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1. Introduction 

New mechanical systems of robots are created as 

well as known systems are developed which have various 

constitutive parts and drives. It is necessary to note the 

investigations performed by research associates of V. A. 

Glazunov and systems of structures of robots created by 

them as well as their theoretical basis [1]. Investigations in 

the field of precise manipulators and robots with vibromo-

tors as autonomous and non autonomous systems are de-

veloped with high intensity in [2 – 7] and elsewhere. Vi-

bromotors of new type for the performance of stationary 

and cyclic dynamic regimes based on piezoeffect, pulse 

type motions of pneumatic systems and fluids, variable and 

constant magnets, electrostatics and other principles have 

been created. In the middle of the 20 century new princi-

ples and means of mechanical systems with pneumatic and 

other types of vibroexciters as well as principles and means 

of dynamic synchronization and stabilization of systems 

have been created. 

In the field of precise manipulators and robots the 

use of vibration drives operating on the basis of various 

principles found wide application. Thus robots created on 

the basis of pneumatic autovibrating vibratory drives have 

been applied in pipelines [2], where the asynchronous op-

eration of those vibrators showed its effects. For investiga-

tion and creation of manipulators and on their basis vibra-

tors with discontinuous elements were developed in order 

to increase their effective operation [3 – 7]. It is shown that 

vibrators of vibro impact type in separate case of the non-

linearity work in the zone of resonance with linear fre-

quency spectrums [3] in this way ensureing stable opera-

tion of the system in the resonance zones. Asymptotic sta-

bilisation of periodic regimes ensures stable operation of 

the system. Stabilisation of periodic nonlinear systems is 

investigated in [4]. Mechanical systems with impacts are 

investigated in [5]. Periodic orbits of mechanical systems 

with impacts are investigated in [6]. Vibro impact nonline-

ar energy sink is investigated in [7]. 

Because of the results of those investigations ma-

nipulator with vibro drive having advanced characteristics 

was created. 

At the beginning of the paper schematic represen-

tation of the investigated dynamical system is described. 

The model of the proposed system is presented. Numerical 

results for different parameters of the investigated system 

are presented. Analysis of amplitude frequency characteris-

tics is performed. 

The aim of the research is to determine most suit-

able regimes of operation of the robot, which are applica-

ble in practice. 

2. Model of the system 

The investigated system is shown in Fig. 1, where 

m1, C1 and H1 are the mass of the first vibrating part, the 

coefficients of stiffness and of viscous friction respective-

ly; m2 is the mass of the second vibrating part; while C0 

and H0 are the coefficients of stiffness and viscous friction 

of the limiter. The position OsOs is the position of static 

equilibrium of the mass m1. H2 is the coefficient of viscous 

friction between the mass m2 and the immovable founda-

tion. 

Differential equations of motion of the system 

(Fig. 1) are obtained. Priciple of operation of this system is 

based on soft impacts to a deformable support of the output 

member m2. 

Notations according to the variables x0, x1, x2 are 

introduced: 
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Thus the differential equations of motion have the 

form presented further. 

Case 1, when 0 1 2,  0 :x x x   
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0 0,Q =  (2) 
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Case 2, when 0 1 2,  0 :x x x =  
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Case 3, when 0 1 2,  0 :x x x=   
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Case 4, when 0 1 2,  0 :x x x= =  
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In the previous equations R1 and R2 in the cases 3 

and 4 represent forces acting into the body 2. 

In the Eqs. (1 – 11) the following changes are per-

formed: 
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If: 

 

0 ,F F sin t=  (13) 

 

then it is obtained: 

 

0
0 0

1 1 1

,  ,  .
FF

f sin f
C C p


 = = =  (14) 

 

By taking into account the equations (12) – (14), 

after changes the Eqs. (2) – (11) take the forms presented 

further. 

 

Fig. 1 Schematic representation of the system: O is the 

impact surface of the deformable support, m1 is the 

exciting mass of the vibrator, m2 is the moving mass 

of the basic element, 3 is the self stopping mecha-

nism; x0, x1 and x2 are the displacements 

Case 1a, when 0 1 2,  0 :x x x   

 

0 0,q =  (15) 

 

1 1 0,x q+ =  (16) 
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Case 2a, when 0 1 2,  0 :x x x =  
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Case 3a, when 0 1 2,  0 :x x x=   
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Case 4a, when 0 1 2,  0 :x x x= =  
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x q q
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3. Investigation of dynamics of the system 

It is assumed that: 

 

0 1 2 04,  0.2,  0.2,  0.2,  4.h h h f= = = = =  (25) 

 

Investigations are performed for two values of 

nondimensional frequency of excitation: 
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1,  4. = =  (26) 

 

Investigations are performed for three values of 
2

0

1

p

p

 
 
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: 
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Results for two periods of steady state motion are 

presented. 

3.1. Value of nondimensional frequency of excitation 

1 =  

Results for the value of 

2
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4
p
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 
 are presented 

in Fig. 2. Results for the value of 
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9
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= 

 
 are presented 

in Fig. 3. Results for the value of 

2

0

1

16
p

p

 
= 

 
 are present-

ed in Fig. 4. 

   

a) Displacement x0 as function of τ b) Displacement x1 as function of τ c) Displacement x2 as function of τ 

   

d) Velocity 1x  as function of τ e) Velocity 2x  as function of τ f) Difference of displacements 0 1x x−  as 

function of τ 

Fig. 2 Results for 

2
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1

4
p

p
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= 
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a) Displacement x0 as function of τ b) Displacement x1 as function of τ c) Displacement x2 as function of τ 

   

d) Velocity 1x  as function of τ e) Velocity 2x  as function of τ f) Difference of displacements 0 1x x− as 

function of τ 

Fig. 3 Results for 

2

0

1

9
p

p
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= 
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a) Displacement x0 as function of τ b) Displacement x1 as function of τ c) Displacement x2 as function of τ 

   

d) Velocity 1x  as function of τ e) Velocity 2x  as function of τ f) Difference of displacements 0 1x x−  as 

function of τ 

Fig. 4 Results for 

2

0

1
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 
= 
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3.2. Value of nondimensional frequency of excitation 

4 =  

Results for the value of 

2
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4
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 are presented 

in Fig. 5. Results for the value of 
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9
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in Fig. 6. Results for the value of 
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ed in Fig. 7. 

 

4. Amplitude frequency characteristics 

Amplitude frequency characteristics (constant 

part and first three harmonics) of steady state regime for 

the value of nondimensional frequency of excitation 1 =  

and three values of 

2

0

1

p

p

 
 
 

 are presented in Fig. 8. Ampli-

tude frequency characteristics (constant part and first three 

harmonics) of steady state regime for the value of nondi-

mensional frequency of excitation 4 =  and three values 

of 

2

0

1

p

p

 
 
 

 are presented in Fig. 9. 

   

a) Displacement x0 as function of τ b) Displacement x1 as function of τ c) Displacement x2 as function of τ 

   

d) Velocity 1x  as function of τ e) Velocity 2x  as function of τ f) Difference of displacements 0 1x x−  as 

function of τ 

Fig. 5 Results for 

2

0

1

4
p

p

 
= 
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a) Displacement x0 as function of τ b) Displacement x1 as function of τ c) Displacement x2 as function of τ 

   

d) Velocity 1x  as function of τ e) Velocity 2x  as function of τ f) Difference of displacements 0 1x x−  as 

function of τ 

Fig. 6 Results for 

2

0

1

9
p

p

 
= 
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a) Displacement x0 as function of τ b) Displacement x1 as function of τ c) Displacement x2 as function of τ 

   

d) Velocity 1x  as function of τ e) Velocity 2x  as function of τ f) Difference of displacements 0 1x x−  as 

function of τ 

Fig. 7 Results for 

2

0
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p

p

 
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2
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= 
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Fig. 8 Amplitude frequency characteristics for the value of nondimensional frequency of excitation 1 =  
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Fig. 9 Amplitude frequency characteristics for the value of nondimensional frequency of excitation 4 =  
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Fig. 10 Average velocity of the system in steady state regime as function of nondimensional frequency of excitation 

On the basis of the presented results design of a 

pipe robot is performed. 

5. Average velocity of the system in steady state regime 

as function of nondimensional frequency of excita-

tion 

Average velocity of the system in steady state re-

gime as function of nondimensional frequency of excita-

tion is investigated. Results for the three values of 

2

0

1

p

p

 
 
 

 

are presented in Fig. 10. From the presented results optimal 

nondimensional frequency of excitation corresponding to 

maximum value of average velocity of the system in steady 

state regime is determined. 

6. Conclusions 

Principles of operation of vibromotors having dif-

ferent typical structures are based on vibrations and waves 

as well as nonlinear dynamical effects and phenomena. 

Those motors are used in manipulators and robots. They 

enable to achieve high precision and good dynamic quali-

ties. 

A specific vibromotor is investigated. It moves 

with the displaced body. Motion in the direction of the one 

dimensional coordinate is assumed. Operation of the motor 

is based on specific interactions between rigid bodies. Di-

rection of interactions coincides with the direction of mo-

tion of the displaced body. 

It is important to choose the parameters of the in-

vestigated system in order to avoid stationary multivalued 

motions in the vicinities of resonances. Self stopping de-

vice is essential in the structure of the system. It limits the 

motion of the displaced body according to one direction. 

The obtained results reveal the qualities of the in-

vestigated model. Also the influence of various parameters 

of the model to the obtained results describing the opera-

tion of the investigated system is presented. Analysis of 

amplitude frequency characteristics is performed. 

Average velocity of the system in steady state re-

gime as function of nondimensional frequency of excita-

tion is investigated. Results for the three values of non 

dimensional frequency are presented. From the presented 

results optimal nondimensional frequency of excitation 

corresponding to maximum value of average velocity of 

the system in steady state regime is determined. 

Results of the performed investigation are used in 

the creation of pipe robots of advanced type. 
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K. Ragulskis, B. Spruogis, M. Bogdevičius,  

A. Matuliauskas, V. Mištinas, L. Ragulskis 

MECHANICAL SYSTEMS OF PRECISE ROBOTS 

WITH VIBRODRIVES, IN WHICH THE DIRECTION 

OF THE EXCITING FORCE COINCIDES WITH THE 

LINE OF RELATIVE MOTION OF THE SYSTEM 

S u m m a r y 

Manipulator consisting from one sided self stop-

ping mechanism and two masses which interact through an 

elastic – dissipative member is investigated. The drive of 

the manipulator is the generator of mechanical vibrations. 

With such elements the system is nonlinear. A separate 

case is investigated when static positions of equilibrium of 

both masses are located in one point. Because of this spec-

trum of eigenfrequencies are linear and infinite. All those 

facts mean that the operation of the manipulator is optimal. 

Fast development of robots gives rise to the inves-

tigations of increasing intensity creating various types of 

robots especially in the area of high precision. Mechanical 

systems of robot must perform laws and trajectories of 

motion, positioning in space with highest possible preci-

sion as well as ensure dynamicity of highest possible sta-

bility. Those aims are achieved in the presented paper by 

creating a structure of the best design, based on vibroim-

pacts as well as by choosing corresponding nonlinear pa-

rameters of the system. The investigation is performed by 

analytical – numerical method. The obtained results enable 

to create mechanical systems for precise robots. 

Keywords: manipulator, generator of mechanical vibra-

tions, self stopping mechanism, frequency spectrums, 

characteristics of harmonic vibrations, mechanical systems 

of robots, vibrodrive with soft impacts, parameters of non-

linear elements, stability. 
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