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1. Introduction 

Rolling element bearings are usually applied in ro-

tating machinery and play an imperative role in current man-

ufacturing industries. The malfunction of rolling element 

bearings results in the deterioration of machine perfor-

mance; it is thus necessary to precisely identify faults in the 

bearings [1]. Vibration data is the most frequently employed 

for fault diagnosis of mechanical equipment. Since most of 

the bearing vibration data are non-linear and non-stationary, 

it is necessary to find a method to extract the effective fea-

tures from the vibration signals which can be used in bearing 

fault diagnosis [2, 3]. 

Recently, adaptive signal analysis methods for 

nonstationary signals have attracted considerable attention, 

which can adaptively decompose a complex signal into mul-

tiple modes according to the intrinsic characteristics of a sig-

nal, and provide powerful tools for periodic impulses extrac-

tion and rolling bearings fault diagnosis. For example, the 

empirical mode decomposition (EMD) proposed by Huang 

has been widely studied and applied in the field of mechan-

ical fault diagnosis [4, 5]. However, it has a major draw-

back, which is the mode mixing problem. Therefore, the en-

semble EMD (EEMD) and other improved EMD methods 

are presented to alleviate the mode mixing problem in the 

EMD, and have been widely applied to fault diagnosis of 

rotating machinery [6, 7]. 

The local mean decomposition (LMD) proposed 

by Smith is an iterative approach to demodulating amplitude 

and frequency modulated signals, which can decompose any 

complicated signal into a set of product functions(PFs), and 

each PF is the product of an envelope signal and a frequency 

modulated signal [8, 9]. The comparisons of LMD and EMD 

have been done and the superiority of the LMD in fault di-

agnosis of rolling bearing has been verified [10]. In addition, 

as a non-recursive signal decomposition method, the varia-

tional mode decomposition (VMD) which combines Wiener 

filtering, Hilbert transform and frequency mixing tech-

niques, and is a new completely non-recursive adaptive sig-

nal processing method [11].The core idea of this method is 

to assume that each mode revolves around its own central 

frequency. The problem of solving modal bandwidth is 

transformed into a constrained optimization problem, and 

then each modal is calculated. Based on the unique 

advantages of VMD, this paper introduces it into fault diag-

nosis and proposes a fault diagnosis method based on VMD 

[12, 13]. Due to the influence of background noise, there are 

some problems such as mode mixing or over-decomposi-

tion, which affect the processing performance of these meth-

ods on engineering signals to some extent [14, 15]. Signal 

denoising problem has always been the hotspot in signal 

processing field. Up to now, different signal denoising tech-

niques have been developed to analyze the vibration signals. 

Second Generation Wavelet is a spatial domain construction 

of biorthogonal wavelets developed by Sweldens [16, 17]. 

It abandons the Fourier transform as design tool for wave-

lets, wavelets are no longer defined as translates and dilates 

of one fixed function. SGW provides a great deal of flexi-

bility, compared with classical wavelet transform, we can 

use any linear, non-linear, or space-varying prediction oper-

ator and update operator, and it ensures that the resulting 

transform is invertible [18-21]. 

For the above reasons, we propose a hybrid ap-

proach combining (VMD) and SGW to purify the raw signal 

and to extract the defect information, respectively. Firstly, 

the VMD is used to decompose the vibration signal of the 

bearing. Then, by combining the cross-correlation analysis 

criterion and the kurtosis criterion, an effective component 

is selected as the observation signal. Thirdly, SGW is used 

to improve the periodic impact components in the signal. Fi-

nally, the envelope spectrum is used to achieve the fault 

characteristic frequency. 

The outline of this paper is as follows. The funda-

mental theories of VMD, SGW, the kurtosis criterion and 

the cross-correlation criterion are briefly summarized in 

Sec. 2. In Sec. 3, the hybrid approach is presented. The per-

formance of the proposed method is confirmed by experi-

mental results in Sec. 4. Finally, Sec. 5 concludes the paper. 

2. Basic principle 

2. 1. Principle of variational mode decomposition (VMD) 

In the VMD method, the modal components are 

updated directly in the frequency domain, and then trans-

formed into the time domain by inverse Fourier transform. 

The idea of the process is to assume that the majority of each 

mode is closely around a central frequency, and then trans-

form the problem of modal bandwidth into the problem con-

strained optimization to solve each mode. The IMF is gen-

erally considered as amplitude modulated frequency modu-

lated signals in the VMD algorithm and can be expressed by 

the following equation: 

 

( ) ( ) ( )( ).k k ku t A t cos t=   (1) 

 

For the construction of the constrained variational 



114 

problem, assuming that each IMF has a uk(t) finite band-

width, the variational problem can be expressed as seeking 

of K modal functions. The detailed decomposition steps are 

as follows: 

1. For every modal component signal uk(t) unilat-

eral frequency spectrum is achieved by the Hilbert trans-

form: 
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2. Added the exponential term 
jwkte−

to regulate the 

estimated central frequency of analytical signals corre-

sponding to each mode function, and shift the spectrum of 

each mode to the base band: 
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3. Estimate the bandwidth, and the constrained var-

iational problem is given as: 
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where:        1 2 1 2: , ,......, and : , ,......,k K k Ku u u u w w w w  

are mode sets and their central frequency, respectively;
2

2
is the square of modulus; ( )t is an impact function; * 

is the convolution operation. 

4. The Lagrangian function L is introduce to trans-

form that constraint into an unconstrained variational prob-

lem: 
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5. The “saddle point” of the augmented Lagrange 

function L is searched through a series of iterative updates 
1 1 1n n n

k k ku ,w , ,+ + +
 and the expression of the Intrinsic Mode 

Functions ( )ku t is: 
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Through Parseval / Plancherel Fourier isometry 

transformation, the Intrinsic Mode Functions ku and its 

corresponding center frequencies kw were transformed 

into the frequency domain, and the solutions of quadratic 

optimization problems were obtained through a series of 

simplified transformation: 
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The updated algorithm of central frequency is ob-

tained by the same method as above: 
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The implementation of the VMD method is:  

a) Initialize    1 1 1

k k
ˆˆ ˆu , w , ,n;  

b) Execution cycle: n=n+1; 

c) Update ( ) 1n

kw w+ for all w 0: 
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d) Update ( )1n

kw w+
: 
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e) Dual ascent for w 0:  
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f) Continue the iteration until the condition of convergence 

is satisfied:  
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Hilbert transformation can be performed for all 

mode function to obtain meaningful instantaneous fre-

quency, instantaneous amplitude and the Hilbert spectrum. 

2.2. Denoising algorithm based on Second Generation 

Wavelet (SGW) 

Second-generation wavelet (SGW) is a new wave-

let theory that emerged in recent years. Compared with the 

traditional wavelet, the construction of SGW avoids Fourier 
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transform. In addition, it has fast computational speed. Be-

cause of the advantages of SGW, it has been widely applied 

in vibration signal processing field. For example, Li et al. 

[14] combined lifting wavelet with morphological wavelet 

to construct an adaptive morphological gradient lifting 

wavelet, which is used for bearing and gear vibration signal 

denoising and feature extraction.  

The second generation wavelet method is proposed 

by Sweldens W. in1995 [16]. It is a fast and efficient wave-

let transforming technique. Different the traditional WT, the 

second generation wavelet (SGW) is a flexible wavelet con-

struction method which is independent of the Fourier trans-

form. In addition, it has fast computational speed, it has been 

widely applied in vibration signal processing field. SGW in-

herited its excellent characteristics of time-frequency loca-

tion. Furthermore, SGW has higher calculation efficiency 

and more clear principle and needs lower space [17]. SGW 

transform includes decomposition and reconstruction pro-

cesses. The decomposition stage of SGW can be summa-

rized as follows. 

The reconstruction stage of SGW is a reverse pro-

cedure of the decomposition stage.  

1. Split: the signal   X x n ,n Z=  is divided 

into two subsets: the odd sample set   0 0X x n ,n Z= 

and the even sample set   e eX x n ,n Z=  : 

 

   

   
0 2 1
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x n x n

= +

=
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2. Predict: the prediction operator is used to predict 

the odd sample set 0X  on the even sample set eX . Then, 

the prediction error between  0x n and ( )eP X   gives the de-

tail coefficients  d n :                

 

    ( )0 .ed n x n P X= −  (14) 

 

3. Update: use the update operator U to update the de-

tail coefficients   D d n ,n Z=   and add the result ( )U D

to  ex n ; the approximation coefficients  c n can be ob-

tained: 

 

    ( ).ec n x n U D= +  (15) 

After the above three steps, the detail coefficients

  D d n ,n Z=  and the approximation coefficients

  C c n ,n Z=  are obtained. Multilayer decomposition 

of SGW can be carried out through the 

iteration of these three steps. Here, the prediction operator

( ) ( ) ( )1 2P p , p ,........, p M =   and update operator 

( ) ( ) ( )1 2U u ,u ,........,  u N =   is vector with length of M 

and N, respectively. They can be designed by interpolating 

subdivision method. The obtained SGW is denoted as 

( )M ,N SGW and the reconstruction stage of SGW is a re-

verse procedure of the decomposition stage. 

2.3. Cross-Correlation coefficient and Kurtosis 

The correlation coefficient can be used as an index 

to calculate the degree of correlation between two signals. 

The larger the correlation coefficient value, the higher the 

correlation with the original signal. By using this criterion, 

the degree of correlation between each component signal 

obtained from the decomposition and the original signal can 

be known. The computation procedure of the correlation 

number is as follows: 
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where: 
ix and x are specific values and average values of 

the signal x. At the same time, 
iy and y are specific values 

and average values of the signal y, respectively Kurtosis can 

be used to determine the peak degree of signal waveform, 

and it is more sensitive to the impact components in the sig-

nal. The higher the proportion of impact components is, the 

higher the kurtosis value will be. For bearings, the kurtosis 

value is close to the normal distribution undernormal oper-

ation, and it will increase significantly when faults occur. 

The computation method is as follows: 

4

1

1
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i
i

x x
K

n =
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=  

 
  (17) 

 

where: ix and x are specific values and average values of 

the signal x, is the standard deviation of the signal, and n 

is the number of samples[22-24]. 

3. The steps of the proposed method 

Rolling element bearing is extensively used in ro-

tating machinery, and it is one of the most essential and vul-

nerable parts. If the fault features information can be ex-

tracted successfully at the early stage of the bearing 

failure, and correctly identify the bearing running condition, 

timely repair or replace damaged bearing, can effectively 

shun catastrophic failures, which is of great 

significance to improve product performance and decrease 

economic losses. 

However, the vibration signals collected by the 

sensors are accompanied by a large number of interference 

signals, which makes the signals have weak and unstable 

characteristics. Consequently, how to efficiently extract the 

defect features, analyze the fault feature frequency, and 

judge the fault type has always been a concern of people, 

and it is also a hotspot research problem for non-stationary 

and non-Gaussian vibration signals.  

To find a suitable and effective tool for bearing 

fault diagnosis a few of steps are developed in this paper: 

Step 1. VMD algorithm decomposes the signal  

into a combination of multiple modal components IMFs and 

can suppress the modal aliasing phenomenon. 

Step 2. Obtain the kurtosis value and correlation 

coefficient, and select the optimum IMFs components. 
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Step 3. The (SGW) algorithm can remove out most 

of the noise in the optimum IMFs and reveal the impact 

components of the fault.  

Step 4. The selected IMFs are reconstructed and 

analyzed by envelope spectrum to extract the fault charac-

teristic frequency. 

4. Experimental apparatus and data collection 

In order to confirm the success of the proposed 

scheme for noise reduction and defect feature enhancement 

of rolling bearing fault signals, the bearing data of Case 

Western Reserve University in the United States are se-

lected. Single point faults produced by electro-discharge 

machining were caused in the test bearings. The test uses the 

6205-2RS-JEM-SKF deep groove ball bearing. These sig-

nals were taken from an accelerometer mounted on the bear-

ing housing at the drive end of the induction motor which is 

connected to a torque transducer, coupled to a dynamome-

ter. The data were saved as different files in MATLAB for-

mat. Detailed information is shown on the CWRU bearing 

data center website [25]. In this paper, the sampling fre-

quency is 12 kHz and the motor speed is 1797 rpm. The 

basic geometric parameters are shown in Table 1. Usually, 

the bearing fault frequencies are calculated in the time do-

main based on the number of impulses generated for one 

complete revolution of the shaft. However, the defect fre-

quencies can be calculated mathematically from the pitch 

diameter, ball diameter, number of balls, contact angle and 

revolution rate of the shaft. From the physical dimensions 

and the operating speed, the different fault frequencies can 

be calculated as described in the equations below. 

Outer race defect frequency: 
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Inner race defect frequency: 
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Rolling element frequency: 
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where: Z is the number of rolling elements; d is the rolling 

element diameter; D is the bearing pitch diameter; α is the 

contact angle; fr is the shaft rotation frequency, Hz. Based 

on the bearing parameters shown in Table. 1 and equations 

(18 – 20), the fault characteristic frequency of the rolling 

bearing, BPFO = 107.36 Hz; BPFI = 162.19 Hz; and 

BPFR  = 141.1693 Hz, respectively.

Table 1 

The basic geometric parameters of SKF 6205 

Rolling element 

number, Z 
Inner diameter, 

inches 
Outer diameter, 

inches 
Rolling element diame-

ter d, inches 
Contact angle 

α 
Pitch circle diam-

eter D, inches 
Speed, 

rpm 
9 0.984 2.047 0.312 00 1.532 1797 

 

5. Results and discussion 

5.1. Bearing inner race fault detection  

When a bearing fault of inner ring happens, its 

location, where the balls pass through, varies because of 

the rotating of inner ring with the shaft, so an impulse 

feature will be repeated by the frequent of rotating. By math-

ematical calculations, the ball passing frequency inner race 

(BPFI = 162.19 Hz). The time domain and the frequency 

domain of the bearing inner ring fault signal are shown in 

Fig. 1. Due to the interference of the background noise, 

characteristic frequency related to bearing fault is masked 

and it is difficult to separate the periodic pulse features, 

hence it is impossible to extract the fault characteristic in-

formation directly from the time domain and the frequency 

domain. 

To testify the effectiveness of the proposed 

method, the signal is decomposed by the VMD. As revealed 

in Fig. 2, VMD method can decompose a bearing non-sta-

tionary vibration signals with inner raceway fault into a sum 

a plurality of stationary component IMFs. 

The kurtosis and the cross-correlation coefficients 

value of each component are calculated; in this study the 

signal components with kurtosis value bigger than 3 and 

correlation coefficient bigger than 0.3 are selected. It can be 

se en from Table 2 that the signal components of IMF4 and 

IMF5 are carefully chosen in our analysis. Then they are de-

noised with the SGW and superimposed to reconstruct a 

new signal. 

 

a 

 

b 

Fig. 1 Vibration signal of bearing with an inner race fault: 

a) Ttime - domain; b) Frequency - domain  

After the noise reduction by SGW, it can be seen 

from Fig. 3, a that the majority of the noise is successfully 

filtered and the waveform of the reconstructed signal is very 

analogous to the original inner ring fault signal, as well the 
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periodic fault shock components has really observed in the 

reconstructed signal. By applying the envelope spectrum of 

the reconstructed signal, it can be observed from Fig. 3, b 

that the characteristic frequency of the fault is obvious and 

the frequencies are very close to the theoretical calculated 

values; this means that the choice of key parameters is sig-

nificantly vital in fault diagnosis. Consequently, the results 

demonstrate that the fault of bearing inner ring can be accu-

rately diagnosed by the proposed technique. 

 

Fig. 2 the decomposed IMFs of the inner raceway fault sig-

nal using VMD 

Table 2 

The kurtosis and the cross-correlation coefficients 

IMF 1 2 3 4 5 6 
kurtosis 1.305 2.543 3.576 3.768 4.564 2.904 

the cross-

correlation 

coeffi-

cients 

0.035 0.178 0.265 0.386 0.453 0.268 

 

 

a 

 

b 

Fig. 3 a) The reconstructed signals; b) Its envelope spectrum 

5.2. Bearing outer race fault detection   

When a bearing fault of outer ring happens, its 

position is unvaried. An impulse feature will be repeated 

by the fault characteristic frequency of outer ring. 

According to theoretical computations, the ball 

passing frequency outer race (BPFO = 107.36 Hz). The time 

domain and the frequency domain of the bearing outer ring 

fault signal are shown in Fig. 4.Due to the existing of strong 

noise; it is difficult to extract the fault feature frequency. As 

we know, VMD can decompose a complex multicomponent 

signal into a series of sub-signals, which are mostly compact 

around a center pulsation, with a limited frequency band-

width. 

To prove the success of our approach of bearing 

fault diagnosis, VMD method is applied to the signal, and 

the decomposed results are shown in Fig. 5. 

 

a 

 

b 

Fig. 4 Vibration signal of bearing with an outer race fault: 

a) Time-domain; b) Frequency-domain 

 

Fig. 5 The decomposed IMFs of the outer raceway fault sig-

nal using VMD 
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Via calculating the cross-correlation coefficients 

and kurtosis value of each signal component, the results are 

shown in Table. 3, it can be seen that three IMF components 

(i.e. IMF3, IMF4, and IMF5) have better fault information 

than other IMFs, so the three IMFs are denoised by SGW 

and used to reconstruct the vibration signal. 

Table 3 

The kurtosis and the cross-correlation coefficients 

IMF 1 2 3 4 5 6 
kurtosis 1.223 1.786 3.045 3.276 4.353 2.643 

the cross-

correlation 

coeffi-

cients 

0.017 0.132 0.303 0.365 0.398 0.232 

 

The reconstructed signal and its envelope spectrum 

are correspondingly showed in Fig. 6. It can be evidently 

seen after noise reduction by SGW that the periodic fault 

impact component of the outer ring fault signal has been ex-

tracted and the useful fault signatures can be clearly re-

vealed. As can be seen in the achieved envelope spectrum 

of the filtered signal that the fault frequency (106, 41 Hz) 

and its first three harmonics (213.2 Hz), (320.1 Hz), 

(426.1 Hz) can be observed in Fig. 6, b, this means that the 

proposed method detect the outer race bearing damage ef-

fectively. 

 

a 

 

b 

Fig. 6 a) The reconstructed signals; b) Its envelope spectrum 

5.3. Rolling element fault detection   

The rolling element fault is analysed more diffi-

cultly, because the fault point is continuously in motion sta-

tus following the rolling elements rotating, However, weak 

signatures in the time domain are often contaminated be-

cause the intervention of strong ambient noises, the time do-

main and the frequency domain are shown in Fig. 7 

Then, the VMD method is used to decompose the  

signal of the rolling element and 6 IMFs components are 

obtained, the decomposition results are shown in Fig. 8. 

 

a 

 

b 

Fig. 7 Vibration signal of bearing with a rolling element 

fault: a) Time-domain; b) Frequency-domain 

 

Fig. 8 the decomposed IMFs of the rolling element fault sig-

nal using VMD 

The kurtosis and cross-correlation coefficients 

each component is shown in Table 4. One can observe ex-

plicitly that only the IMF4 component meets the set thresh-

old conditions. Therefore, it is selected to de-noise with the 

SGW and reconstructed. 

Table 4 

The kurtosis and the cross-correlation coefficients 

IMF 1 2 3 4 5 6 

kurtosis 1.112 1.966 2.645 3.836 2.773 2.163 

the cross-

correlation 

coeffi-

cients 

0.107 0.235 0.283 0.385 0.268 0.239 

 

It can be clearly seen from the reconstructed signal 

that the impulsive features and periodic fault shock compo-

nent of the rolling element fault signal is successfully ex-

tracted as well noises are successfully removed. In addition, 
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we can observe from the envelope spectrum in Fig. 9, b that 

the rolling element defect frequency 140.6 Hz, and its fre-

quency doubling 281.3 Hz are rather clear and the peaks at 

defect frequency are very obvious and prominent. The re-

sults show that the proposed scheme is still capable to diag-

nose the rolling element defect. 

 

a 

 

b 

Fig. 9 a) The reconstructed signals; b) Its envelope spectrum 

6. Conclusions 

An unexpected malfunction of a rolling bearing 

may cause the sudden breakdown of rotating machinery. 

However, the measured vibration signals are complex and 

non-stationary in nature, and meanwhile impulsive signa-

tures of rolling bearing are generally engrossed in noise.  

After the analysis of bearing fault signals, the con-

clusions reached are as follows: 

1. A set of Intrinsic Mode Function components (IMFs) 

can be got by VMD and the modal aliasing canbe sup-

pressed. 

2. Via calculating of cross-correlation analysis and kurto-

sis, the optimum signal components are carefully chosen 

and used to reconstruct the vibration signal. 

3. By using (SGW)the most of the noise can be removed 

and the periodic impact component can be successfully 

improved. 

4. The envelope spectrum shows that the proposed tech-

nique can perfectly extract the characteristic frequency 

of faults in a strong noise background environment. 
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T. Bensana, S. Mekhilef, M. Mihoub, M. Fnides 

 

A NOVEL METHOD FOR BEARING FAULT 

DIAGNOSIS BASED ON VMD AND SGW  

S u m m a r y 

The bearing vibration signal with strong non-sta-

tionary properties is generally composed of multiple com-

ponents making it complicated to extract the characteristic 

fault features of vibration signals of rolling bearings under 

the background of strong noise, how to solve this problem 

effectively is the focus of our research. Therefore, a new 

scheme based on Variational Mode Decomposition (VMD) 

and second-generation wavelet (SGW) is proposed in this 

paper. Firstly, VMD can decompose accurately and adap-

tively a complex multi-component signal into a set of IMF 

component with narrow band properties. Secondly, on the 

basis of kurtosis and cross-correlation analysis, the optimum 

signal components obtained by the VMD are selected to fil-

ter and to reconstruct the analysis signal. Then, (SGW) ap-

proach is used to eliminate the strong noise background and 

enhance the periodic impact in the optimum IMF compo-

nents. Lastly, the accurate characteristic defect frequency 

can be obtained by using envelope spectrum of the recon-

structing signal. The success of the proposed approach is 

verified by analysis the vibration signals of bearings with an 

outer race, an inner race and a rolling element faults, respec-

tively. The results indicate that the scheme is feasible and 

useful for extracting the bearings fault features. 

Keywords: Fault diagnosis, rolling bearing, variational 

mode decomposition, second generation wavelet. 
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