Cf. 

In Figs. 2 to 7, fη is the nondimensional velocity 

which is one on the sheet and also is zero in a distance 

sufficiently far away. Similarly, θ is implied as nondimen-

sional temperature with the same limits of the nondimen-

sional velocity. 

Fig. 2 shows the dimensionless velocity profile 

for various values of porosity ratio (ε) and radiation Nu 

number (Nur). It can be seen that the velocity in boundary 

layer increases with the increase of porosity ratio. The rea-

son is that when porosity ratio increases, the fluid has 

much more possibility to move freely throughout the po-

rous medium. It can also be seen that the velocity in the 

boundary  layer  increases with the increase of radiation Nu 

 

 

 

Fig. 2 Dimensionless velocity profiles for various values of 

porosity and Nusselt number based on radiation heat 

flux Ec = 1.0, Mn = 0.10, Gr/Re
2
 = 10.0, Pr = 1.0 

 

 

Fig. 3 Dimensionless velocity profiles for various values of 

Prandtl and Eckert numbers Mn = 0.10, 

Gr/Re
2
 = 10.0, ε = 0.20 

 

Fig. 4 Dimensionless velocity profiles for various values of 

Prandtl number and magnetic parameter Ec = 1.0, 

Gr/Re
2
 = 10.0, ε = 0.20 

 

Fig. 5 Dimensionless velocity profiles for various values of 

plate inclination angle and Prandtl number Ec = 1.0, 

Mn = 0.10, Gr/Re
2
 = 10.0, ε = 0.20 

 

Fig. 6 Dimensionless velocity profiles for various values of 

Geometric parameter of porous medium and Rich-

ardson number Ec = 1.0, Mn = 0.10, ε = 0.20, 

Pr = 1.0 

 

Fig. 7 Dimensionless velocity profiles for various values 

of Prandtl number and effective extinction coeffi-

cient Ec = 1.0, Mn = 0.10, Gr/Re
2
 = 10.0, ε = 0.20 
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number. Because Nur is the amount of radiation flux ap-

proached to the surface of transparent sheet, when Nur in-

creases, the energy of fluid particles increases which 

means the increase of velocity. 

Fig. 3 shows the dimensionless velocity profile 

for various values of Pr and Ec numbers. If the Pr number 

increases, the velocity in the boundary layer decreases. The 

reason is that, having specified properties and thermal con-

ditions, the fluid viscosity increases with the increase of Pr 

number, and therefore it prevents the free motions of fluid 

particles. Also the velocity in the boundary layer increases 

with the increase of Eckert number. 

Fig. 4 shows the dimensionless velocity profile 

for various values of magnetic parameter (Mn) and Pr 

number. As it is expected, the velocity in boundary layer 

reduces with the increase of Mn, and this is due to Lorentz 

force effect which resists the fluid flow. As it can be ob-

served, this effect is independent of the fluid type. 

The effect of the transparent plate inclination an-

gle on fluid velocity is shown in Fig. 5. The plate inclina-

tion angles, γ, are considered 0° and 60° with respect to 

vertical plate. It can be seen that when the plate is inclined 

with γ = 60°, the particles motions is lower in porous me-

dium than the case γ = 0°, and this is due to the larger gra-

vitational acceleration component in fluid flow direction in 

γ = 0° case which strengthens the buoyancy effect. Again 

as it can be seen, it is independent of the Pr number. 

Fig. 6 shows the effect of geometric parameter of 

porous medium (Dp) and Richardson number on velocity.  

As it can be observed, the velocity profiles translate above 

when the geometric parameter of porous medium Dp in-

creases. Another point which can be derived from diagram 

is that in Richardson numbers higher than 1 (Gr/Re
2
 > 1) 

for which the natural convection is dominant, the velocity 

diagrams show peaks due to buoyancy effects. 

Fig. 7 shows the velocity profiles for various  

values of effective extinction coefficient of porous medium 

and Pr numbers. It can be observed that the increase of 

extinction coefficient does not have much effect on veloci-

ty profile except at far points of the plate. The effect of ae 

on fluid velocity becomes more obvious with the reduction 

of Pr number. In other words, the effect of extinction coef-

ficient on velocity of fluid particles becomes considerable 

with the reduction of viscosity. 

The effect of porosity and radiation Nu number on 

dimensionless temperature profiles is shown in Fig. 8. It is 

seen that the reduction of porosity causes the temperature 

increase. The reason is that the more the porosity decreas-

es, the lower the possibility of fluid motion will be and in 

fact the convective heat transfer mechanism weakens and it 

is only the heat conduction which performs the heat trans-

fer. Also as it is expected, the increase of radiation Nu 

number increases temperature in fluid bulk. 

Fig. 9 shows the dimensionless temperature pro-

files for various values of Eckert and Pr number. The in-

crease of Pr number causes the reduction of thermal 

boundary layer thickness in porous medium. Conversely 

the increase of Ec number causes the increase of tempera-

ture in boundary layer, and this is due to friction and vis-

cous effects which produces heat and the temperature in-

creases. 

 

 

Fig. 8 Dimensionless temperature profiles for various val-

ues of porosity and Nusselt number based on radia-

tion heat flux. Ec = 1.0, Mn = 0.10, Gr/Re
2
 = 10.0, 

Pr = 1.0 

 

Fig. 9 Dimensionless temperature profiles for various val-

ues of Prandtl and Eckert numbers. Mn = 0.10, 

Gr/Re
2
 = 10.0, ε = 0.20 

 

Fig. 10 Dimensionless temperature profiles for various 

values of prandtl number and magnetic parameter. 

Ec = 1.0, Gr/Re
2
 = 10.0, ε = 0.20 

 

Fig. 11 Dimensionless temperature profiles for various 

values of Prandtl number and plate inclination angle 

Ec = 1.0, Mn = 0.10, Gr/Re
2
 = 10.0, ε = 0.20 
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Table presents the numerical values of the Nu 

number and skin friction coefficient, Cf, for various values 

of ε, Dp, Nur, γ and ae. An increase in Dp, in a specified ε 

and Nur, lead to an increase in Cf and a decrease in Nu 

number. When Nur or ε increases, Cf increases and Nu de-

creases. Also an increase in ae or γ leads to an increase in 

Cf and a decrease in Nu number. 

 

Table 

Skin friction and wall temperature gradient for different values of the physical parameters 

Ec = 0.10, Mn = 0.10, m = 1.0, Pr = 1.0, x = 0.10, Re = 500 
 

ae γ Nur Dp ε =0.3 ε =0.4 

    Cf Nu Cf Nu 

0.10 0.0 10 10 -0.22794 17.99588 -0.29151 17.74096 

   15 -0.26549 17.91314 -0.31996 17.43015 

   20 -0.28899 17.76332 -0.33711 17.17524 

0.10 0.0 50 10 -0.22981 17.71413 -0.2941 17.45251 

   15 -0.26774 17.6314 -0.323 17.13052 

   20 -0.29153 17.47487 -0.34045 16.86442 

Dp Nur γ ae Cf Nu Cf Nu 

5.0 10 0.0 0.0 -0.15054 17.72307 -0.23029 18.06072 

   0.5 -0.15216 17.36978 -0.23259 17.72084 

   1 -0.1536 17.04331 -0.23462 17.40332 

5.0 10 60 0.0 -0.02462 16.47982 -0.08451 17.60233 

   0.5 -0.02578 16.10193 -0.08617 17.24903 

   1 -0.02681 15.75086 -0.08763 16.92033 

 

 

Fig. 12 Dimensionless temperature profiles for various 

values of Prandtl number and effective extinction 

coefficient Ec = 1.0, Mn = 0.10, Gr/Re
2
 = 10.0, 

ε = 0.20 

 

Fig. 13 Dimensionless temperature profiles for various 

values of geometric parameter of porous medium 

and Richardson number Ec = 1.0, Mn = 0.10, 

ε = 0.20, Pr = 1.0 

 

Fig. 14 Dimensionless entropy generation number profiles 

for various values of Eckert number Mn = 0.10, 

Re = 500, ε = 0.20, Ha = 10.0, BrΩ
-1

 = 1.0, 

Pr = 1.0 

 

Fig. 15 Dimensionless entropy generation number profiles 

for various values of magnetic parameter. Ec = 1.0, 

Re = 500, ε = 0.20, Ha = 10.0, BrΩ
-1

 = 1.0, 

Pr = 1.0 
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Fig. 16 Dimensionless entropy generation number profiles 

for various values of Hartman number Mn = 0.10, 

Re = 500, ε = 0.20, Ec = 1.0, BrΩ
-1

 = 1.0, Pr = 1.0 

 

 

Fig. 17 Dimensionless entropy generation number profiles 

for various values of dimensionless group parame-

ter Mn = 0.10, Re = 500, ε = 0.20, Ha = 10.0, 

Ec = 1.0, Pr = 1.0 

 

 

Fig. 18 Dimensionless entropy generation number profiles 

for various values of Reynolds number Mn = 0.10, 

Ec = 1.0, ε = 0.20, Ha = 10.0, BrΩ
-1

 = 1.0, Pr = 1.0 

 

 

Fig. 19 Dimensionless entropy generation number profiles 

for various values of effective extinction coeffi-

cient Mn = 0.10, Re = 500, ε = 0.20, Ha = 10.0, 

BrΩ
-1

 = 1.0, Ec = 1.0, Pr = 1.0 

Figs. 10 and 11 show the magnetic parameter ef-

fect and plate inclination angle effect on temperature pro-

file for various Pr numbers respectively. It can be seen that 

the magnetic parameter and plate angle of inclination have 

almost no influence on temperature, and only in high Pr 

numbers, the increase of magnetic parameter causes the 

increase of temperature and the increase of plate inclina-

tion angle causes the slight temperature reduction. 

The influence of geometric parameter of porous 

medium (Dp) and Richardson number on dimensionless 

temperature profile is shown in Fig. 12. As it can be seen, 

in Richardson numbers higher than 1 (Gr/Re
2
 > 1) for 

which the natural convection is dominant, the temperature 

profiles shift above when the geometric parameter of po-

rous medium, Dp, increases. This is because when Dp in-

creases, motions of fluid particles in porous medium be-

come restricted and this makes the contact of fluid with 

porous medium stronger and therefore the friction and flu-

id temperature increases. The interesting point is that this 

behavior is reverse for Richardson numbers equal to and 

smaller than 1 (Gr/Re
2
 ≤ 1). As we know, in Richardson 

numbers smaller than 1, the forced convection is dominant, 

and in forced convection case, the external force causes the 

fluid motion and supplies energy of the fluid. Thus when 

Gr/Re
2
 ≤ 1, the increase of Dp does not have much effect 

on fluid temperature because the external force supplies 

the fluid particles energy which is lost due to the friction 

increase and therefore fluid temperature decrease. This can 

be a reason of inconsiderable effect of geometric parameter 

of porous medium on fluid temperature in Gr/Re
2
 ≤ 1. 

Fig. 13 shows the influence of effective extinction 

coefficient of porous medium on dimensionless tempera-

ture profile for various values of Pr number. It can be seen 

that the temperature profile shifts above with the increase 

of effective extinction coefficient. This is because when ae 

increases, the amount of heat absorption of the fluid in-

creases. The black color of solid particles present in porous 

medium can also cause the increase of effective extinction 

coefficient and finally the fluid temperature. 

Fig. 14 shows the influence of Eckert number on 

entropy generation number, Ns. The decrease of Eckert 

number causes the increase of entropy generation number. 

Considering specified conditions for the fluid, when the 

Eckert number decreases, the temperature difference of the 

plate surface and fluid increases. This causes heat transfer 

enhancement and therefore increase of fluid particles mo-

tion and energy on the plate which means that the molecu-

lar randomness or in other words the entropy of the fluid 

passed over the plate has increased. On the other hand, the 

description of Fig. 9 clarifies that the increase of Eckert 

number causes the increase of temperature in boundary 

layer. But according to Fig. 14, this temperature increase, 

due to increase of Eckert number, shows its influence in a 

very small distance from sheet surface directly as the en-

tropy generation of the fluid. 

It can be seen from Fig. 14 that at η = 0 when the 

Eckert number increases from 0.5 to 1.0, the entropy gen-

eration number Ns decreases from 1256.5 to 1223.7. This 

means that when the Eckert number increases 100% (be-

comes 2 times larger), then the entropy generation number 

Ns decreases 2.6%. 

Fig. 15 shows the influence of magnetic parame-

ter on entropy generation number. Entropy generation 

number is higher for higher magnetic parameter. In fact, 
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the motion of fluid molecules increases in presence of 

magnetic force. Consequently the presence of magnetic 

field in the fluid causes the entropy generation. Further-

more, entropy generation number has the highest value 

near the surface, where the temperature and velocity have 

maximum values in forced convection case. It means that 

the surface acts as the strong source of irreversibility and 

randomness generation. Also as it can be seen, when the 

magnetic parameter increases, the effect of this parameter 

on entropy generation increase of porous medium fluid 

decreases and becomes almost negligible. 

It can be seen from Fig. 15 that at η = 0 when the 

magnetic parameter increases from 0.2 to 0.4, then the en-

tropy generation number Ns increases from 1425.6 to 

1530.6 which means that 100% increase in magnetic pa-

rameter is equivalent to 7.4% increase in Ns. 

The influence of dimensionless Hartman number 

(Ha) on entropy generation number is shown in Fig. 16. 

Considering the specified properties of fluid, the increase 

of Hartman number means the increase of magnetic field 

on the plate and porous medium, for which this increase of 

the resultant force from magnetic field causes the increase 

of fluid temperature (see Fig. 10) particularly in low Pr 

numbers and therefore the increase of the fluid entropy and 

randomness. 

It can be seen in Fig. 16 that at η = 0 the increase 

of the Hartman number from 20 to 40 causes the increase 

of the entropy generation number Ns from 1622.7 to 

2822.7. This means that by 100% increase of the Hartman 

number, Ns increase 74%. 

Figs. 17 and 18 show the influences of dimension-

less group parameter BrΩ
-1

 and Reynolds number on en-

tropy generation number respectively. The increase of di-

mensionless group parameter and Reynolds number causes 

the increase of entropy generation number. It can be said 

that by the increase of dimensionless group parameter and 

Reynolds number, the fluid velocity increases which caus-

es the fluid particles randomness level to increase. It can be 

seen in Figs. 16, 17 and 18 that the entropy generation 

number is maximized near the plate surface. In these cases 

the surface acts as the strong source of irreversibility and 

randomness generation. 

It is seen in Fig. 17 that at η = 0 the increase of 

the dimensionless group parameter BrΩ
-1

 from 0.4 to 0.8 

causes the increase of the entropy generation number Ns 

from 529.3 to 1058.3, which means that when BrΩ
-1

 in-

creases 100% (becomes 2 times larger), then the entropy 

generation number Ns increases 100%. Also as it can be 

seen from Fig. 8, at η = 0 when the Reynolds number in-

creases from 200 to 400, then the entropy generation num-

ber Ns increases from 590.8 to 1080.6. This means that 

100% increase in the Reynolds number is equivalent to 

83% increase in Ns. 

Fig. 19 presents the effect of effective extinction 

coefficient of porous medium on dimensionless entropy 

generation profile. It can be seen that the entropy genera-

tion increases on the plate with the increase of effective 

extinction coefficient. This is because when ae increases, 

the amount of heat absorption by the fluid in the porous 

medium increases (see Fig. 13) which strengthens the fluid 

particle motions in porous medium and therefore the fluid 

randomness. However it can be said that the effective ex-

tinction coefficient has small effect on the entropy genera-

tion number. 

It is seen from Fig. 19 that at η = 0 the increase of 

the effective extinction coefficient ae from 1.0 to 2.0 caus-

es the increase of the entropy generation number Ns from 

3791 to 3822.4. This means that 100% increase in ae in-

creases Ns approximately 0.8%. 

 

 

Fig. 20 Dimensionless entropy generation number profiles 

for various values of porosity. Mn = 0.10, 

Re = 500, Ec = 1.0, Ha = 10.0, BrΩ
-1

 = 1.0, 

Pr = 1.0 

Fig. 20 shows the dimensionless entropy genera-

tion profile for various values of porosity (ε). It can be seen 

that the entropy generation on the plate increases with the 

increase of porosity. It is because when porosity increases, 

the possibility of free motion of the fluid particles inside 

porous medium increases. On the other hand, as it was 

mentioned in Fig. 8 description, the fluid temperature in-

creases and this is another reason for the increase of fluid 

particles motions and consequently the randomness and 

irreversibility of the fluid. 

It can be seen from Fig. 20 that at η = 0 when the 

porosity ε increases from 0.5 to 1.0, the entropy generation 

number Ns increases from 4358.4 to 5121.6, which means 

100% increase in porosity ε causes 17.5% increase in Ns. 

Here in investigating the effects of various pa-

rameters on the entropy generation number Ns, the values 

of Ns on the (plate) surface i.e., at η = 0 have been consid-

ered because Ns has the highest values on the surface. 

By evaluating the effects of various parameters 

including Eckert number, magnetic parameter, Hartman 

number, dimensionless group parameter BrΩ
-1

, Reynolds 

number, effective extinction coefficient ae and porosity ε 

on the entropy generation number Ns, it is seen that the 

dimensionless group parameter BrΩ
-1

 has the largest effect 

on Ns. After the dimensionless group parameter BrΩ
-1

, the 

Reynolds number and then the Hartman number have the 

largest effects on Ns. Next parameters in aspect of having 

effect on Ns are the porosity ε, the magnetic parameter and 

the Eckert number. It is seen that the effective extinction 

coefficient ae has the smallest effect on Ns. 

 

6. Conclusions 

 

The MHD mixed convection flow over a nonline-

ar stretching inclined transparent plate embedded in a po-

rous medium due to solar radiation has been investigated 

analytically and numerically. The steady two-dimensional 

governing equations are obtained considering Boussinesq 

approximation and uniform porosity in presence of the 

effects of viscous dissipation and variable magnetic field. 
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These equations are transformed by the similarity method 

to two coupled nonlinear ordinary differential equations 

(ODEs). These two nonlinear ODEs are converted into five 

first order ODEs and then the system of first-order equa-

tions is solved numerically using an implicit finite-

difference scheme known as the Keller-Box method. The 

nonlinear discretized system of equations is linearized us-

ing the Newton’s method. The system of obtained equa-

tions is a block-tri-diagonal which is solved using the 

block-tri-diagonal-elimination technique. 

The effects of various parameters such as magnet-

ic parameter, porosity, effective extinction coefficient of 

porous medium, solar radiation flux, plate inclination an-

gle, diameter of porous medium solid particles and dimen-

sionless Eckert, Richardson, Prandtl, Hartman, Brinkman, 

Reynolds and entropy generation numbers have been stud-

ied on the dimensionless temperature and velocity profiles. 

The results obtained are as follows: 

1. The dark colour of solid particles of porous 

medium can increase the effective absorption coefficient 

and finally the temperature in the thermal boundary layer. 

2. The entropy generation number is higher near 

the surface which means that the surface acts as a strong 

source of irreversibility.  

3. The higher the Eckert number, the lower the 

entropy generation number. The increase of Eckert number 

causes the increase of temperature in boundary layer, but 

this temperature increase shows its influence directly as the 

entropy generation of the fluid in a very small distance 

from the sheet surface.  

4. The dimensionless group parameter BrΩ
-1

, 

Reynolds number and Hartman number have very large 

effects on the entropy generation number while the mag-

netic parameter have small effect on the entropy generation 

number. 

5. The effective extinction coefficient has very 

small effect on the entropy generation number. 
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MAGNETINIO HIDRODINAMINIO TEKĖJIMO PER 

NETIESIŠKAI ĮTEMPTĄ PASVIRUSIĄ PERMATOMĄ 

PLOKŠTĘ, ESANČIĄ PORINGOJE APLINKOJE 

PRIKLAUSOMYBĖS NUO SAULĖS RADIACIJOS 

ENTROPIJOS ANALIZĖ 

 

R e z i u m ė 

 

Šiame darbe analitiniais ir skaitiniais metodais ti-

riama, kaip magnetinis hidrodinaminis mišrus konvekcinis 

tekėjimas per netiesiškai įtemptą pasvirusią permatomą 

plokštę, esančią poringoje aplinkoje priklauso nuo saulės 

radiacijos. Dviejų matmenų svarbiausios lygybės yra nu-

statytos įvertinant Boussinesq priartėjimą ir pastovų porin-

gumą, bei taip pat klampios sklaidos efektą ir kintamą 

magnetinį lauką. Taikant panašumo metodą šios lygtys 

transformuotos į dvi sujungtas netiesines paprastas dife-

rencialines lygybes ir išspręstos taikant skaitinį Kellerio ir 

Boxo metodą. Įvairių parametrų efektai, tokie kaip magne-

tiniai parametrai, poringumas, efektyvus aplinkos porin-

gumo išnykimo koeficientas, saulės radiacijos srautas, 

plokštės polinkio kampas, poringos aplinkos dalelių 

skersmuo ir bedimensinis Eckerto, Richardsono, Prandtlo, 

Hartmano, Brinkmano, Reynoldso ir entropijos generavi-

mo skaičiai buvo nagrinėti bedimensėje temperatūroje ir 

greičio profiliuose. Entropijos generavimo skaičius yra 

didesnis arti paviršiaus, o tai reiškia, kad paviršius veikia 

kaip stiprus negrįžtamumo šaltinis. Gauti rezultatai yra 

parodyti paveiksluose bei lentelėse ir aptarti. 

 

 

M. Dehsara, M. Habibi Matin, N. Dalir 

 

ENTROPY ANALYSIS FOR MHD FLOW OVER A 

NON-LINEAR STRETCHING INCLINED TRANSPA-

RENT PLATE EMBEDDED IN A POROUS MEDIUM 

DUE TO SOLAR RADIATION 

 

S u m m a r y 

 

The present paper investigates analytically and 

numerically the magneto-hydrodynamic (MHD) mixed 

convection flow over a nonlinear stretching inclined trans-

parent plate embedded in a porous medium due to solar 

radiation. The two-dimensional governing equations are 

obtained considering the dominant effect of boundary layer 

and considering Boussinesq approximation and uniform 

porosity and also in presence of the effects of viscous dis-

sipation and variable magnetic field. These equations are 

transformed by the similarity method to two coupled non-

linear ordinary differential equations (ODEs) and then 

solved using a numerical implicit method called Keller-

Box. The effects of various parameters such as magnetic 

parameter, porosity, effective extinction coefficient of po-

rous medium, solar radiation flux, plate inclination angle, 

diameter of porous medium solid particles and dimension-

less Eckert, Richardson, Prandtl, Hartman, Brinkman, 

Reynolds and entropy generation numbers have been stud-

ied on the dimensionless temperature and velocity profiles. 

The entropy generation number is higher near the surface 

which means that the surface acts as a strong source of 

irreversibility. The results obtained are shown in diagrams 

and tables and have been discussed. 
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