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1. Introduction 

 

The polyamides have attracted a great deal of in-

terest over the last few years due to superior properties 

such as high specific strength and stiffness, wear re-

sistance, dimensional stability, low weight, and directional 

properties compared to conventional metallic materials [1]. 

As a result, there is an increasing usage of these thermo-

plastic polymer composites in many fields of engineering. 

The polyamides require machining operations at 

the final assembly stage in order to get the finished com-

ponents, even though they are produced as near net shapes 

[2]. Nevertheless, the knowledge regarding the machining 

of polymers is limited. The machining of polymers often 

presents challenges to engineers [3], therefore, there is a 

need to understand the machining of polymers [1-4]. Until 

now, there is a limited number of papers dealing with 

modeling the relationships among the process parameters 

and their effects on machinability aspects (cutting forces, 

tool wear, surface roughness, power, etc.) of polymers. 

Gaitonde et al. [1] analyzed the effects of process 

parameters (work material, type of cutting tool, cutting 

speed, and feed rate) on machinability characteristics (ma-

chining force, power and specific cutting force) during 

turning of unreinforced polyamide (PA6), and reinforced 

polyamide with 30% of glass fibers (PA66 GF30) through 

artificial neural network (ANN) modeling. Dhokia et al. 

[3] developed a surface roughness predictive model based 

on ANN for slot milling of polypropylene. In their study, 

extensive experimental work on different ANN architec-

tures and training algorithms was performed to predict the 

behavior of the surface roughness considering spindle 

speed, feed rate, and the depth of cut as ANN inputs. The 

predictive model was aimed to provide accurate machining 

parameters to obtain optimized surface finishes. Gaitonde 

et al. [4] developed RSM based second-order mathematical 

models for analyzing the influence of cutting speed and 

feed rate on machining force, cutting power, and specific 

cutting pressure during turning of unreinforced polyamide 

(PA6), and reinforced polyamide with 30% of glass fibers 

(PA66 GF30). Farahnakian et al. [5] investigated the influ-

ence of cutting parameters (spindle speed and feed rate) 

and nanoclay (NC) content on machinability (cutting force 

and surface roughness) in milling of polyamide-6/nanoclay 

(PA-6/NC) nanocomposites. Cutting force and surface 

roughness are separately modeled by using a particle 

swarm optimization (PSO)-based ANN. 

The selection of cutting tool and process parame-

ters is very much essential in machining of polyamides [1]. 

Therefore, once the input-output relationship model is de-

veloped, one needs to determine optimal or near-optimal 

cutting conditions using an optimization technique. 

Dhokia et al. [6] developed a predictive model us-

ing the design of experiments (DOE) method to obtain 

optimized machining parameters, by utilizing genetic algo-

rithm (GA), for a specific surface roughness in ball-end 

machining of polypropylene. Yilmaz et al. [7] applied the 

ANN approach to predict the surface roughness in milling 

of PA6G polyamide. The spindle speed and feed rate were 

the cutting parameters used as ANN inputs. By simulating 

the trained ANN for many input combinations, the re-

sponse surface of the surface roughness was obtained from 

which the optimal cutting parameters were identified. Gai-

tonde et al. [2] applied Taguchi’s quality loss function ap-

proach for simultaneously minimizing the power and spe-

cific cutting force during turning of both PA6 and PA66 

GF30 polyamides. Taguchi’s optimization was performed 

with tool material, feed rate and cutting speed as the pro-

cess parameters. 

To the authors’ knowledge, little work has been 

reported in the literature on developing mathematical mod-

els for surface roughness in turning of polyamide PA6 

based on ANN. ANNs are currently one of the most pow-

erful modeling techniques, based on the statistical ap-

proach, increasingly applied in modeling of machining 

processes. The ability of ANN to capture any complex 

input–output relationships from the limited data set, espe-

cially in the machining processes, where a huge experi-

mental data set for the process modeling is difficult and 

expensive to obtain [1], was the main reason for using 

ANN to develop a mathematical model for surface rough-

ness. In addition, ANNs do not require a prior assumption 

of the functional form of the relationship between cutting 

and process parameters, but are in turn, after successful 

training, able to provide exact relationship between param-

eters that can be represented by mathematical equation. To 

obtain data for ANN training, the turning experiments were 

conducted according to Taguchi’s L27 orthogonal array 

(OA) experimental layout plan. 

Therefore, this paper aims at modeling of rela-

tionships among the cutting parameters (cutting speed, 

feed rate, depth of cut and tool nose radius) and surface 

roughness in turning of polyamide PA6 using ANN. In 

addition to modeling, the surface roughness mathematical 

model was optimized. To find the optimum cutting param-

eter setting one may apply a large number of techniques. In 

recent years, among the traditional optimization methods, 

such as linear programming [8, 9] or response surface 

methodology [10-12], the application of metaheuristic op-

timization algorithms is increasing. The successful applica-
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tion of GAs, PSO and simulated annealing for optimization 

was reported in references [5, 6, 13, 14]. Although many 

methods can achieve acceptable results, the simplex opti-

mization algorithm was selected because of its simplicity 

and efficiency. 

 

2. Experimental procedure 

 

2.1. Material and machining conditions 

 

The work material used in the study was unrein-

forced polyamide PA-6 (commercially DOCAMID 6E) 

produced by Quattroplast Ltd. (Hungary). The mechanical 

and thermal properties of the work material are given in 

Table 1. 

 

Table 1 

Properties of PA-6 polyamide 
 

Density, g/cm3 1.14 

Tensile strength, N/mm2 80 

Module of elasticity, N/mm2 3200 

Charpy impact resistance, KJ/m2 >3 

Hardness (Shore D), N/mm2 82 

Melting temperature, ºC 220 

Thermal conductivity at 20°C, W/(Km) 0.23 

Coefficient of linear thermal expansion, average 

value between 20 – 60 °C, m/(mK) 
90·10-6 

 

The longitudinal turning experiment was carried 

out in 100 mm length and 92 mm diameter workpiece on 

the universal lathe machine “Potisje PA-C30” with a 

11 kW power, speed range n = 20 ÷ 2000 rpm, and longi-

tudinal feed rate range f = 0.04 ÷ 9.16 mm/rev. Cutting tool 

was SANDVIK Coromant tool holder SVJBR 3225P 16 

with inserts VCGX 16 04 04-AL (H10) and VCGX 16 04 

08-AL (H10). The tool geometry was: rake angle γ = 7º, 

clearance angle α = 7º, cutting edge angle χ = 93º, and cut-

ting edge inclination angle λ = 0º. 

In the study, the average surface roughness (Ra) 

was considered. Mathematically, Ra is the arithmetic value 

of the departure of profile from the centerline along sam-

pling length. 

The machined surface was measured at three 

equally spaced positions around the circumference of the 

workpiece using the surface profilometer Surftest Mitutoyo 

SJ-301. 

 

2.2. Plan of experiment 

 

To develop mathematical model based on ANN 

that relates the cutting parameters and average surface 

roughness (Ra), a plan of experiment is needed. The classi-

cal DOE methods are sometimes too complex and require a 

large number of trials especially in situations when the 

number of selected process parameters increases. Taguchi 

method [15] uses a special design of OA to study the entire 

parameter space with minimum experiments [2]. 

In the present study, four cutting parameters, 

namely, cutting speed (Vc), feed rate (f), depth of cut (ap), 

and tool nose radius (r) were considered. The cutting pa-

rameters and their levels are given in Table 2. The cutting 

parameter ranges were selected based on machining guide-

lines provided by Quattroplast Ltd. and previous research-

es [4]. 

The cutting parameters were arranged in standard 

Taguchi’s L27(3
13

) OA. Cutting parameters Vc, f and ap 

were assigned to columns 1, 2 and 5, respectively. This 

allowed two-level interactions of these parameters to be 

studied. Cutting parameter r was assigned to column 12. 

As it had only two levels, the dummy-level technique [15] 

was used to reassign level 1 to level 3. The plan of experi-

ment layout to obtain average surface roughness (Ra) is 

shown in Table 3. Experiment trials were performed at 

random order to avoid systematic errors. 

 

Table 2 

 

Cutting parameters and their levels 
 

Cutting parameter Symbol 

Parameter levels 

Level 1 

(low) 

Level 2 

(medium) 

Level 3 

(high) 

Cutting speed, m/min Vc 65.03 115.61 213.88 

Feed rate, mm/rev f 0.049 0.098 0.196 

Depth of cut, mm ap 1 2 4 

Tool nose radius, mm r 0.4 0.8 - 

 

3. ANN for modeling the surface roughness 

 

3.1. ANN basics 

 

ANNs are massive parallel systems made up of 

numerous simple processing units called neurons. An ANN 

is a multilayered architecture where neurons are grouped 

into input, hidden, and output layers. The neurons between 

adjacent layers are connected with weights that have to be 

determined during ANN training process. ANNs are char-

acterized by their architecture, weights and adjoined bias-

es, and activation (transfer) functions that are used in hid-

den and output layers [16]. Direct ANNs with supervised 

training and backpropagation (BP) are often used for solv-

ing most practical problems. 

The general architecture of three-layer BP ANN is 

illustrated in Fig. 1. 

 

 

Fig. 1 The general architecture of three-layer BP ANN 

 

The input neurons are used to feed the ANN with 

the input data. Through neuron interconnections each input 

data is processed with weights to be used in the hidden 

layer. 
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Table 3 

The plan of experiment layout and experimental results 
 

Trial 

no. 

Coded cutting parameter levels Actual cutting parameter values Experimental results 

x1 x2 x3 x4 

Vc f ap r Ra aR  

m/min mm/rev mm mm µm µm 

1 1 1 1 1 65.03 0.049 1 0.4 1 1.07 1.035 

2 1 1 2 2 65.03 0.049 2 0.8 0.95 0.86 0.905 

3 1 1 3 1 65.03 0.049 4 0.4 1.31 1.42 1.365 

4 1 2 1 1 65.03 0.098 1 0.4 1.39 1.51 1.450 

5 1 2 2 1 65.03 0.098 2 0.4 2.05 1.4 1.725 

6 1 2 3 2 65.03 0.098 4 0.8 2.09 1.67 1.880 

7 1 3 1 2 65.03 0.196 1 0.8 3.78 3.56 3.670 

8 1 3 2 1 65.03 0.196 2 0.4 3.46 3.34 3.400 

9 1 3 3 1 65.03 0.196 4 0.4 3.61 3.51 3.560 

10 2 1 1 2 115.61 0.049 1 0.8 1.04 1.4 1.220 

11 2 1 2 1 115.61 0.049 2 0.4 1.04 1.01 1.025 

12 2 1 3 1 115.61 0.049 4 0.4 1.22 1.12 1.170 

13 2 2 1 1 115.61 0.098 1 0.4 1.43 1.29 1.360 

14 2 2 2 2 115.61 0.098 2 0.8 1.25 1.44 1.345 

15 2 2 3 1 115.61 0.098 4 0.4 1.78 1.63 1.705 

16 2 3 1 1 115.61 0.196 1 0.4 3.41 3.23 3.320 

17 2 3 2 1 115.61 0.196 2 0.4 3.41 3.39 3.400 

18 2 3 3 2 115.61 0.196 4 0.8 6.03 5.74 5.885 

19 3 1 1 1 213.88 0.049 1 0.4 0.85 0.69 0.770 

20 3 1 2 1 213.88 0.049 2 0.4 1.04 1.16 1.100 

21 3 1 3 2 213.88 0.049 4 0.8 1.45 1.36 1.405 

22 3 2 1 2 213.88 0.098 1 0.8 1.37 1.59 1.480 

23 3 2 2 1 213.88 0.098 2 0.4 1.24 1.45 1.345 

24 3 2 3 1 213.88 0.098 4 0.4 1.7 1.54 1.620 

25 3 3 1 1 213.88 0.196 1 0.4 3.33 3.1 3.215 

26 3 3 2 2 213.88 0.196 2 0.8 5.53 4.94 5.235 

27 3 3 3 1 213.88 0.196 4 0.4 3.61 3.45 3.530 

 

As illustrated in Fig. 1, j-th hidden neuron re-

ceives an activation signal which is the weighted sum from 

the neurons in the input layer 

j ji i j
i

h w x b   (1) 

where wji are the weights between input to hidden neurons, 

bj are biases (thresholds) of hidden neurons, and i and j are 

the number of input and hidden neurons, respectively. This 

sum is then passed through an activation function (f) to 

produce the neurons output (Hj). The activation function in 

the hidden layer most commonly is a sigmoid function 

whose general form is given as 

 
jhjj

e
hfH





1

1
 (2) 

Finally, the output neurons receive the following 

signals from the hidden neurons 

 k

j

jkjk bHwy   (3) 

where wkj are the weights of the connection between hid-

den and output neurons, and bk biases of output neurons. 

These activation signals can be transformed again, 

using the sigmoid transfer function to give the outputs of 

the ANN. However, for prediction, it is sufficient to use 

the linear activation function (identity) for output neurons. 

The ANN output is then as in Eq. (3) which is predicted 

values for the given inputs. 

Accordingly, the functioning of a three-layer 

feed-forward ANN, as the one in Fig. 1, can be expressed 

as 
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


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


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j i

jijikj bbxwfwXŷ  (4) 

where )(Xŷ is the computed ANN output (prediction) for 

the input X = x1,...,xi. 

 

3.2. Data for ANN training and testing 

 

In order to determine ANN weights, a set of in-

put-output data, obtained by the experiment, simulation or 

some other way, is needed. The training and testing data in 

this study was created using Taguchi’s L27 OA (Table 3). 

As Taguchi’s OA is used to study the entire experimental 

space, defined by cutting parameters, it is suitable for ANN 

training. 

Most researchers consider that the total set of 

available data (N) should be divided into two different sub-

sets: for the training of ANN (Ntr ≈ (3/42/3) N) and for 

the ANN testing (Nts ≈ (1/41/3) N). In this case, the 54 

experimental data (input/target pairs) were randomly di-

vided into a data subset for training (Ntr = 40), and data 

subset for testing the ANN (Nts = 14). 

In order to stabilize and enhance ANN training 

the input and output data was normalized between -1 and 1 

using the following equation 
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where pnorm and pi represent the normalized and original 

(raw) data, and pmin and pmax are minimum and maximum 

values of the original data. 

 

3.3. ANN architecture 

 

Specifying ANN architecture requires determin-

ing the number of neurons in input, output, and hidden 

layers, and the choice of activation functions in hidden and 

output layers. 

Since ANN was aimed at estimating the average 

surface roughness (Ra) in terms of cutting speed (Vc), feed 

rate (f), depth of cut (ap), and tool nose radius (r), there are 

four neurons in input layer, and one neuron in output layer. 

It has been widely reported that ANN with a sin-

gle hidden layer are able to approximate any arbitrary 

function to a given accuracy. Therefore, the choice of 

ANN architecture can be reduced to the selection of the 

“optimal” number of hidden neurons. The number of hid-

den neurons is data dependent. The number of weights is 

equal to the sum of the product between the number of 

neurons in each layer. Therefore, the upper limit of the 

number of hidden neurons is restricted by the number of 

available data for training. It is easy to calculate that for 

four inputs and one output, and 40 training data, the maxi-

mum number of hidden neurons is eight. Various architec-

tures were developed, and the developed (4 [4]1) ANN 

architecture (Fig. 2) turned out to be the optimal solution 

(after trade-off). 

Linear transfer function (purelin
*
) and hyperbolic 

tangent sigmoid activation function (tansig
*
) were used in 

the output and hidden layer, respectively. Note that the 

tansig in MATLAB is calculated as follows [17] 

 
2

1
1

1 n
a tan sig n

e 
  


 (6) 

 

Fig. 2 ANN for modeling the surface roughness 

 

3.4. ANN training 

 

The ANN training belongs to one of the most im-

portant parts of the ANN design process. The ANN train-

ing represents a process of adjusting weights and adjoined 

biases between neurons on the basis of comparing the out-

put values with the desired (target) ones for the same input 

                                                           
* MATLAB command for the corresponding function 

ones. Training is a continuous process, which is repeated 

until the ANN is stabilized or overall error is reduced be-

low a previously defined threshold. Gradient descent with 

momentum method updates weights so as to minimize the 

mean square error (MSE) between the ANN predicted and 

desired (target) values 

11  



 t

t

tt w
w

E
ww   (7) 

where E is the MSE, and t, η, and µ denote the iteration 

number, learning rate, and momentum, respectively. In 

each iteration, the weights are updated by the partial deriv-

ative of the total error with respect to a given weight 

through a learning rate η and the variation of the same 

weight during the previous iteration by momentum µ. 

Learning rate and momentum µ control the speed and sta-

bility of the training process, and usually take values be-

tween 0 and 1 [18]. On the basis of preliminary experimen-

tation with different combinations of η and µ, considering 

that η + µ ≈ 1 [19], η and µ were set to 0.66 and 0.33, re-

spectively. 

The ANN training process performance was fol-

lowed according to the MSE, and was stopped after 5000 

iterations since no further improvement in ANN perfor-

mance was achieved. Fig. 3 shows the variation of MSE as 

function of the number of iterations. 

 

 

Fig. 3 MSE during the training phase vs. the number of 

iterations 

 

3.5. ANN testing 

 

Once the weights are adjusted the performance of 

the trained ANN should be tested. The trained ANN was 

tested for generalization using 14 experimental data (7 

trials (bolded rows) in Table 3) which were not used in 

ANN training process. 

There is a variety of statistical performance 

measures employed to evaluate the ANN performance. The 

statistical methods of root mean square error (RMSE), ab-

solute fraction of variance (r
2
) and mean absolute percent 

error (MAPE) have been used for estimating the prediction 

errors. These values are mathematically defined by the 

following equations 





N

i

ii ot
N

RMSE
1

21
 (8) 
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where t is the target (experimental) value, o is the ANN 

predicted value and N is the number of data. The perfor-

mance of the developed ANN is given in Table 4. 
 

Table 4 

Performance of the 4 [4]1 ANN 
 

 training data test data entire data 

RMSE 0.133 0.207 0.156 

r2 0.998 0.991 0.996 

MAPE 5.192 11.937 6.941 
 

As a part of these analyses, the performance of 

the ANN for prediction of average surface roughness using 

the entire data set, in the form of regression is shown in 

Fig. 4. With this analysis it is possible to determine the 

response of the ANN model with respect to the experi-

mental values. 
 

 

Fig. 4 The prediction performance of the 4 [4]1 ANN using 

entire data 
 

The results from Table 4 and Fig. 4 indicate that 

ANN predictions are in good agreement with the experi-

mental results. 
 

4. Mathematical model of surface roughness and  

optimization 
 

4.1. Mathematical equation 

 

The biggest criticism regarding the application of 

ANN is that all the perceived relationships between inputs 

and outputs by ANN model cannot be represented by a 

mathematical equation. However, the mathematical equa-

tion based on ANN can be obtained using the general func-

tional form of a single hidden layer feedforward ANN giv-

en in Eq. (4). Once the ANN is trained, the unknown input 

to hidden neurons weights (wji) and hidden and output neu-

rons weights (wkj), as well as hidden neurons biases (bj) 

and output neurons biases (bk) are determined. The weights 

and the biases of the trained ANN are presented in Table 5. 
 

Table 5 

Weights and biases of the 4 [4]1 ANN 
 

Weights wji Weights wkj Biases 

x1 x2 x3 x4 ( )ŷ X  
bj bk 

(Vc) (f) (ap) (r) (Ra) 

0.7108 -0.8342 -1.3879 1.6211 -0.0462 -1.1989 0.9546 

0.1381 0.8405 0.1893 0.9261 1.5009 -1.7475 - 

-0.8113 -0.8322 -1.0085 0.5217 -0.0381 -0.7722 - 

-0.3297 1.5591 0.1288 -1.2761 0.4420 -1.5139 - 

 

Regarding the architecture of the developed ANN, 

the used activation functions (Eq. (6)), and by using the 

weights and biases from Table 5, the exact mathematical 

relationship between average surface roughness and cut-

ting parameters can be expressed by the following equation 

  kkjbwXnorm|a bw
e

R
jji















1

1

2
2

 (11) 

where X is the column vector which contains normalized 

values of Vc, f, ap, and r, and norm|aR is the normalized value 

for the average surface roughness (Ra). In order to obtain 

the actual values for the average surface roughness (Ra), 

one needs to perform denormalization by the following 

equation 

   minminmaxnorm|aactual|a pppRR  1
2

1
 (12) 

In that way, by using Eqs. (11) and (12) it is pos-

sible to calculate average surface roughness (Ra) for the 

given cutting conditions. 
 

4.2. Optimization 
 

An appropriate selection of cutting parameters 

would increase the product quality by minimizing the sur-

face roughness (Ra) as the main indicator of surface quali-

ty. In order to get the optimal cutting parameters, i.e. the 

combination of cutting parameters that gives the minimal 

value of the average surface roughness (Ra), the optimiza-

tion using simplex optimization algorithm was conducted. 

For turning of polyamide PA-6, the optimization problem 

was defined as below: 

cFind:  , , ,
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p

a a c p

V f a r

 R R (V f a r )
 (13a) 
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For calculating average surface roughness (Ra), 

the mathematical function based on the developed ANN 

(Eq. (11)) was used. All calculations are based on the op-

timization package MATLAB. 

As a result of optimization, the minimum value of 

Ra = 0.6507 μm was obtained with the following cutting 

parameter values: Vc = 65.03 m/min, f = 0.049 mm/rev, 

ap = 1 mm, and r = 0.8 mm. 

To verify the optimization result, one needs to 

perform the experiment under the optimal cutting condi-

tions. Since the optimal combination of cutting parameters 

was not included in the OA (Table 3), the verification test 

was conducted. The comparison of optimal values obtained 

by simplex optimization algorithm with experimental 

measurements is given in Table 6. 

 

Table 6 

Optimization results 
 

Optimal cutting parameters 
Ra aR  

µm 

Vc, 

m/min 

F, 

mm/rev 

ap, 

mm 

r, 

mm 

ANN+ 

simplex 

Experi-

ment 

65.03 0.049 1 0.8 0.6507 0.7274 

 

From Table 6, one can see that obtaining high 

quality surfaces of low Ra in turning of polyamide PA6 is 

possible when cutting parameters Vc, f, and ap are set at the 

low levels and r at the higher level. 
 

5. Analysis and discussion 

 

The developed ANN to predict the average sur-

face roughness based on the cutting parameters showed 

high degree of accuracy within the scope of cutting condi-

tions investigated in the study. Thus, the effect of cutting 

parameters on the average surface roughness can be stud-

ied using Eqs. (11) and (12). 

The influence of cutting parameters on surface 

roughness can be analyzed by using 3D response graphs. 

Figs. 5, a-d show the 3D response graphs for average sur-

face roughness. The response surface graphs are drawn by 

varying feed rate and depth of cut while keeping the cut-

ting speed and tool nose radius at all combinations of low 

and high levels. 

The functional dependence of Ra on the depth of 

cut and feed rate at constant cutting speed of v = 65.03 

m/min can be seen in Figs. 5, a and b. 

It can also be seen that the increase in depth of cut 

and feed rate results in deterioration of the machined sur-

face. The increase in feed rate produces a nonlinear in-

crease in Ra, whereas the dependence between Ra and 

depth of the cut is linear. 

Similar conclusions can be made based on 

Figs. 5, c and d where functional dependence of Ra on the 

depth of cut and feed rate at constant cutting speed of 

v = 213.88 m/min is illustrated. An examination of the cor-

responding roughness plots (Figs. 5, a, b and Figs. 5, c, d) 

revealed no distinct difference between them, i.e. the cut-

ting speed showed negligible influence on Ra. 

 

          

 a b 
 

          

 c d 

Fig. 5 The influence of feed rate and depth of cut at various combinations of cutting speed and tool nose radius:  

a) Vc = 65.03 m/min, r = 0.4 mm; b) Vc = 65.03 m/min, r = 0.8 mm; c) Vc = 213.88 m/min, r = 0.4 mm; 

d) Vc = 213.88 m/min, r = 0.8 mm 
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The following can be also concluded: (a) the in-

crease in feed rate, depth of cut and cutting speed results in 

the increase of Ra, whereas the influence of tool nose radi-

us must be considered through the interaction with feed 

rate; (b) feed rate has maximum influence on the Ra fol-

lowed by tool nose radius, depth of cut and cutting speed. 

 

6. Conclusion 

 

In this paper, an ANN based mathematical model 

is developed in order to relate the cutting parameters (cut-

ting speed, feed rate, depth of cut and tool nose radius) and 

surface roughness in turning of polyamide material. Exper-

iments were performed according to Taguchi’s method and 

the obtained data was used for ANN training. After suc-

cessful training, the developed ANN was successfully val-

idated on testing data using three statistical performance 

measures. Considering the ANN architecture, the used ac-

tivation functions, and weights and biases of the trained 

ANN, the mathematical model for surface roughness was 

developed. 

By applying the simplex optimization method on 

the developed surface roughness model, the optimal cut-

ting parameter setting, minimizing surface roughness, was 

determined. The optimization results were then experimen-

tally verified. 

The results of the performed analysis show that 

both feed rate and tool nose radius are the most influential 

factors on surface roughness. The depth of cut and cutting 

speed have a negligible influence on the surface roughness. 

In summary, it was shown that the complex input 

and output relationships in machining can be efficiently 

modeled by ANNs. The knowledge acquired about rela-

tionship between inputs and outputs by the trained ANN 

can be mathematically represented. This allows for per-

formance of further analysis and parameter optimization. 
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M. Madič, V. Marinkovič, M. Radovanovič 

 

TEKINAMO POLIAMIDO PAVIRŠIAUS 

ŠIURKŠTUMO MATEMATINIS MODELIAVIMAS IR 

OPTIMIZAVIMAS NAUDOJANT DIRBTINĮ 

NEURONINĮ TINKLĄ 

 

R e z i u m ė 

 

Straipsnyje pristatoma tekinamo poliamido pavir-

šiaus šiurkštumo matematinio modeliavimo metodologija, 

paremta dirbtinio neuroninio tinklo naudojimu. Paviršiaus 

šiurkštumo modelis yra sukurtas naudojant pagrindinius 

pjovimo parametrus: pastūmos greitį, pjovimo greitį, pjo-

vimo gylį ir įrankio viršūnės suapvalinimo spindulį. Mod-

eliavimo duomenys buvo parinkti eksperimentiškai, nau-

dojant „Taguchi L27 “ ortogonaliąją tvarką. 

Papildant modeliavimą, taikytas simpleksinis op-

timizavimo metodas ir nustatyti optimalūs pjovimo par-

ametrai, minimizuojantys paviršiaus šiurkštumą. 

Iš modelio analizės, atliktos naudojant 3D charak-

teristikų grafikus, buvo padarytos išvados. 

Pastūmos greitis yra pagrindinis veiksnys, le-

miantis paviršiaus šiurkštumą, po įrankio viršūnės spindu-

lio ir pjovimo gylio. Pjovimo greičio efektas yra labai ne-

didelis. 

Minimalus paviršiaus šiurkštumas gaunamas de-

rinant nedidelį pastūmos greitį, nedidelį pjovimo greitį ir 

didelį įrankio viršūnės spindulį. 

 

 

M. Madić, V. Marinković, M. Radovanović 

 

MATHEMATICAL MODELING AND OPTIMIZATION 

OF SURFACE ROUGHNESS IN TURNING OF 

POLYAMIDE BASED ON ARTIFICIAL NEURAL 

NETWORK 

 

S u m m a r y 

 

This paper presents the methodology of mathe-

matical modeling of surface roughness in turning of poly-

amide based on artificial neural network. The surface 

roughness model was developed in terms of the main cut-

ting parameters such as feed rate, cutting speed, depth of 

cut, and tool nose radius. The data for modeling were col-

lected through experiment based on Taguchi L27 orthogo-

nal array. 

In addition to modeling, by applying the simplex 

optimization method, the optimal cutting parameter setting 

minimizing surface roughness, was determined. 

From the model analysis performed by generating 

3D response graphs the following conclusions are drawn. 

Feed rate is the dominant factor affecting surface 

roughness, followed by tool nose radius and depth of cut. 

As for cutting speed, its effect is not very important. 

The minimal surface roughness results with the 

combination of low feed rate, low depth of cut, low cutting 

speed and high tool nose radius. 

 

Keywords: mathematical modelling, optimization, surface 

roughness, turning, polyamide, artificial neural network. 
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