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1. Introduction 

Smoothed particle hydrodynamics (SPH) was ini-

tially proposed by Monaghan and Gingold [1], and by Lucy 

[2] in 1977. SPH has progressed tremendously due to inten-

sive theoretical work and computational improvements, par-

ticularly since the 1990s. This numerical method has been 

shown to be robust and applicable to a wide variety of fields. 

The main advantages of SPH come from its pure Lagrangian 

nature. The method can efficiently deal with the existence 

of large voids without special treatment. Also, the method 

can handle large deformations and extreme fragmentation 

without additional complicated or rather unphysical ap-

proaches. From a numerical point of view, its Lagrangian 

nature brings simplicity and parallelism to its algorithm. In 

addition, multiphase media can be easily described if the re-

lationships between the phases are determined.  

In fluid mechanics, fluids are described as discrete 

particles, and the governing equations are integrated into the 

Lagrangian form for these particles. The physical quantities 

of each particle can be obtained by interpolating the neigh-

boring particles' relevant values through a kernel function. 

In some way, the role of kernel function is like a weight 

function used to obtain a weighted average of the values of 

the particles in the support domain. Computationally, the in-

terpolation enables discrete information to be smoothed and 

continuous in the domain.  

SPH methods have been successfully used in astro-

physical applications and hydrodynamic problems, such as 

free surface flow [3, 4], gravity current [5]. SPH method can 

also be applied to many other scientific and engineering ap-

plications, such as diesel engines, hydraulic engineering, 

and nanofluid flow. Boundary condition is one of the key 

issues to solve these problems which is also very important 

for other particle methods such as MPS, and considerable 

efforts have been devoted to it. Different types of boundary 

conditions can be used, such as ghost particles [6], repulsive 

particles [3], LUST [7], and so on. Among these boundary 

conditions, dynamic boundary condition (DBC) was first 

developed by Crespo, Gómez and Dalrymple [8] and has 

been widely used. In DBC, boundary particles share the 

same properties with fluid particles, and they follow the 

same equations of state and continuity when computing the 

density variation and the acceleration of fluid particles. The 

differences are that the boundary particles are not allowed 

to move, or they can only move according to some external 

input and the density of boundary particles are kept con-

stant. In this way, all the variables associated with the parti-

cles can be calculated in the same manner with a considera-

ble saving of computation time.  

Although DBC has been proved feasible in many 

cases, we found it would bring some error due to the asym-

metry of the repulsive force field. When the fluid particles 

collide with the boundary, they may not be reflected specu-

larly. Although this error may be tiny, it should be avoided 

because the interaction between the fluid and the boundary 

should be controllable and precise since how the error oc-

curs and propagates is uncertain. In addition, in some simu-

lations, we found a few fluid particles broke through the 

boundary. This phenomenon is unphysical, and it possibly 

indicated that the repulsive force was not strong enough. 

We noticed that local uniform stencil boundary 

condition (LUST) is presented to solve the two problems. 

The repulsive force and the symmetry have been improved 

to some extent in LUST. However, for some exceptional 

cases, such as waterdrop impact, these problems still exist.  

This paper presents an improved dynamic bound-

ary condition (IDBC) in SPH methods with three improve-

ments. Firstly, the boundary interaction is enhanced to de-

crease the number of boundary particles and prevent fluid 

particles from breaking through the boundary. Secondly, the 

shape of the support domain attached to the boundary is 

modified to keep the force field close to the boundary being 

symmetrical. Finally, a correction factor is introduced to 

guarantee the unity. Meanwhile, the original kernel is re-

tained, and the algorithm keeps concise. 

2. Method description 

The main features of the SPH method have been 

amply described in the references [9-11]. The fundamental 

idea is to consider that a function f(r) can be approximated 

by: 

 

( ) ( ) ( )f f ' W ',h d ' ,= −r r r r r  (1) 

 

where: r is position; W is kernel function and h is smoothing 

length that defines the size of the compact support. This ap-

proximation, in discrete notation, leads to: 

 

b

a b ab

b b

f
m ,f W


=   (2) 

 

where: a and b are particles; Wab is the kernel function be-

tween particle a and b; mk and ρk are the mass and density of 

particle k respectively. A cubic spline kernel developed by 

Monaghan and Latanzio [12] is used in this study, as fol-

lows: 
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where: q r h=  with r being the distance between particles; 

αD equals to 210 7 h  in two-dimensional (2D) conditions 

and 31 h  in three-dimensional (3D). Due to the particular 

choice of the cubic spline kernel, with the first derivative 

versus q  being zero, the tensile correction method pro-

posed by Monaghan [13] is used to prevent particle clump-

ing. This kernel and tensile correction have been thoroughly 

proved to be feasible. 

The momentum conservation equation in Lagran-

gian form is: 

 

d P

dt





= − + +

v
g   (4) 

 

where: ν is velocity; P is pressure; ρ is density; g is gravita-

tional acceleration and Γ refers to dissipative terms. SPH 

methods describe the momentum equation with different ap-

proaches through different formulations of the dissipative 

terms. The artificial viscosity scheme, proposed by Mona-

ghan [10], is a conventional method within fluid simulation 

using SPH due primarily to its simplicity. In SPH notation, 

Eq. (5) can be written as: 
 

2 2

a b a

b ab a ab

b b a

d P P
m W ,

dt


 

 
= − + +  + 

 


v
g   (5) 

 

where the artificial viscosity term ab  is given by: 
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with 
2 2ab

h



=

+

ab ab

ab

v r

r
, where ab a b= −r r r  and ab a b= −v v v   

with kr  and kv  being the particle position and velocity, re-

spectively; ( ) 2ab a b /  = +  and ( ) 2ab a bc c c /= +  are 

average density and average sound speed of particle a and 

b; 0 1. h = ; α and β are constants. α is related to shear and 

bulk viscosity. β handles high Mach number shocks and is 

roughly equivalent to the Von Neumann-Richtmyer viscos-

ity used in finite-difference methods. Following Monaghan 

[10], β is considered to be zero. 

The continuity equation can be replaced either by 

the interpolant: 

 

a b ab

b

m W , =  (7) 

 

or by: 

 

a

b ab a ab

b

d
m W .

dt


=  v  (8) 

Eq. (7)  comes from Eq. (2) in SPH interpolation. 

Eq. (8) is the continuity equation in SPH form, in which the 

density change is computed by solving the conservation of 

mass [9]. In this study, Eq. (8) is used to calculate the fluid 

density in order to avoid the artificial density decrease near 

fluid interfaces. 

Following Monaghan [5], Batchelor [14] and Cole 

[15], pressure can be calculated by the following expression: 

 

( )0 1P B ,


  = −
 

 (9) 

 

where the constant of state 7 = , 
2

0 0B c  = ,

3

0 998.1 kg/m =  (at the temperature of 20 C  ) is the ref-

erence density and ( )
00 0c c P  = =    is the speed of 

sound at the reference density. Particles are moved using the 

XSPH method according to Monaghan [10, 16]: 

 

a b

a ab ab

b ab

d m
W ,

dt



= + 

r
v v   (10) 

 

where: 0 5. = . With this method, the particle is moved de-

pending on not only its own velocity but also the average 

velocity of the neighboring particles. The XSPH variant has 

proven useful in the simulation of nearly incompressible flu-

ids such as water, where it keeps the particles orderly in the 

absence of viscosity.  

The time step is controlled by the Courant condi-

tion, the force terms, and the viscous diffusion term [16]. A 

variable time step Δt  is calculated according to Monaghan 

and Kos [4]: 

 

( )

     
ab

f cv
a a

a s
b

f cv

h h
t min t min

c max ,

t CFL min t , t



 
 =  = 

  + 

 =   

f  (11) 

 

in which: Δtf  is based on the force per unit mass f, actually 

it is equivalent to the magnitude of particle acceleration aa 

and Δtcν combines the Courant and the viscous time-step 

controls. 

For numerical simulations, the boundary condition 

is one of the key issues. In SPH method, boundary condi-

tions need to be treated specially. When a particle ap-

proaches the boundary, the number of neighbors decreases 

because there is nothing on the other side of the boundary. 

The lack of neighbors could result in unrealistic effects as 

some variables are highly dependent on the summation of 

the variables attached to the neighbors. To solve this prob-

lem, many boundary conditions are developed [3, 4, 7, 17]. 

One of the successful boundary conditions is dynamic 

boundary condition [8]. In this method, all the particles, no 

matter which types they are, follow the same equations of 

continuity and state, but the positions of the boundary parti-

cles do not change unless external forces are imposed. One 

attractive advantage of this assumption is that the implica-

tion is simplified, and computational time can be consider-

ably saved. This boundary condition, first presented by Dal-

rymple and Knio [18], has been tested [8] and widely used 

[19, 20]. 
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3. Improved dynamic boundary condition 

Dynamic boundary condition has been fully de-

scribed by Crespo, Gómez, and Dalrymple [8]. The basic 

idea is to calculate the pressure of the boundary particles 

with the equation of state. The equation of state can be ob-

tained from the first term of the Taylor expansion of Eq. 

(9) : 

 

( )2

0a a aP c , = −
 (12) 

 

where: c is the speed of sound, which is assumed as a con-

stant and ρa0 is the initial density of particle a. 

To simplify the description of the problem, only 

two particles are considered here, i.e., one boundary particle 

and one fluid particle. In the absence of viscosity and grav-

ity, the momentum equation for the fluid particle (Particle 

A) becomes: 

 

2 2

a b a

b a ab

b a

d
.

P P
m W

dt  

 
= − +  

 

v
 (13) 

 

Combining Eq. (13) with Eq. (12) gives: 

 

2 0 0

2 2

a b a

b a ab

b a

m W
d

.
d

c
t

   

 

 − −
= − +  

 

v
 (14) 

 

When there are only two particles, Eq. (7) can be 

written as: 

 

 ;     a a aa b ab b a ba b bbm W m m .m W W W = + = +  (15) 

 

As we know, 

 

( )0 0aa bbW W W W r .= = = =  (16) 

 

Assuming all the particles have the same mass m, 

we have: 

 

( )0 0 0;    a b abm W W .mW   = = = + =
 (17) 

 

Thus Eq. (14) becomes: 

 

( )
2

2

0

2a ab

a ab

ab

d W
c W

dt W W
.= − 

+

v

 

 (18) 

 

With the artificial viscosity as described in Eq. (6)

, tensile correction, gravity and more particles, we obtain: 

 

( )
2

b2

0

2 +a ab

a tenb a ab

b ab

d W
c m W

d W
f

t W


 
 = − +  +
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
v
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where the tensile correction term tenf  is defined according 

to Monaghan [13]: 

( )
4

2
=

3

0 01  0
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ten a b ab

kk

k

k

f R R W W

. if PP
R

. else






  
+   

  


= = 

−

. (20) 

3.1. Improvements on particle interaction 

Although the dynamic boundary condition has 

been widely used and tested, there are still some problems. 

In some situations, some particles can break through the 

boundary in an unphysical way. A possible method to solve 

this problem is to enhance the forces between fluid particles 

and boundary particles. In Eq. (12), the pressure is ex-

pressed using the first-order term of the Taylor expansion of 

the equation of state. Since the exponent 7 =  in Eq. (9), 

the equation of state can be expanded into seventh order, as 

follows: 
 

2 2 3 4 5 6

0 0 +
1

1 3 5 5 3
7

aP c ,       
 

= + + + + 
 

+  (21) 

 

where: ( )0 0= a   − . 

In another way, Eq. (21) can be considered as a bi-

nomial expansion if we express it in the following form: 
 

2
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a

c
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

  
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 (22) 

 

With the same assumption, Eq. (19) can be ex-

pressed as: 

 ( )
2

2
b 0

2 3 4 5 6

0

2

1
1 3 5 5 3  ;  

7

a

ab

b ab a ab

ab

ab

ten

d

dt

W
c f m W ;

W W

f

W
.

W

f





     



+

=

 
= − +  + 

+  

= + + + + + +

=



v

g

(23)

 

 

 

Fig. 1 Dimensionless force between one boundary particle 

(Particle a) and one fluid particle (Particle b) in dif-

ferent orders 
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Considering the particular case of a cubic kernel, 

the differences of the repulsive forces among different or-

ders of the equation are shown in Fig. 1. 

As shown in Fig. 1, the higher-order expansion 

does enhance the repulsive forces, but the difference be-

tween the sixth order and the seventh order is not significant. 

One reason is that the coefficient of the seventh order is one-

seventh in Eq. (23). Another reason is that the base θ is less 

than 1 and the exponent increases which make the repulsive 

force decreased dramatically in the seventh order. Another 

interesting phenomenon is that with the higher-order, the 

curve's peak becomes higher and moves closer to the bound-

ary particle. It means that an energetic particle needs more 

energy to climb over the peak and this particle must get 

close enough to the boundary. Therefore, the repulsive force 

of the boundary can be enhanced to prevent fluid particles 

from breaking through the solid boundary, meanwhile it ex-

erts little impact on all the fluid particles. Only the particles 

close enough to boundary particles will be repulsed signifi-

cantly. The total potential energy created by the repulsive 

force can be represented by integrating the dimensionless 

force over the dimensionless distance from 0 to 2 as shown 

in Fig. 1. The dimensionless potential energy in different or-

ders is shown in Fig. 2.  

With the full expansion, the potential energy   is 

increased by more than seven times. It is an important index 

to evaluate how IDBC works. Using the full expanding form 

makes all the fluid and boundary particles follow the same 

equation of state. However, considering the computation ef-

ficiency, we need to determine how many orders should be 

kept according to each order's strength. 

 

 

Fig. 2 The distribution of the dimensionless potential energy in each order 

3.2. Improvement on support domain 

Another problem is that the field of repulsive 

forces is not uniform and it is also not specular. According 

to DBC, the boundary described as a group of particles can-

not move, but the forces are also discretized. The field of 

repulsive force is circular because the support domain of the 

particles is a circle. The superposition of the force fields of 

the boundary particles results in the edge of the whole force 

field being unsmoothed. When fluid particles reach the 

boundary, they may not be reflected specularly. For some 

cases, such as droplet impact, the result will be asymmet-

rical [21]. For an ideal boundary, it is unphysical and unac-

ceptable. Furthermore, an uneven force field may lead to 

some errors out of control. 

We set a given fluid particle at (x0, y0) and some 

neighbor boundary particles distribute from (x0-Δx, yB) to (x0 

+Δx, yB). The density ρB of each boundary particle is the 

same, and the pressure PB is calculated using the equation of 

state. We can express the repulsive force on the fluid particle 

as Eq. (24): 
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From Eq. (24), it is evident that 0xf    and yf   is 

only dependent on the distance in the normal direction (y0 –  

yB). f can be expressed as: 

( )0

0

0

B

x x
BB

x x

W ry yP
dx

r r



 

+

−


 −




 

f = j .  (25) 

 

When Eq. (25) is expressed in SPH form, the sum-

mation of the repulsive forces could not be independent of 

x  if the distribution of the particles is not symmetrical. 

Thus, we introduced IDBC to make it only related to the 

distance in the normal direction. 

Therefore, we change the form of the support do-

main of the boundary particles in IDBC. In theory, a bound-

ary particle represents a group of corresponding boundary 

elements. The contour line of the repulsive force should be 

parallel to the boundary so that the shape of the support do-

main is changed from a circle to a rectangle, as shown in 

Fig. 3. 

 

Fig. 3 Two different ways to calculate the distance between 

the fluid particles and the boundary particles. The 

forces F depend on this distance 

In the compilation, when calculating the distances 

between fluid particles and boundary particles, the projec-

tion in the normal direction of the boundary is only consid-

ered. Then the fluid particles at the same distance to the 
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boundary are repulsed equally. The length in the normal di-

rection is 4h, and the length in the tangential direction is two 

times the distance between the particles, as shown in Fig. 3. 

Fluid particles will search neighbor boundary par-

ticles in the rectangle support domain. The distance r1 and 

the gradient of kernel function ( )
Ia abW  are calculated with 

Eq. (26): 

( )     =
( )I

I ab Ia

I

a b

W
W ,

r
r r

r



= 



n n

n n
  (26) 

where: n is the normal vector at the boundary. They are used 

in the governing equations between fluid particles and 

boundary particles. Eq. (26) is applied to determine the den-

sity variation and compute the repulsive force for fluid par-

ticles. 

As is known, the coefficient of the kernel function 

is related to the support domain. This coefficient αD is used 

to keep the integration of the kernel function W(r, h) within 

the support domain S equal to 1 as expressed in Eq. (27): 
 

( ) 1
S

D W r,h dr . =  (27) 

 

The coefficient should be adjusted with the change 

of support domain. To simplify the compilation, a correction 

coefficient αDB on αD only for boundary particles is used: 
 

( ) 1
S

DB D W r,h dr .  =  (28) 

 

For the cubic kernel function shown in Eq. (3), αDB 

is 7 30h x   in 2D and 
2 6h x y    in 3D. 

 

                  a                                               b 

 

                  c                                               d 

Fig. 4 The equipotential plane of the dimensionless forces 

field in DBC and IDBC. a) DBC; b) DBC with sev-

enth order expansion; c) DBC with the new shape of 

the support domain; d) IDBC with seventh order ex-

pansion 

We select six particles in a row as the boundary and 

calculate the repulsive force generated by them in a program 

which is specially developed with C++. The dimensionless 

forces field in DBC and IDBC with different orders are 

shown in Fig. 4. The expansion with higher order enhances 

the repulsive force obviously. This enhancement will pre-

vent fluid particles from breaking through the boundary. 

The equipotential plane is smoothed by the new shape of the 

support domain, especially near the boundary. Furthermore, 

the peak of the equipotential plane is transformed into a 

ridge. This improvement can make the reflection specular. 

The form of the kernel function is kept in the vertical direc-

tion, ensuring zeroth or first-order consistency at the bound-

ary's edge. 

4. Model performance test 

There are some open-source codes for SPH, such 

as SPHysics [22] and DualSPHysics [23]. However, they 

are too sophisticated for our simple test cases. For conven-

ience, we developed a program based on C++ and OpenMP 

to test DBC and IDBC. LUST was tested using DualSPHys-

ics. 

4.1. Test case 1: Single-particle moving inside a box 

The movement of a single particle inside a box is 

the case used to test the performances of different boundary 

conditions. With this case, we can make it clear that how the 

boundary particles repulse the single fluid particles. DBC 

has been proved to be useful and acceptable in an individual 

case, as shown in Fig. 5, in which the fluid particle hits the 

boundary vertically. 

 

Fig. 5 Sketch of the individual case of DBC. Solid dots are 

the boundary particles, and the hollow one is the fluid 

particle 

As we know, not all the particles get close to the 

boundary vertically or symmetrically. In DBC, the field of 

repulsive force is not uniform. If a particle rushes to the 

boundary obliquely, the field passed through by the particle 

is not conservative in DBC, as shown in Fig. 6 (up). It can 

be seen that the field passed through by the particle is asym-

metric in DBC, so is the repulsive force. As a result, in DBC 

the fluid particle is not reflected specularly, and the energy 

is not conservative. 

With the modified shape of the support domain and 

the correction factor, this problem is solved in IDBC. As 

shown in Fig. 6 (down), the modified field in IDBC is sym-

metric. A test case is designed to compare the differences 

between DBC and IDBC, as shown in Fig. 7. In a square box 

with the length of every side being 60 m , a particle moves 

from (x0, y0) = (30,36) m with an initial velocity ν = (20,–

20) m/s. Viscosity and gravity are neglected. The CFL num-

ber is 0.05. To make the differences distinct in a short time, 
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the speed of sound c  close to the real speed in water is set 

to 1460 m/s. Although this high value of sound speed is not 

usually used in simulations, it is high enough to make the 

differences distinguishable without other unphysical as-

sumptions as the error accumulates over time. 

 

Fig. 6 The particle rushes to the boundary obliquely. The 

big circles and big rectangles represent the boundary 

particles' support domain in DBC and IDBC, respec-

tively. Solid dots are boundary particles, and the hol-

low one is the fluid particle 

 

Fig. 7 Sketch of the initial setting in the test case for check-

ing the performance on the symmetry of different 

boundary conditions. The dashed line is the expected 

route of the fluid particle 

In this case, the fluid particle rushes to the bound-

ary at 45 degrees in the square box. If the fluid particle is 

reflected specularly, this particle's trajectory should be a 

closed rectangle, as shown in Fig. 7. If the boundary gener-

ates any error, it will be amplified over time and illustrated 

by the fluid particle's trajectory. The error will bring un-

physical fluctuation to the variables, such as kinetic energy. 

The results are shown in Fig. 8. 

From Fig. 8, it is seen that IDBC is more accurate 

than DBC for this case. In this extreme test, the fluid particle 

cannot return the initial position after only one loop in DBC, 

and the energy fluctuates unphysically. However, IDBC re-

flects the fluid particle symmetrically and decreases the er-

ror generated by the boundary. In the LUST test, the fluid 

particle was also reflected symmetrically but earlier than 

that in DBC and IDBC. This phenomenon indicates that the 

repulsive force generated by LUST is stronger than DBC 

and IDBC when the particle is at a distance larger than 1.0h 

to the boundary. 

In general, the smoothing radius is chosen to in-

clude enough neighbors to limit the impacts of the misalign-

ments between the particles. Therefore, the single particle 

test case is useful to test the performance of the improved 

boundary treatment method in detail. 

 

a 

 

b 

Fig. 8 The simulated results of the movement of a fluid par-

ticle in a box with DBC and IDBC. a) the trajectory 

of the fluid particle; b) the kinetic energy of the fluid 

particle 

4.2. Test case 2: Waterdrop Impact 

Waterdrop is an ideal example to test IDBC with a 

group of fluid particles. This case describes a small wa-

terdrop smashes to the boundary vertically driven by grav-

ity. For this simple test case, if there is no other error, the 

result should be symmetrical. The waterdrop with a radius 

of 1.0 mm drops from the height of 2.0 mm with an initial 

velocity ν = (0,–2) m/s, the artificial viscosity coefficient  

α = 0.2 for fluid particles and α = 0. between fluid particles 

and boundary particles. The CFL number is 0.05. The speed 

of sound is 50 m/s, which is selected to guarantee that the 

system is weakly-compressible and the computational effi-

ciency is acceptable simultaneously.  

To distinguish the differences between DBC, 

LUST, and IDBC, we set the boundary particles in two 

ways, as shown in Fig. 9. One is symmetrical and another 
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one is asymmetrical. The separation between the particles, 

Δx, is 0.2 mm. The displacement between the particles of the 

two kinds of boundaries is 0.3 Δx. 

 

 

Fig. 9 Particles set in two ways: symmetrical and asymmetrical 

The simulated results at t = 0.002 s are shown in 

Fig. 10. Within one frame, the result is compared with its 

own mirror image to show its symmetry directly. If the 

boundary condition does not involve any error, the results 

should not be changed by the different deployment of the 

boundary particles. It is shown that no matter how the parti-

cles are deployed, the results are almost the same with 

IDBC, but with DBC or LUST, they are not. 

 

                                                     a                                                                                                   b 

 

                                                    c                                                                                                   d 

 

                                                    e                                                                                                    f 

Fig. 10 The distribution of particles at 0 002 st .  =  with different boundary conditions: a) symmetrical deployment with 

DBC; b) asymmetrical deployment with DBC; c) symmetrical deployment with IDBC; d) asymmetrical deployment 

with IDBC; (e) symmetrical deployment with LUST; (f) asymmetrical deployment with LUST

For further evaluation of the performance of DBC, 

LUST and IDBC, we defined a dimensionless coefficient 

fsym as follows: 

2 26
3 2;    ;    ,   

x y

sym x i y i i

i i

f f
f f x f x y

N x

+
= = =


   (29) 

where: N is the number of fluid particles. This coefficient 

describes how symmetrical these results are and how the er-

ror generated by the boundary conditions affects the accu-

racy. The results are shown in Fig. 11. 

As shown in Fig. 11, all three methods work well 

with the symmetrical deployment of boundary particles. 
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However, when the boundary particles are deployed asym-

metrical (in terms of the waterdrop), the differences between 

DBC, LUST, and IDBC become obvious. In theory, no mat-

ter the boundary particles are symmetrical or not, the results 

should not be changed too much with the same boundary 

condition. In IDBC, the result with the symmetrical bound-

ary is close to that with asymmetrical boundary. However, 

in DBC and LUST, obvious differences appear. These re-

sults indicate that with the asymmetrical boundary, the error 

generated by DBC or LUST is larger than that by IDBC. 

 

Fig. 11 Dimensionless coefficient fsym of the results with 

DBC and IDBC 

To test the strength of these three boundary condi-

tions, we also tried to increase the velocity of the waterdrop. 

With LUST, some particles begin to break through the 

boundary at 16 m/s, and all the particles escape at 50 m/s. 

At 65 m/s particle begin to break through in DBC while 

IDBC still works well that all the fluid particles are reflected 

into the fluid domain symmetrically. We should notice that 

in LUST three layers of boundary particles are deployed, 

and LUST also introduced several fictitious particles for 

each fluid particle. Although DBC and LUST work per-

fectly for many other cases, the performance of IDBC is bet-

ter in symmetry and repulse force. 

5. Conclusions 

Improved dynamic boundary condition (IDBC) is 

developed to solve two problems in DBC. One problem is 

that the particle may break through the boundary in some 

situations, such as thin boundary and high-velocity cases. 

Another problem is the error generated by the unphysical 

rough boundary. Three improvements were made in IDBC 

to solve these problems: a) expansion with a higher order, 

b) a new shape of the support domain, and c) a correction 

factor introduced for the kernel function. With these im-

provements, the potential energy produced by the repulsive 

force is increased over seven times, and the force field is 

smoothed. 

The validity of the improvements has been firstly 

tested with a simple case that describes a single particle's 

movement in a box. In this case, the particle rushes to the 

boundary obliquely. The performance of DBC is disappoint-

ing that the particle departures the expected trajectory in a 

few steps. This error is decreased remarkably in IDBC. 

The validity of the improvements has been further 

tested with a waterdrop case. This case is tested with differ-

ent deployments of boundary particles and different bound-

ary conditions. Either the deployment of the boundary par-

ticles is symmetrical or asymmetrical, IDBC keeps the re-

sults almost the same and stronger than LUST or DBC. 
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Appendix: derivation of the coefficient αDB 

 

The kernel function should follow Eq. (a): 

 

( ) 1D
S
W r,h dr = .  (a) 

 

For cubic spline kernel: 
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For the original circle support domain in 2D: 
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For the rectangle support domain in 2D: 
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and the kernel function should follow: 

 

( ) 1DB
S

D W r,h dr  = .  (f) 

 

Thus, 
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Similarly， 
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X. Li, H. Zhang, D. Yuan 

AN IMPROVED DYNAMIC BOUNDARY CONDITION 

IN SPH METHOD 

S u m m a r y 

Dynamic boundary condition (DBC) has been 

widely used in SPH method. However, in certain situa-

tions, it was found that a few fluid particles could break 

through the boundary or were not reflected specularly. Of 

course, these phenomena are unphysical. To improve the 

performance of DBC, an improved dynamic boundary 

condition (IDBC) was presented in this paper. To prevent 

fluid particles from breaking through the boundary, the 

repulsive force of boundary particles was enhanced by 

expanding the equation of state into a higher order. To 

deal with the asymmetry of DBC, a rectangular support 

domain attached to boundary particles and a correspond-

ing correction factor are proposed. The results of three 

test cases showed that the performance of IDBC was sat-

isfied. 
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