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1. Introduction 

In 2011, following the concept of "Industry 4.0" 

proposed by Germany [1], countries around the world came 

up with targeted policies. Such as, “Digitizing European In-

dustry” in EU [2].” Advanced Manufacturing Partnership 

and Smart Manufacturing” in US, "Made in China 2025" in 

China [3-5], “Manufacturing Innovation Strategy3.0” [6] in 

Korean [7], a boom of intelligent manufacturing has 

emerged in the world. As the most influential national stra-

tegic technology industry in today's world, the equipment 

manufacturing industry, as a complex product, represents 

the comprehensive strength of a country. Its healthy and or-

derly development will bring huge economic and social ben-

efits to a country. In 2010, China proposed a development 

plan (“Report on accelerating the cultivation of strategic 

emerging industries”) for the complex equipment manufac-

turing Industry, calling for an overall improvement of the 

innovation and industrial development capacity of the space 

industry. Subsequently, high-end CNC machine, aerospace 

equipment, marine engineering equipment and rail transit 

equipment were listed as the key development fields in the 

“Made in China 2025”. China will usher in an important pe-

riod of strategic opportunities for the development of high-

end equipment manufacturing industry in the next 5-10 

years. 

The high-end equipment is characterized by com-

plexity. Its assembly is usually discrete with long operation 

cycle. Manual assembly and customized production are also 

the challenge. Taking the aircraft assembly line as an exam-

ple, it mainly includes fuselage, wing, tail, engine, take-off 

/landing suspension and chassis. For example, the Airbus 

A320 contains 500,000 to 1.2 million parts in total. During 

the assembly, the number of rivets exceeds 3,000. Many 

scholars at home and abroad have been focusing on the as-

sembly process. 

The main idea of assembly optimization is to im-

prove the assembly precision by optimizing the assembly 

tolerance zone. W. Xiao [8] proposes an optimization 

method of quality point control threshold for complex me-

chanical product assembly process based on Hybrid Particle 

Swarm optimization (H-PSO) under multiple loads. By de-

fining the multi-load influencing factors of the key quality 

control points, the assembly loss/control threshold model is 

established. In the model, the objective function is built with 

the minimizing the total cost under the assembly accuracy. 

L. Chun [9] uses the modelling method combining forward 

and reverse design to conduct statistical analysis on the dis-

tribution of assembly deviation of the front face through 

Monte Carlo method in the research of assembling electric 

vehicle, and obtains the optimal tolerance allocation zone. 

S. Yu [10] proposes a forecasting model of assembly devia-

tion propagation. In the model, the typical deviation charac-

teristics based on the small displacement spin theory and the 

assembly deviation transfer based on the series assembly re-

lation are established. 

While these methods mentioned above have a glar-

ing defect. The tolerance has been decided in the product 

design period. And the essence of optimizing the tolerance 

is optimization design process, minimize the overall toler-

ance. This method is useful for new products or new com-

ponents, while for the existing assembly process, the opti-

mization is invalid. What’s more, the process of enlarged or 

reduced tolerance is improve machining accuracy. And this 

method is largely restricted to the accuracy of machine 

tools. A lot of optimization results are theoretical.  

Therefore, some scholars put forward the tolerance 

matching in view of these disadvantages. The earliest 

matching is unitized assembly. W w. [11] divided the toler-

ance zone of each dimension chain through unitized match-

ing. And assemble the parts from sub-tolerance zone, which 

reduced the assembly tolerance range of dimension chains. 

This method can realize batch matching. Wang K. [12] takes 

the assembly accuracy and matching rate as evaluation in-

dexes to establish a selective assembly model in the case of 

the multi- requirements. W.K put forward a improved 

Strength Pareto Evolutionary Algorithm 2 (SPEA2) for 

multi-objective complex mechanical products. By cutting 

the tolerance, this method decreases the selecting difficulty 

and enhances the matching rate. What’s more, Chen [13] 

constructs an optimization model aiming at minimizing the 

fluctuation of assembly gap in unitized assembly by using 

multi-objective PSO which bring the sharing mechanism 

and dynamic archiving mechanism. The essence of unitized 

assembly is to realize the tolerance cutting, which considers 

both the assembly accuracy and matching rate. This method 

also has many disadvantages. For example, in order to guar-
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antee the matching rate, it will inevitably sacrifice the as-

sembly accuracy in some degree. For general non-core com-

ponents, the loss is controllable, but for the core components, 

the loss is not accepted. In addition, interference fit occurs 

many times in the process, especially in the long assembly 

sequences, and the interference fit will greatly increase the 

assembly cost. 

Compared with the unitized assembly, the research 

on the precise assembly focus on Taguchi Method. P.F. [14] 

uses Taguchi quality model to measure the quality loss of 

each parameter in process. Aiming at the minimum process 

quality loss, A.Y [15] adopts the signal-to-noise ratio (SNR) 

to measure the influence weight of various indicators on the 

overall assembly quality fluctuation, and establishes a 

model based on the Atilesleon multivariate quality loss 

function. 

To solve the above problems, this study proposes 

an improved Taguchi algorithm. The core components 

adopt the Target-is-best function, while the non-core com-

ponents use the Improved-Smaller-is-better function, which 

could achieve convergence as soon as possible and increase 

the matching rate. The general parts adopt the Classical-

Smaller-is-better function, which can not only ensure the ac-

curacy, but also reduce interference fit and assembly cost. 

The following chapters can be divided into two parts. The 

first part is the measurement of assembly precision loss, in-

cluding the modelling hypothesis, objective function and 

matching model. The second part is a case study. 

2. The mathematic of the matching model for complex 

product assembly 

From the literatures, it is found that the assembly 

matching modes of different parts are different. For the non-

core parts, the batch matching mode is adopted. For the core 

parts, the precise matching mode is selected. And the parts, 

which belongs neither non-cores nor cores, the unitized 

matching mode is the best choice. 

Take the aircraft assembly process for example, the 

main parts of an aircraft include the cockpit, engine tower, 

forebay, central base, central cabin, horizontal and vertical 

tail fin and wing, etc., as shown in Fig. 1.  
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Fig. 1 The components of aircraft 

The most important component is the engine. The 

main structure of the engine is shown in Fig. 2, including 

the transmission shaft, the first and second reducer, the 

power turbine, the compressor turbine, the compressor and 

the auxiliary trans mission at all levels.  

According to the requirements of the importance 

and precision of each component, the structure importance 

level can be refined, as shown in Fig.3, where red represents 

the core components, blue represents the general compo-

nents, and white represents the non-core components.  
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Fig. 2 The components of aircraft engine 
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Fig. 3 The importance level of aircraft 

According to different importance level, this study 

constructs the matching model. The Taguchi model is used 

to measure the deviation of dimension chains in the assem-

bly process, and the genetic algorithm (GA) is used to 

solved the model. The following will be elaborated from 

three aspects of modeling hypothesis, Taguchi loss function 

(objective function) and the overall model. 

2.1. The modeling hypothesis of the matching 

In order to construct the matching model with both 

assembly accuracy and matching rate, different matching 

strategies are adopted for different important levels. As 

shown in Table 1. 

Table 1 

The modeling hypothesis of different components 

Accu-

racy 

Match-

ing rate 
Description Modeling hypothesis 

Low High 
Low cost; 

Low Accuracy 

Improved-the-

Smaller-is-Better 

Mid-

dle 
Middle 

Not high cost; 

Not low Accuracy 
The-Smaller-is-Better 

High Low High Accuracy The-Target-is-Best 

 

In order to enhance the matching precision, the as-

sembly gap should be close to 0. While the interference fit 

whose assembly process need to be heated, will greatly in-

crease the cost, in particular, the heating process requires 

repeated many times in complexity equipment. So this re-

search put forward the matching model according to the dif-

ferent importance level and adopt different strategies. Such 

as the core component, for no caring the matching rate, need 

to be with high accuracy. So the matching strategy adopted 

the-Target-is-Best, whose assembly tolerance target is close 

to 0. For general components, both cost and quality accuracy 

need to be taken into account, and the precision requirement 

is relatively high. Therefore, the measurement is carried out 

with the classical-the-Smaller-is-Better, which can improve 

the accuracy while reducing part of interference fit. The 

non-core components pay attention to the avoidable cost but 

it can accept low quality accuracy, so the assembly process 

adopt as many gap fit as possible in the assembly process. 

In order to reduce the interference, fit that may occur, this 

model adopt the improved-the-Smaller-is-Better. The spe-

cific model can be seen in the next section. 

2.2. Improved Taguchi loss function -objective function 

Taguchi quality loss function [16-17] is proposed 

to measure the assembly deviation. The model can be di-

vided into the-Target-is-Best, the-Smaller-is-Better and the-

Larger-is-Better [18]. In the-Target-is-Best, the dimension 

chains y is expected to fluctuate around the target value T, 

and the smaller the fluctuation is, the better the result is. In 

the-Smaller-is-Better, it is hoped that the closer the y is to 

the minimum value. This article does not cover the-Larger-

is-Better. 

the-Target-is-Best is presented: 

 ( )
2

i i
T i i i

U l

y T
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 −
=  

− 
. (1) 

The-Smaller-is-Better is: 
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i l
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y T
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=  

− 
, (2) 

where: yi is the measured dimension tolerance; k is the aver-

age loss; 
i

UT , 
i

lT  is the lower and target values [19]. 

What’s more, this study improves the-Smaller-is-

Better. The Tl is the target value set in the design period. 

This paper changes the Ti into Ti
'. The Ti

' is the dimension 

tolerance of preceding activity. This means that this study 

does not use the target value but the preceding activity value. 

By using the Ti
'.in the Smaller-is-Better, it can reduce the 

influence on the following activity and reduce the interfer-

ence fit. This method also can be used in the green manu-

facturing and remanufacturing. The below equation is the 
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improved-the-Smaller-is-Better[18]. 

( )

2

i i
L i i i

U l

y T
L y k

T T

 −  =
 −
 

,  

where: yi is the measured dimension tolerance; Ti
' is the di-

mension tolerance of preceding activity; Ti
'=yn-1. 

Dr. Taguchi proposed the method of multiple qual-

ity characteristics based on SNR [20] to unify the dimen-

sions in the complex products： 

SNR of the-Target-is-Best is: 
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The-Smaller-is-Better is: 
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where: ηT and ηs is the SNR. The SNR is the factor to show 

the deviation of tolerance loss. The bigger the SNR is, the 

less the loss is. And: 
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SNR is adopted to represent the contribution. The 

equation of the weight is shown in (5) [18]: 
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This weight represents the same important level, 

and for different important levels, 5/3/1 is introduced. 

2.3. The architecture of the model 

This paper proposes a matching model on complex 

product by using improved Taguchi method. As shown in 

Fig.4, this model takes each dimension chain as a unit. If 

one component takes part in several dimension chains, all 

the dimension chains are taken in to compute. The SNR is 

the solution to handle the multi-dimensions in different di-

mension chains and different important level parts. And fi-

nally, the GA is introduced to get the matching solution. 

The innovation of this method is mainly mani-

fested as follows. 

1) The dimension chain is the basic research object, 

rather than each assembly relation. This method can avoid 

the influence of preceding activity or following activity on 

subsequent process. 

2) Assign the weights by SNR to distinguish the 

importance of components. Highlight the importance of 

core parts in matching, and avoid the problem that the non-

core parts dimension chains are much more than the core 

dimension chains. This problem can lead the matching de-

cision to be more based on the non-core components rather 

than the core ones. 

3) The improve-the-Smaller-is-Better. This 

method improves the target value and are used in non-core 

assembly matching. It can ensure that the interference fit is 

as less as possible, and reduce the heating process, and cut 

down the avoidable cost. 
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Fig. 4 The matching model based on improved Taguchi 

Method 

3. Case study 

Section 3 devoted to the basic aspects of the ALC. 

It is a decomposition-based and convergent collaborative 

optimization method [12]. Its primary thought is to allow 

each sub-decision-making-unit to make decisions inde-

pendently and obtain global optimum through system parti-

tion and distributed decision-making system. 

3.1. The description of the model 

In order to test the effectiveness of the mathemati-

cal model, this study adopts a complex bolt assembly model 

as an example. From the perspective of the method men-

tioned in the Fig. 4, the complexity of the dimension chains 

in the testing model provides great insights about the posi-

tive correlation. 1) The core chains, the non-core chains and 

the general chains are regard as the primary limitation fac-

tors including in the test models. (2) And what’s more, one 

part in several chains is another constraint. Arguing for the 

characteristic of the assembly model in Fig. 5 itself, the rep-

resentative model covers all. Detailed discussed can be seen 

below the Table 2.  

 

Fig. 5 The complex bolt assembly model 
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According to the simulation example, a total of 12 

parts are required for the assembly, show in Fig. 5. Dimen-

sion chain 1 is the core chain of the assembly and shown in 

Figs. 6-7. 

D1

D2

D4

D3
D5 D7

D8

D9
D10

D6

3.09.5 

 

Fig. 6 Dimension chain 1 for complex bolt assembly 
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D2 D3 D4 D5 D6 D7

D8

D10

D9

 

Fig. 7 Chain 1 

The component 1 and 2 in Fig. 6 are fixed by four 

bolts on the base of the assembly. There are of four dimen-

sion chains, marked as chain 2. They are non-cores, shown 

in Fig. 8. 

3.07.54 =
A1

A2  
  

a b 

Fig. 8 Chain 2 

In addition, the connection between the component 

4 and 5 in Fig. 6 are hexagon connection, as shown in Fig. 

9, marked as chain 3, general dimension chain. 

R1

R2

 

Fig. 9 Chain 3 

 

As shown in Table 2, there are three types of chains 

in this product. Chain 1 is D1-D2-D3-D4-D5-D6-D7-D8-

D9-D10, which is the core chain of this assembly. Chain 2 

is fixed through screw hole. There are 4 chains in the prod-

uct and they are non-core dimension chains; Chain 3 is hex-

agonal dimension chain and general dimension chain. The 

assembly precision requirements are shown in Table 3. 

Among them, the situation that one part is in 2 chains exits. 

Such as part 2, it is in both chain 1 and two chains in chain 2. 

Table 2 

The description of dimension chains 

D-Chains Description Symbol 
Tolerance, 

μm 

1 
D1-D2-D3-D4-D5-

D6-D7-D8-D9-D10 

D1 0 

D2 0 

D3 0.3 

D4 0.2 

D5 0.1 

D6 0.3 

D7 0.5 

D8 0.2 

D9 0.1 

D10 0 

2 

-A1---A2- 

-A3---A4- 

-A5---A6- 

-A7---A8- 

 0.3 

A1\A2\A3\A4 

A5\A6\A7\A8 
0.6 

3 R1-R2 
R1 0.2 

R2 0.1 

3.2. Solving based on GA 

Encoding. The GA is the solution of this model. 

According to the situation of storage in factory, the parts se-

rial number act as the encoding. The assembly contains a 

total of seven machined parts and five standard parts. The 

standard parts are not needed matching. In the remaining 7 

parts, part 1 contains 9 dimensions, part 2 contains 5 dimen-

sions, the inventory of parts is 100. Binary encoding is cho-

sen in the paper. Part 1 with 11 binaries, Part 2 with 10, the 

remaining are 7 binaries, shown in Fig.10. 

Part ① ① ① ① ① ① ①

 

Fig. 10 Encoding 

In this study, fixed crossover probability is adopted, 

Pc=0.6. In addition, Invert the gene values on one or some 

gene positions of individuals according to the fixed proba-

bility Pm=0.05, and then the new individuals and mutation 

are achieved. 

The Fitness function. By statistics, the mean and 

square root of each parameter in the dimension chain can be 

obtained. 

Table 3 

The parameters in Chain 1 

 σ2 μ ηi  λi 

D3 0.021355 3.607108 27.84809 0.151897 

D4 0.011423 2.018354 25.52233 0.165738 

D5 0.00319 11.49667 46.17376 0.091611 

D6 0.035493 5.933482 29.9648 0.141167 

D7 0.095211 7.337592 27.52419 0.153684 

D8 0.012707 1.978912 24.88825 0.169961 

D9 0.002748 2.505162 33.58699 0.125942 

 

And the SNR and weight of each parameter can be 
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calculated successively, as shown in Table 3. The D3 SNR 

is calculated in the below. 

 
2 2

1 2

3.61
10 10 27.83.

0.0214
lg lg



 

= =  = 
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 (7) 

The weight of D3 is: 
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Similarly, the weight of all the parameters can be 

obtained. There are 24 dimension chains needed to be as-

sembled, and the fitness function can be obtained in Eq. (9). 

The stopping criterion for iteration is genmax = 

1000. 
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(9) 

3.3. Result and discussion 

After the GA, the matching results obtained are 

shown in Table 4, with a total of 13 samples.  

The horizontal axis represents the number of itera-

tions, and the vertical axis represents the cumulative toler-

ance loss.  

Table 4 

Matching results 

No. 1 2 3 4 5 6 7 

1 48 12 57 32 68 100 4 

2 11 12 89 74 31 63 69 

3 18 92 71 66 69 100 73 

… … … … … … … … 

 

According the calculation, the cumulative loss 

fluctuates greatly at the beginning. The reasons can be ex-

pressed as follows. 1) the initial population is generated ran-

domly, and the cross variation leads to large pulsation; 2) 

different levels of assembly losses lead to different contri-

butions to the results, especially the assembly parameters of 

core parts will greatly affect the accumulation of assembly 

losses. As the number of iterations increases, the fluctuation 

tends to 1.76, which indicates that when the number of iter-

ations increases, the elite of all parameters will retain the 

selection results and gradually tend to be stable. When the 

number of iterations reaches 447, it basically tends to be sta-

ble. 

There are 4 comparative tests in this paper, as fol-

lows. And there are four indicators to evaluate the algorithm, 

1) the convergence generation (represents the convergence 

rate); 2) the cumulative loss (represents the accuracy loss), 

3) heating times (represents the number of interference fit, 

reflecting the avoidable cost); 4) matching result (represents 

the optimization result). A good algorithm should have 

faster convergence, less precision loss, fewer interference fit 

times and more optimal results. In another words, the 

smaller 1), 2) and 3) are, and the larger 4) are, the better the 

algorithm results will be. 

Table 5 

The compared test 

Item Proposed Algorithm Compared test 1 Compared test 2 Compared test 3 Compared test 4 

The convergence generation 447 412 613 502 None 

cumulative loss 1.76 107.9 1.81 103.6 4829 

Heating times 2-4 1-6 5 3-6 5 

Matching result 13 7 1 3 None 

Comparative test 1 adopts the unclassified method 

based on SNR, and all the other conditions are the same as 

Proposed Algorithm except the objective function. 
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Compared with the objective function of proposed 

Algorithm, the objective function of the comparative test 1 

showed a trend of shrinking, with the dropping of fitness 

function, the quality loss present amplification, the fre-

quency of heating gets higher and optimization results 

trends to less. So the proposed method is superior to the 

comparative test 1 on the matching precision, matching rate 

and heating times. 

In comparative test 2, the objective function con-

struction method is based on the-Target-is-Best; in compar-

ative test 3, the objective function with the-Smaller-is-Bet-

ter is adopted; in comparative test 4, the random selection is 

adopted. According to Table 5, under the same conditions 

(probability of crossover mutation, initial population and 

termination conditions), the proposed algorithm has great 

advantages in convergence speed, heating assembly times 

and optimal results. 

4. Conclusion 

In this paper, the improved Taguchi methods for 

quality measures is used to calculate the tolerance loss of 

dimension chains. The important degree and SNR are intro-

duced to measure the different chains to avoid the non-core 

influence. The model acts as the fitness function of genetic 

algorithm, in meet the precision request of complex prod-
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ucts matching. This model pays more attention to the accu-

racy of core parts and assembly cost of non-core parts. In 

order to ensure the accuracy in the non-cores, the effect of 

preceding activity and following activity can be reduced by 

improved-the-Smaller-is-Better. Since this model can han-

dle the preceding activity assembly, it can also be used in 

the green manufacturing and remanufacturing. 

Through case analysis, it is found that the assembly 

matching has great advantages in convergence speed, 

matching rate and assembly cost. But the study found that 

when the parts in multiple non-core dimension chains, espe-

cially the chains are quite large, the model works failure. 

Therefore, one of the emphases on the further research is to 

optimize multiple dimension chains in the precision on huge 

non-core components. 
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RESEARCH ON COMPLEX PRODUCT PARTS 

MATCHING BY USING IMPROVED TAGUCHI 

METHOD 

S u m m a r y 

With the development of intelligent manufactur-

ing, the key strategic of complex equipment is becoming 

more and more obvious. How to realize the assembly of 

complex products has become the focus of intelligent man-

ufacturing. This paper puts forward the improved Taguchi 

method to dimension chains measures, by using different 

quality loss function to different dimension chains, the cores 

are the Target-is-best, non-core is measured with the im-

proved Smaller-is-better to improve convergence perusal 

and increase matching rate; General adopt Smaller-is-better 

to enhance assembly accuracy, reduce interference fit and 

assembly cost. Then the dimension chains quantitative 

model of complicated product assembly by using the signal-

to-noise ratio and different weights is built up. The model 

contains modeling assumption, the objective function and 

the matching model. And this model is regard as the fitness 

function of genetic algorithm. Finally, the feasibility and ef-

ficiency of the scheme are verified by the case study. 

 

Keywords: Taguchi methods; dimension chains; GA; im-

proved smaller-is-better method. 

 

Received December 21, 2020 

Accepted October 04, 2021

 

 

This article is an Open Access article distributed under the terms and conditions of the Creative Commons 

Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).  

 

http://creativecommons.org/licenses/by/4.0/

