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1. Introduction 

 

A thick-walled spherical shell subjected to pres-

sure in radial direction is one of the classical problems in 

engineering mechanics. This problem was studied by sev-

eral researchers in the past. Among them, Timoshenko and 

Goodier [1] obtained the analytical expressions of stresses 

and displacement in a thick-walled sphere subjected to 

internal and external pressure. In the recent past, there has 

been a strong increase in the interest in functionally graded 

materials. FGMs are composite materials that are micro-

scopically nonhomogeneous but at macrolevel, the me-

chanical properties vary continuously from one surface to 

another by smoothly varying the volume fractions of the 

material constituents. Heterogeneous composite materials 

are FGMs with gradient compositional variation of the 

constituents from one surface of the material to the other 

which results in continuously varying material properties. 

These materials are advanced, heat resisting, erosion and 

corrosion resistant, and have high fracture toughness. The 

FGM spherical shells are widely used in many engineering 

fields such as aerospace, mechanical, naval, nuclear ener-

gy, chemical plant, electronics, and biomaterials and so on. 

Closed-form solutions are obtained by Tutuncu 

and Ozturk [2] for cylindrical and spherical vessels with 

variable elastic properties obeying a simple power law 

through the wall thickness which resulted in simple Euler-

Cauchy equations whose solutions were readily available 

Elastic analysis of internally pressurized thick-walled 

spherical pressure vessels of functionally graded materials 

was studied [3]. In the paper, two kinds of pressure vessels 

are considered: one consists of two homogeneous layers 

near the inner and outer surfaces of the vessel and one 

functionally graded layer in the middle; the other consists 

of the functionally graded material only. Based on the as-

sumption that Poisson’s ratio is constant and modulus of 

elasticity is an exponential function of radius, Chen and 

Lin [4] have analyzed stresses and displacements in FG 

cylindrical and spherical pressure vessels. A hollow sphere 

made of FGMs subjected to radial pressure was analyzed 

in [5]. Using plane elasticity theory and Complementary 

Functions method, Tutuncu and Temel [6] obtained ax-

isymmetric displacements and stresses in functionally-

graded hollow cylinders, disks and spheres subjected to 

uniform internal pressure. Zamani Nejad et al. [7] devel-

oped 3-D set of field equations of FGM thick shells of rev-

olution in curvilinear coordinate system by tensor calculus. 

Deformations and stresses inside multilayered thick-walled 

spheres are investigated [8]. In the paper, each sphere is 

characterized by its elastic modules. Assuming the volume 

fractions of two phases of a FG material (FGM) vary only 

with the radius, Nie et. al. [9] obtained a technique to tailor 

materials for functionally graded (FG) linear elastic hollow 

cylinders and spheres to attain through the thickness either 

a constant hoop (or circumferential) stress or a constant in-

plane shear stress. 

In this study, a complete analytical solution for 

FGM thick-walled spherical shells subjected to internal 

and/or external pressures is presented. The analytical solu-

tion which is closed-form is obtained for real, double and 

complex roots of equation and distribution of stresses and 

displacement are compared with the solution using finite 

element method. 
 

2. Basic formulations of the problem 
 

Consider a thick hollow FGM sphere with an in-

ner radius Ri, and an outer radius Ro, subjected to internal 

and external pressure Pi and Po, respectively. 

The classical theory is based on the assumption 

that the straight sections perpendicular to the central axis 

of the sphere remains unchanged after loading and defor-

mation. According to this theory, the deformations are ax-

isymmetric and do not change along the circumference of 

sphere. In other words, the radial deformation is dependent 

only on radius  R Ru . The value of shear strains and shear 

stresses are zero. Therefore, normal stresses are principal 

stresses. In the spherical shells, because of dual central 

symmetry, both the values of circumferential and meridio-

nal strains and those of stresses are equal. Thus, 

 

 

 

 

 


 

 (1) 

The strains are expressed in terms of the radial 

displacement Ru  as follows 

R
R

R

du

dR

u

R
 



 


 


 


 (2) 

The equilibrium equation of the FGM hollow 

sphere, in absence of body forces, is expressed as 
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 
1

2 0R
R

d

dR R
 


       (3) 

and the constitutive relations for nonhomogenous and iso-

tropic materials are 

 
R RA B B

E R B A B

B B A

 

 

 

 

 

    
        
        

 (4) 

A  and B  are related to Poisson’s ratio, 

 const.   as 

     

1
,  

1 1 2 1 1 2
A B

 

   


 

   
 (5) 

It is assumed that the nonhomogeneous modulus 

of elasticity E  is power function of R  as 

 
n

i

i

R
E R E

R

 
  

 
 (6) 

where Ei is the modulus of elasticity at the internal surface 

R = Ri, and n is the inhomogeneous constant determined 

empirically. 

Now suppose that ir R R , thus Eqs. (2) to (4) 

and (6) may be rewritten as 

, r r
R

du u

dr r
       (7) 

 
2

0R
R

d

dr r



     (8) 

 
2R RA B

E r
B A B 

 

 

    
        

 (9) 

  n

iE r E r  (10) 

Substitution of Eqs. (7) and (10) into Eq. (9), and 

the use of Eq. (8) lead to the equation 

 

  

2

2
0

r r

r r

du ud
E r A B

dr dr r

du u
E r A B

r dr r

  
   

  

  
     

  
 (11) 

After simplification, Eq. (11) is expressed as 

2

2 2

2 2
1 0r r

r

d u n du B
n u

dr r dr r A

   
      
   

 (12) 

Eq. (12) is the nonhomogeneous Euler-Caushy 

equation 

   2 2 1 0r r rr u n ru n u       (13) 

where '  and ''  denote first and second differentiation with 

respect to r and the value of B A   is obtained based 

on Eq. (5). 

Substituting   m

ru r r  in Eq. (13), the character-

istic equation is obtained as follows 

   2 1 2 1 0m n m n      (14) 

The roots of characteristic equation are 

 

1 2

2

1

2 2

2 1 4 9

,

n
m

n n



 


   


   


 (15) 

These roots may be (i) real, (ii) double, (iii) com-

plex. 

 

 

Fig. 1 Cross-section of heterogeneous thick sphere 

 

3. Solution for heterogeneous thick sphere 
 

Now, differential Eq. (13) for real, double and 

complex roots will be solved. Following that, in each of 

the cases, parametric equations of radial stress, meridional 

stress and radial displacement will be derived. 

 

3.1. Real roots 

 

In this case, 0   and we have 

 

1 2

2

1 1

2 2 2 2

2 1 4 9

n n
m , m

n n

 

 

 
      


   


 (16) 

The solution of Eq. (13) is as follows 

  1 2
1 2

m m

ru r C r C r   (17) 

With substitution of Eqs. (17) into Eq. (7) and 

then use of Eq. (9), radial and meridional stresses are ob-

tained as follows 

 

 

1

2

1 11

2 2

2

2

m

n

R i m

C Am B r
E r

C Am B r
 

  
  

   

 (18) 

  

  

1

2

1 11

2 2

m

n

i m

C Bm A B r
E r

C Bm A B r



   
 
    

 (19) 
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For a sphere subjected to internal and external 

pressure, constants C1 and C2 are determined using bound-

ary conditions as 

1
R i R oP , P

r r k
    

 
 (20) 

thus 

  

  

2

1 2

1

1 2

1

1

1

1

2

2

2

2

m n

i o

m m

i

m n

i o

m m

i

k P k P
C

E Am B k k

k P k P
C

E Am B k k






 

  


  


 


 (21) 

where  o ik R R . 

 

With substituting 1C  and 2C  into Eqs. (17) and (9), R ,   and Ru  are obtained as follows 

    2 1 1 2

1 2

1
1 1

R

n
m m m mn n

i o i om m

r
k P k P r k P k P r

k k



     

 
 (22) 

 
 

 
 

 2 1 1 2

1 2

1
1 21 1

1 22 2

n
m m m mn n

i o i om m

A B Bm A B Bmr
k P k P r k P k P r

Am B Am Bk k





 

    
    

   
 (23) 

 
 

   2 1 1 2

1 2

1 1

1 2

1 1

2 2

m m m mn ni
R i o i om m

i

R
u k P k P r k P k P r

Am B Am BE k k

  
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   
 (24) 

Now, given the Eq. (5), Eqs. (23) and (24) may be rewritten as follows 

 
 

 
 

 2 1 1 2

1 2

1
1 11 2

1 2

1 1

1 2 1 2

n
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i o i om m

m mr
k P k P r k P k P r
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 


   


 




  
   

     
 (25) 

 
  

   
 

 
 2 1 1 2

1 2

1 1

1 2

1 1 2 1 1

1 2 1 2

i m m m mn n

R i o i om m

i

R
u k P k P r k P k P r

m mE k k

 

   

 


  
   

      
 (26) 

The value of effective stress based on von Mises and Tresca failure theories is as follows 

 
  

 
 

  

 
 2 1 1 2

1 2

1
1 21 1

1 2

1 2 1 1 2 1

1 2 1 2

n
m m m mn n

eff R i o i om m

m mr
k P k P r k P k P r

m mk k


 
  

   


 



    
      

     
 (27)

In [2], radial and meridional stresses are obtained 

only for 0   case. The equation of radial stress has been 

obtained correctly while the equation of meridional stress 

has been derived incorrectly. 

 

3.2. Double roots 

 

In Eq. (15), if 0  , then the equation will have 

double roots. 

1 2

1

2

n
m m m


     (28) 

In this case, the solution of Eq. (13) is as follows. 

   1 2

m

ru r C C lnr r   (29) 

With substitution of Eq. (29) into Eq. (7) and then 

use of Eq. (9), radial and meridional stresses are obtained 

as follows 

     1

1 22 2n m

R iE r C Am B C A Am B lnr          (30) 

     1

1 2

n m

iE r C Bm A B C B Bm A B lnr
           (31) 

 

To determine the unknown constants 1C  and 2C , 

using boundary conditions (20), yields 

 

 

 

1

1 2

1

2

2

2

2

m n

i o

i

m n

i o

i

A Am B ln k P Ak P
C

E Am B ln k

P k P
C

E Am B ln k

 

 

      
 


    

 

 (32) 

With substituting 1C  and 2C into Eqs. (29) to 

(31), 
R

 , 


  and Ru  are obtained as follows 

1
1

R

n m
m n

i o

r k
P ln k P lnr

lnk r


 
  

   
 

 (33) 
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 

1 2 2
1 1

2

2

22

n m
m n m n

i o i o

r B A AB Bm A B k
P k P P ln k P lnr

lnk Am B rAm B


 
   


      

           

 (34) 

 
 

1 1

2 2

m
m n m ni

R i o i o

i

R r A k
u P k P P ln k P lnr

E Am B lnk Am B r
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 

  
          

 (35) 

Given the Eq. (5), Eqs. (34) and (35) may be rewritten as follows 

 
  
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1
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1 21 2
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
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

  

 
   

 

     
               

 (36) 

 
  

   
1 1

1 1 2 1

1 21 2

m
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R i o i o

i

R r k
u P k P P ln k P lnr

m rE m lnk

  

  
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 

     
              

 (37) 

 

3.3. Complex roots 

 

In Eq. (15), if 0  , then the equation will have 

complex roots. 

 

1 2

2

1

2 2

2 1 4 9

m z iy, m z iy

n
z , y

n n



 

   


  
   


   


 (38) 

In this case, the solution of Eq. (13) is as follows 

     1 2

z

ru r C cos y ln r C sin y ln r r     (39) 

With the substitution of Eq. (39) into Eq. (7) and 

then use of Eq. (9), radial and meridional stresses are ob-

tained as follows 

             1

1 22 2n z

R iE r C Az B cos ylnr Ay sin y lnr C Az B sin y lnr Aycos y lnr               (40) 

             1

1 22 2n z

iE r C Az B cos ylnr Ay sin y lnr C Az B sin y lnr Aycos y lnr
              (41) 

Using boundary conditions (20), constants 1C  and 2C  are obtained as follows 

 
 

      

 
        

1

1

1

2

1
2

1
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i
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i

C Az B sin y ln k Ay cos y ln k P AyP k
E D sin y ln k

C Az B cos y ln k Ay sin y ln k P Az B P k
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 

 

 
      



       


 (42) 

where 

   2 22
2D A yAz B  

 
 (43) 

With substituting 1C  and 2C  into Eq. (39) to (41), R ,   and Ru  are obtained as follows 

 
 

 
1

1
n z

n z

R i o

r k
sin y ln P sin y ln r P k

sin y lnk r


 
   

    
  

 (44) 
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1
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2

2
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o

k
Az B Bz A B ABy sin y ln P sin y ln r P k
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D sin y ln k k
A AB B y cos y ln P cos y ln r P k

r



 

 

 



   
          

    
 

            

 (45) 

 
 

     1 12
z

n z n zi
R i o i o

i

R r k k
u Az B sin y ln P sin y lnr P k Ay cos y ln P cos y lnr P k

E D sin y lnk r r

   


       
          

       
 (46) 

Given the Eqs. (5), (45) and (46) may be rewritten as follows 
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 (47) 
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 (48) 

where 

    
2 2

1 2 1D z y              (49) 

 

4. Solution for thick homogenous spheres 

 

In thick homogenous and isotropic spheres, 

modulus of elasticity and Poisson’s ratio are both constant. 

By substituting n = 0 into Eq. (6), homogenous materials 

are obtained. In this case, Euler-Caushy equation (Eq. (13)) 

in terms of the displacement is as 

2 2 2 0r r rr u ru u     (50) 

The characteristic equation and the roots of char-

acteristic equation are as follows:  

2

1,22 0 1, 2m m m        (51) 

It could be observed that roots of the characteris-

tic equation are the real (roots are in set of Δ > 0). 

  2
1 2r

C
u r C r

r
    (52) 

Using the boundary conditions are given in Eq. 

(20), the constants of C1 and C2 become 

   
 
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k P P
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E A B k


 

  


 
 


 (53) 

Substituting C1 and C2 in Eq. (52) and using 

Eqs. (7) and (9). Thus 

   
3

3

3 3

1

1

H

R i o i o

k
P k P P P
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

 
    

  
 (54) 
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H
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k
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

 
    

  
 (55) 

 
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R r P k P P P k
u
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    
     

     
 (56) 

The values of the radial and meridional stresses in 

homogeneous and isotropic thick-walled spheres subjected 

to constant pressure, with the same dimensions and differ-

ent values of modulus of elasticity are equal. 

The value of effective stress based on von Mises 

and Tresca failure theories is as follows 

 
 

3

33

3

2 1

H
eff i o

k
P P

rk
  


 (57) 

Radial displacement (Eq. (56)) may be rewritten 

as follows 
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kE k P P
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



   
 

  
    

 

. (58) 

5. Results and discussion 

 

Consider a heterogeneous thick-walled sphere, 

subjected to internal and/or external constant uniform pres-

sures of 80 MPa, with the internal radius of Ri = 40 mm 

and the outer radius of Ro = 60 mm. The modulus of elas-

ticity Ei at internal radius has the value of 200 GPa. It is 

also assumed that the Poisson’s ratio, υ, has a constant val-

ue of 0.3. 

 

5.1. Homogeneous sphere 

 

Radial and meridional stresses in homogeneous 

and isotropic spheres are independent of the mechanical 

properties; whereas, radial displacement is dependent on 

mechanical properties. Figs. 2 to 4 are plotted according to 

the internal pressure Pi = 80 MPa and/or external pressure 

Po = 80 MPa. 

 

 

Fig. 2 Distribution of radial stress, P = 80 MPa (homoge-

neous sphere) 
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Fig. 3 Distribution of meridional stress, P = 80 MPa (ho-

mogeneous sphere) 

 

 

Fig. 4 Distribution of radial displacement, P = 80 MPa 

(homogeneous sphere) 

 

 

Fig. 5 Distribution of effective stress, P = 80 MPa (homo-

geneous sphere) 

 

Distribution of compressive radial stress based on 

Eq. (54) is shown in Fig. 2. When both the internal and 

external pressures are applied, and their values are equal, 

the radial stress will be constant along the wall. 

In Fig. 3, distribution of meridional stress based 

on Eq. (55) is shown. Along the wall, the meridional stress 

will be tensile while just the internal pressure is present; 

whereas, it will be compressive when just the external 

pressure is there. When the internal and external pressures 

are equal, the meridional stress will be compressive and 

constant in value along the wall. The meridional stress is 

more in the case of external pressure compared to that of 

the other two cases. In Fig. 4, distribution of radial dis-

placement based on Eq. (56) is shown. In the case where 

only the internal pressure is present, the radial displace-

ment is expansionary; whereas, in other two cases it is con-

tractionary. The highest value of radial displacement oc-

curs in the case of the external pressure. Distribution of 

effective stress based on Eq. (57) is shown in Fig. (5). It is 

observed that, when Pi = Po, the value of effective stress 

for homogeneous sphere is equal to zero. 
 

5.2. Heterogeneous sphere 
 

In nonhomogeneous and isotropic spheres, radial 

and meridional stresses are dependent on mechanical pro-

perties by means of n; while radial displacement depends 

on them by means of both n and Ei. Modulus of elasticity 

through the wall thickness is assumed to vary as 

E(R) = Ei(R/Ri)
n

 in which the range –2 ≤ n ≤ 2 is used in 

the present study. 
 

 

Fig. 6 Distribution of modulus of elasticity 
 

In Fig. 6, for different values of n modulus of 

elasticity along the radial direction is plotted. It is apparent 

from the curve that a positive n means increasing stiffness 

in the radial direction whereas a negative value of n results 

in a decrease in stiffness in the radial direction. 
 

5.2.1. Internal pressure 
 

Here the nonhomogeneous sphere is only under 

internal pressure, Pi = 80 MPa. 

Fig. 7 shows the distribution of the compressive 

radial stress along the radius. The value of stress in inner 

and outer layers is the same, and for both layers H

R R/   

is one. Along the radius, for n < 0, the radial stress de-

creases whereas for n > 0 the radial stress increases. The 

decrease and increase of the stress depend on |n|. 

Fig. 8 shows the distribution of the tensile meridi-

onal stress along the radius. The value of stress in inner 

and outer layers is not the same, and for both layers 
H/    is not one. The value of the meridional stress is 

more than the homogeneous material for n < 0 in the inner 

half of the wall thickness while it is less than that in the 

outer half. This will be reverse, where n > 0. The curve 

associated with n = 1 shows that the variation of meridio-

nal stress along the radial direction is minor and is almost 

constant across the radius which can be an advantage in 

terms of stress control. It is observed that in the range of 

the inner layer of the sphere, the graphs converge and be-

have similarly. 
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Fig. 7 Distribution of radial stress, Pi = 80 MPa (heteroge-

neous sphere) 
 

 

Fig. 8 Distribution of meridional stress, Pi = 80 MPa (hete-

rogeneous sphere) 
 

 

Fig. 9 Distribution of radial displacement, Pi = 80 MPa 

(heterogeneous sphere) 
 

 

Fig. 10 Distribution of effective stress, Pi = 80 MPa (hete-

rogeneous sphere) 
 

Fig. 9 shows the distribution of the radial dis-

placement of the sphere along the radius. 
H

R Ru / u  is not 

one at any point. For n < 0 the radial displacement of the 

sphere is more than where the material is homogeneous 

and it is the reverse for n > 0. Yet this ratio remains almost 

constant along the wall thickness. 

The graph of effective stress based on Eq. (27) is 

shown in Fig. 10. It must be noted from this figure that at 

the same position, almost for (R/Ri) < 1.18, there is a de-

crease in the value of the effective stress as n increases, 

whereas for (R/Ri) > 1.18 this situation was reversed. 

 

5.2.2. External pressure 

 

In this section, the nonhomogeneous sphere is on-

ly under external pressure, Po = P = 80 MPa. 

The distribution of the compressive radial stress 

of the sphere along the radius is shown in Fig. 11. The val-

ue of the stress in the inner and outer layers of the sphere is 

the same and 1H

R R/   . In the sphere wall the radial 

stress increases for n < 0 and decreases for n > 0. The 

magnitude of decrease or increase of the stress depends on 

|n|. The distribution of the compressive meridional stress of 

the sphere along the radius is shown in Fig. 12. The value 

of the stress is not the same in the inner and outer layers 

and H/    does not equal to one. The value of the me-

ridional stress is more than the homogeneous material for 

n < 0 in the inner half of the wall thickness while it is less 

than that in the outer half. This will be reverse, where 

n > 0. The meridional stress is almost constant along the 

radius for n = 1. It is observed that in the range of the inner 

layer of the sphere, the graphs converge and behave simi-

larly. 
 

 

Fig. 11 Distribution of radial stress, Po = 80 MPa (hetero-

geneous sphere) 
 

 

Fig. 12 Distribution of meridional stress, Po = 80 MPa 

(heterogeneous sphere) 
 

Fig. 13 shows the distribution of the radial dis-

placement of the sphere along the wall thickness. 
H

R Ru / u  
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does not equal one at any point. The value of the radial 

displacement is more than the homogeneous material for 

n < 0 while it is less than that for n > 0. Yet this ratio re-

mains almost constant along the wall thickness. 

 

 

Fig. 13 Distribution of radial displacement, Po = 80 MPa 

(heterogeneous sphere) 

 

5.2.3. Internal and external pressure 
 

The nonhomogeneous sphere is subjected to the 

internal and external pressures, Pi = Po = P = 80 MPa. 

The distribution of the compressive radial stress 

of the sphere along the wall thickness is shown in Fig. 14. 

The value of the radial stress in the inner and outer layers 

of the sphere is the same and 1H

R R/   . In the sphere 

wall, the radial stress is more than the radial stress of the 

homogeneous sphere for n < 0 and is the reverse for n > 0. 

In the homogeneous sphere, radial stress is almost constant 

along the wall thickness. 

 

 

Fig. 14 Distribution of radial stress, Pi = Po = 80 MPa (he-

terogeneous sphere) 

 
The distribution of the compressive meridional 

stress of the sphere along the wall thickness is shown in 

Fig. 15. The value of the meridional stress is not the same

 in the inner and outer layers of the sphere and H/    

does not equal to one. The value of the meridional stress is 

more than the homogeneous material for n < 0 in the inner 

half of the wall thickness while it is less than that in the 

outer half. This will be reverse, where n > 0. The meridio-

nal stress is almost constant along the radius for n = 0. It is 

observed that in the range of the inner layer of the sphere, 

the graphs converge and behave similarly. Fig. 16 shows 

the distribution of the radial displacement of the sphere 

along the wall thickness. H

R Ru / u  is not one at any point. 

In the sphere wall, the radial displacement is more than the 

radial displacement of the homogeneous sphere for n < 0 

and is the reverse for n > 0. In the homogeneous sphere, 

radial displacement is almost constant along the wall 

thickness. 

 

 

Fig. 15 Distribution of meridional stress, Pi = Po = 80 MPa 

(heterogeneous sphere) 

 

 

Fig. 16 Distribution of radial displacement, 

Pi = Po = 80 MPa (heterogeneous sphere) 

 
In Table, the values of effective stress resulting 

from analysis of sphere through PET and FEM under in-

ternal pressure and/or external pressure in the middle layer 

are given. 

Table 

Comparison of values of effective stress resulting from PET and FEM in the middle layer 
 

  n = –2 n = –1 n = 0 n = +1 n = +2 

Pi = 80 MPa PET 77.81 82.90 87.31 90.88 93.51 

FEM 77.95 83.01 87.39 90.92 93.53 

Po = 80 MPa PET 73.31 80.89 87.31 92.35 95.85 

FEM 73.48 81.01 87.39 92.38 95.86 

Pi = Po = 80 MPa PET 4.50 2.02 0 1.47 2.34 

FEM 4.47 2.00 0 1.46 2.33 
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6. Conclusions  

 

It can be concluded that for both positive and 

negative values of n, the meridional stress in the nonho-

mogeneous sphere decreases in one half and increases in 

the other. In the nonhomogeneous sphere compared to the 

homogeneous one, with no external pressure, the radial 

stress increases and the radial displacement decreases for 

positive n. For negative n both radial stress and radial dis-

placement increase in the spheres subjected to external 

pressure. The radial stress and radial displacement de-

crease for positive n. Decrease or increase of the radial 

stress and radial displacement depend on |n|. According to 

the requirements for decreasing of the displacement and 

stress in the nonhomogeneous spheres, the positive or ne-

gative values of n could be applied. 
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NEVIENALYČIO HETEROGENINIO STORASIENIO 

KEVALO IŠSAMUS UŽDAROS FORMOS 

SPRENDIMAS 

 

R e z i u m ė 

 

Remiantis plokštumos tamprumo teorija, yra su-

darytos asimetrinio storasienio sferinio kevalo, pagaminto 

iš nehomogeninės aukštos kokybės medžiagos, apkrauna-

mos vidiniu ir išoriniu slėgiu, bendrosios svarbiausios lyg-

tys. Laikoma, kad tamprumo modulis kinta netiesiškai ra-

dialine kryptimi, o Puasono koeficientas yra pastovus. Yra 

sudarytos realių, sudvejintų ir kompleksinių šaknų analiti-

nio sprendimo lygtys. Radialiniai ir meridianiniai įtempiai 

bei radialinių poslinkių pasiskirstymas priklausomai nuo 

nehomogeniškumo konstantų yra palyginti su homogeniš-

ku atveju gautais dydžiais, taip pat su baigtinių elementų 

metodo rezultatais ir parodyti grafikuose. Gauti rezultatai 

rodo, kad aukštos kokybės medžiagos savybės turi didelę 

įtaką įtempių pasiskirstymui radialine kryptimi. Jie yra 

naudingi inžinieriams, projektuojantiems sferas iš aukštos 

kokybės medžiagų. 

 

 

Mehdi Ghannad, Mohammad Zamani Nejad 

 

COMPLETE CLOSED-FORM SOLUTION FOR 

PRESSURIZED HETEROGENEOUS THICK 

SPHERICAL SHELLS 

 

S u m m a r y 

 

On the basis of plane elasticity theory (PET), the 

governing equations for axisymmetric thick spherical 

shells made of nonhomogeneous functionally graded mate-

rials (FGMs) subjected to internal and external pressure in 

general case are derived. It is assumed that the modulus of 

elasticity varies nonlinearly in the radial direction, and the 

Poisson’s ratio is constant. The analytical solution of the 

equations for real, double and complex roots are obtained. 

The radial stress, meridional stress and radial displacement 

distributions depending on an inhomogeneity constant are 

compared with those of the homogeneous case as well as 

with the solution using finite element method (FEM) and 

presented in the form of graphs. The obtained result shows 

that the property of FGMs has a significant influence to the 

stress distribution along the radial direction. Results are 

useful for engineers to design a sphere made of FGMs.  

 

Keywords: pressurized heterogeneous thick spherical 

shells, plane elasticity theory. 
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