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1. Introduction 

Cylindrical steel pressure vessels are widely used 

in various branches of industry. Most of them are parts of 

stationary equipment operated in industrial facilities. How-

ever, a fairly large population of such vessels is used for a 

transportation of hazardous materials by road and rail. A 

major portion of such materials are commercial energetic 

hydrocarbons. A transportation of hazardous materials 

poses the risk of major accidents. Pressurised hydrocarbons 

shipped by road or rail are especially prone to such accidents 

[1]. 

The most severe transportation accident, in which 

cylindrical steel vessels can be involved, is the so-called 

boiling liquid expanding vapour explosion (BLEVE) [2-4]. 

This explosion occurs as a violent disintegration of a vessel 

exposed to external heating by a fire. It generates fragments 

that are the furthest reaching hazard from a BLEVE [5]. 

Blast and fireball with an intense thermal radiation are also 

generated during the catastrophic vessel failure. Clearly, a 

broad spectrum of pressure vessels includes explosions trig-

gered off by very different phenomena. However, this study 

will be limited by BLEVEs of unconstrained transportation 

vessels for brevity sake. 

An accurate forecasting of fragment numbers and 

fragmentation patterns exclusively by means of determinis-

tic mechanical analysis or metallurgical examination is not 

possible to date. Metallurgical analysis was applied once to 

a post mortem investigation of a transportation vessel after 

a BLEVE accident [6]. Mechanical analysis has been lim-

ited mainly to a FEM assessment of heat induced stresses 

and deformations of vessels exposed to fires [7]. For such 

vessels, FEM was also applied in combination with the com-

putational fluid dynamics (CFD) [8]. The field of FEM and 

CFD applications to the case of externally heated vessels is 

now in the course of rapid development. However, a 

BLEVE is a process that begins with fire induced initial lo-

cal rupture of vessel wall and ends with formation of cir-

cumferential cracks and vessel fragmentation [9]. To the 

best of our knowledge, a reliable and accurate prediction of 

this process solely by means of FEM and CFD methods is 

hardly possible at the present time. One of the reasons for 

that may be the fact that the scenario of vessel fracture de-

pends on random factors: uncertainties related to fire im-

pingement, vessel corrosion, defects, damages due to exter-

nal impacts [10]. These uncertainties could be taken into ac-

count by applying methods of reliability analysis and prob-

abilistic risk assessment (PRA). However, a combined ap-

plication of probabilistic methods and deterministic me-

chanical analysis to the case of BLEVE still remains an un-

resolved problem. 

Hazards and consequences of BLEVEs and vessel 

explosions of other types are natural subjects of PRA. Un-

like the classical, deterministic mechanical analysis, PRA is 

focussed on quantifying uncertainties, related to fragment 

numbers, fragmentation patterns, ejection and projection of 

fragments [11, 12]. The first step in assessing the event se-

quence starting with vessel fragmentation and ending with 

fragment impact on a target is a prediction of the number of 

fragments and a closely related prediction of fragmentation 

pattern. 

Despite seemingly chaotic and unforeseeable na-

ture of pressure vessels bursts, the fragmentation of vessels 

that undergo BLEVEs brinks out some regularity in terms 

of fragment numbers and fragmentation patters [13, 14]. 

This relatively weak regularity allows to approximately pre-

dict the number of fragments generated by BLEVEs. How-

ever, the prediction will face the need to quantify uncertain-

ties related to the fragmentation. PRA provides a useful for-

mat for approaching this problem through the use of cur-

rently available accident data. 

The present study is devoted to a prediction of the 

number of fragments from bursts of horizontally oriented 

pressure vessels. The prediction relies on relatively scarce 

data on past accidents and is expressed in terms of probabil-

ities of individual fragment numbers. The study demon-

strates how to apply the Bayesian analysis to assessing un-

certainties in fragment number probabilities (epistemic or 

reducible uncertainties in terms of PRA). Results of this 

study can contribute to an improvement of PRA related to 

pressure vessels and ultimately a safer use of these vessels. 

2. Data on fragment numbers 

A prediction of a fragmentation (failure) pattern of 

a vessel is the first step in estimating the probability of frag-

ment impact on a potential target and damage to this target 

(Fig. 2). The fragmentation pattern will affect most of the 

factors that influence the damage probability and severity 

and, first of all, the number of primary fragments (parts of 

the vessel body). 

Bursting of an unconstrained, nonstationary pres-

sure vessel used for shipment of liquefied gas, say, will pro-

duce either one fragment (ruptured body of the vessel with 

no detached parts) or eject two or more fragments (Fig. 1) 

At the same time, data on past BLEVE accidents indicates 

that the number of fragments, nfrg, of transportation vessels 

made of ductile steel will not exceed the value of nine [14]. 

In addition, the relative frequencies (proportions) of frag-

ment numbers, fr(nfrg) (nfrg=1, 2, …, 9), counted from the 

past accidents decrease rapidly with increasing nfrg (Ta-

ble 1). In addition, the frequencies )2(fr  and )3(fr  prevail 

among the remaining ones. Thus a prediction of fragment 
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masses mfrg,j and shapes and, subsequently, the ejection ve-

locities should be focussed mainly on the fragmentation pat-

ters shown in Fig. 1, as long as safety of potential targets is 

of concern. 

 

Fig. 1 Probable fragmentation patterns of an unconstrained 

vessel (e.g., vessel of a road or railway tanker in-

volved in a traffic accident) 

Table 1 

Data on fragmentation of cylindrical vessels in the 

course of BLEVEs [14] 

nfrg Count of BLEVEs Frequency fr(nfrg)  

1 50 0.1931 

2 98 0.3784 

3 78 0.3012 

4 24 0.0927 

5 3 0.0116 

6 2 0.0077 

7 3 0.0116 

8 0 0.0000 

9 1 0.0039 

Total: 259 1.0 

 

In general, the uncertainty related to the potential 

number of fragments can be expressed by a random variable 

Nfrg with a set of countably infinite values nfrg. The variable 

frgN  should obey a certain discrete probability distribution, 

the masses of which P(Nfrg= nfrg) (nfrg=1, 2, …), are proba-

bilities of generating a given number of fragments. The 

probability masses P(Nfrg= nfrg) can be fitted to the data (a 

set of values of Nfrg  counted in post mortem investigations 

of accidents) in a standard, formal way. For instance, if 

goodness of fit tests reveal that Nfrg can be described by a 

Poisson distribution, the average number of fragments per 

accident, frgn , would suffice to specify this model. 

From the standpoint of a fragment impact assess-

ment, a formal fitting of a discrete distribution to the data on 

values of Nfrg can be misleading. Firstly, the probability 

P(Nfrg= 1) expresses the chance of a relatively safe scenario 

of vessel bursting. The random event Nfrg= 1 represents an 

accident scenario, in which no detached parts of the vessel 

are ejected and the remnant of the vessel remains close to its 

initial rest position. 

The data was presented in Table 1 was lumped to-

gether by Sun et al. [14] from various sources and covers 

explosions of stationary and unconstrained vessels. A de-

tailed description of this data set is not provided. The 50 out 

of 259 BLEVEs with only one fragment (an occurrence of 

the event Nfrg= 1) should be related to bursts without ejec-

tion of fragments (Fig. 1, a). One can guess that these 50 

accidents might also involve bursts of vessels in which only 

one fragment was ejected and the rest of vessel remained on 

supporting structure (Fig. 2, a). A fragmentation of an un-

constrained vessel in an ejected part and a remainder that 

stays in place is hardly possible. The minimum number of 

projectiles for such vessels should be two (Fig. 2, b). 

 

Fig. 2 Minimal number of hazardous fragments (oblong 

end-caps) in case of constrained and unconstrained 

vessel 

Data on BLEVE accidents show that the counts of 

vessel disintegrations into more than four fragments are 

very small and so the probability P(Nfrg 5) represents un-

likely accident scenarios (Table 1). In addition, bursting of 

vessel into a large number of fragments will be relatively 

safe because masses of fragments and so the damaging po-

tential will be small. Consequently, only the probabilities 

P(Nfrg=2), P(Nfrg=3) and P(Nfrg=4) will be of interest to a 

fragment impact assessment. 

3. Bayesian estimation of fragment numbers by means of 

Poisson-gamma model 

An estimation of the probabilities of fragment 

numbers exceeding one can be based on 209 accidents in 

which at least two fragments were generated (Table 2). Rel-

ative frequencies of BLEVE accidents with two to nine frag-

ments are presented in the third of Table 2. The dominant 

numbers of fragments were two and three (84.2 % of cases). 

Four fragments were generated only in 11,5 % of cases. Five 

to nine fragments were encountered only in 4.3 % of cases. 

Until now, a probability distribution of the frag-

ment number Nfrg was fitted in the classical statistical 

(Fisherian) format by means of the maximum entropy 

method [13, 15, 16]. However, this method yields a contin-

uous exponential distribution with three parameters which 

are difficult to handle in the Bayesian format. A single-pa-

rameter discrete probability distribution of Nfrg is preferable 

to carrying out Bayesian updating. 

The distribution of the relative frequencies fr(nfrg) 

given in Table 2 can be reasonably approximated by dis-

placed standard discrete distributions. If Nfrg is a random 

variable representing the number of fragments, the distribu-

tion of Nfrg given that Nfrg  2, could be such that the random 

variable: 

,20 −= frgNN  (1) 

has approximately a standard single-parameter probability 

distribution. In the case of a Bayesian analysis, the most 
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problematic part will be a development of an appropriate 

prior for this parameter. 

Table 2 

Counts and frequencies related to disintegration of cylin-

drical vessels into at least two fragments  

(obtained from Table 1) 

No of frag-

ments nfrg 

Count of 

BLEVEs 

Fre-

quency 

fr(nfrg)  

Displaced no of frag-

ments n0= nfrg-2 

1 - - - 

2 98 0.4689 0 

3 78 0.3732 1 

4 24 0.1148 2 

5 3 0.0144 3 

6 2 0.0096 4 

7 3 0.0144 5 

8 0 0.0000 6 

9 1 0.0048 7 

Total: 209 1.0 - 

 

The natural candidate for describing N0 is the Pois-

son distribution. If we denote the probability mass function 

of this distribution by )( 00 |np  ( 0n  = 0, 1, 2, ...), the pa-

rameter 0  will express the displaced average number of 

fragments per one BLEVE with two or more fragments. 

Value of 0  can be estimated by solving the minimisation 

problem: 

),|)|2()(|(ˆ 9

2 0 =
−−=

nλ
npnfrmin   (2) 

where: ̂  denotes and estimate of estimates of 0 . For the 

frequencies fr(nfrg) given in Table 2, Eq. (2) yields the fol-

lowing estimate ̂  = 0.758. The pairs fr(n0) and 

.758)0( 0 |np  are depicted in Fig. 3. 

Fitting a discrete probability distribution to the fre-

quencies fr(n0) does not bring much of practical infor-

mation, no matter how good theoretical model matches em-

pirical distribution. However, the suitability of Poisson dis-

tribution for describing the displaced fragment number N0 

opens up a possibility to apply the standard Bayesian analy-

sis to an assessment of the population parameter 0  and pre-

diction of individual fragment numbers. In PRA, the Pois-

son distribution applied this prediction is called” the model 

of the world“ [17]. 

 

Fig. 3 Poisson probabilities .758)0( 0 |np  and empirical fre-

quencies fr(n0) vs the displaced fragment number n0 

(n0 = 0, 1, 2, …, 7)  

In the case of the Poisson distribution, a gamma 

prior for the unknown mean 0  of 0N  leads to a conjugate 

analysis. The new data can be gained from BLEVEs of un-

constrained vessels which will occur in the future or past 

BLEVE accidents which previously were not included into 

the analysis.  

The new data used for updating the gamma prior 

may has the form 

} , ... 2, ,1,{ 00 am nmn ==n , (3) 

where: mn0  is the displaced number of primary fragments 

counted in the BLEVE accident number m and an  is the 

number of accidents ( an  ≥ 1). Here and in what follows, the 

apostrophe symbol denotes information related to new data 

and posterior distribution. New data used in PRA applica-

tions has the standard form }  in time failures{ tr  with the ra-

tio tr/  meaning the average number of failures per unit 

time. Therefore, the information expressed by Eq. (3) must 

be interpreted as accidents} in  fragments{ atot nn  , where 

totn  is the total number of fragments counted in an  acci-

dents, that is: 




=

=
an

m
mtot nn

1
0 . (4) 

Then the proportion atot nn  /  means the average 

number of fragments counted in the accidents used to com-

pile 0n . 

If a gamma prior ) ,Gamma(   is adopted for ,0

then the posterior density of 0  will be again a gamma den-

sity with the parameters: 

totn+=  , (5a) 

an+=  . (5b) 

As an  is the observed number of accidents, the pa-

rameter β can be interpreted as a prior number of pseudo-

events (pseudo-count of explosion accidents). Eq. (5a) im-

plies that the shape parameter   must be interpreted as a 

pseudo-count of fragment numbers obtained in the prior 

pseudo-events (accidents). The analyst is not restricted to 

take the conjugate gamma prior. However, a Bayesian anal-

ysis with such a prior is very simple. The most problematic 

part of it will be a development of an appropriate gamma 

prior ) ,Gamma(  . 

The possibility to choose the prior ) ,Gamma(   

ranges between noninformative and informative prior distri-

butions. These two extreme forms of priors are diffuse and 

not suitable for updating with scarce data [17]. BLEVEs of 

horizontal pressure vessels are rare events even on the 

global scale. Therefore, it is very probable that the new data 

0n  gained in the foreseeable future will be scarce (contain 

a small number of components, an ). Therefore we think 

that ) ,Gamma(   should be specified in the form of a con-

strained noninformative prior density (CNI prior) used in 
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PRA for parameter estimation [18]. This density is also 

called the minimally informative prior. Such a prior is re-

sponsive to updates with scarce data. 

The term “constrained” means that the prior is con-

strained to have a specified mean value ][ 0E , where 0  

is the random variable with the distribution ) ,Gamma(   

used to model the epistemic uncertainty in the parameter 0

. The specification of ][ 0E  allows to incorporate mini-

mum information into the prior ) ,Gamma(  . The speci-

fied value of ][ 0E  can be the empirical average of dis-

placed fragment numbers, 0 , counted in 209 accidents 

from Table 2, namely:  

2)(][ 0

7

0
000

0

+== 
=

nfrnE
n

 . (6) 

With the value 0  of ][ 0E , the parameters of 

) ,Gamma(   are specified as follows [19]: 

0.5.=  (7a) 

0

0.5


 = . (7b) 

The parameters of the posterior distribution 

) ,Gamma(    are of the form: 

totn+= 0.5 . (8a) 

an+=
0

0.5


 . (8b) 

The posterior mean of the uncertain displaced Pois-

son intensity 0  can be expressed as: 

a

tot

a

a

a
atot

n

n

n

n

n
nnE





+


+

+
=




=












 ],|[ 0 , (9) 

where: /  is the prior mean ][ 0E . The ratio /  ex-

presses the expected number of fragments per accident and 

atot nn  /  is empirical proportion related to average fragment 

number. The posterior mean ],|[ 0 atot nnE   is a weighted 

average of /  and atot nn  /  with the weights )/( an+  

and )/( aa nn +  , respectively. 

If an , then then the prior ) ,Gamma(   will 

weigh more. In case that an , the data ) ,( atot nn   will 

weigh more. If an= , prior and data will weight equally. 

Thus the parameter   determines how long we need to ob-

serve vessel explosions until the posterior ) ,Gamma(    

starts to move away from the prior ) ,Gamma(  . 

The transformation given by Eq. (1) is a liner one 

with the scale parameter equal to unity. Thus probability 

distributions and variances of the actual and displaced num-

bers of fragments, 0N  and frgN , are identical, whereas the 

mean values ][ 0NE  and ][ frgNE  differ by the shift param-

eter 2. Therefore, the following simple relation holds: 

)2()( 0 −=== frgfrgfrg nNPnNP  ( frgn = 2, 3, 4). (10) 

The probability mass function of the Poisson dis-

tribution allows to transform the uncertainty expressed by 

the random intensity 0  into an epistemic uncertainty re-

lated to the fragment number probabilities )( frgfrg nNP = . 

This uncertainty can be modelled by the random variables 

)( frgnP
~

 defined as: 

0e
)!2(

)|()(

2

0
0




−

−

−
===

frg

n

frgfrgfrg
n

nNPnP
frg

~
. (11) 

The probability distribution of the random varia-

bles )( frgnP
~

 can be estimated by means of the stochastic 

(Monte Carlo) simulation. It allows to propagate uncertainty 

expressed by 0  to uncertainty in )( frgfrg nNP = . In what 

follows, this propagation is illustrated by a numerical exam-

ple. 

4. Example calculations 

The data given in Table 2 allows to calculate the 

weighted average of the displaced numbers of fragments, 

0n , that range between 0 and 7, namely, 

0.789.0.00487 ... 0.468902)( 0

7

0

00

0

=++=+= 
=

nfrn
n

  

This means that the weighted average of the actual 

fragment numbers is equal to 2.789 (see Eq. (1)). With the 

value 0.789, the parameters of the prior ) ,Gamma(   are

  = 0.5 and  = 0.5/0.789 = 0.634. 

Let the new actual information in this example be 

the numbers of fragments counted in 4 accidents with at 

least two fragments, namely, {3, 2, 2, 4}. Then the new data 

suitable for updating and defined by Eq. (3) is 0n  = 

= {1, 0, 0, 2} and an = 4. 

Thus the total displaced number of fragments in 

this data, totn , is equal to 3. With totn  and an , the posterior 

distribution parameters are   = 0.5 + 3 = 3.5 and    = 

= 0.634 + 4 = 4.63  

The density functions of the prior 

0.634) Gamma(0.5,  and the posterior 4.66) Gamma(3.5,  

are plotted in Fig. 4. 

The weights given in Eq. (9) are 
an+


 =  

=
40.634

0.634

+
= 0.1368 and 

a

a

n

n

+




 = 

40.634

4

+
= 0.8632. 

This result together with the fact that the value of 

an  exceeded the value of   more than six times indicate 

that the posterior shifted considerably away from the prior. 

This is revealed also by the graph given in Fig. 4. 

With the prior and posterior distributions 

.634)0 .5,0Gamma(  and .63)4 .5,3Gamma(  of the dis-

placed Poisson intensity 0  and the transformation given 



 281 

by Eq. (11), one can assess epistemic uncertainties in the 

probabilities )( frgfrg nNP =  ( frgn  = 2, 3, 4). This can be 

done by applying the stochastic simulation to numerical 

transforming the distribution of 0  into distributions of 

)( frgnP
~

. 

 

Fig. 4 Prior and posterior distributions for the displaced 

mean of the fragment number per accident, 0  

The uncertainty transformation has been carried 

out for both prior and posterior distributions of 0 . Let the 

value of )( frgnP
~

 computed in the simulation run i  by sam-

pling from the prior be )( frgi np  and corresponding value 

obtained by sampling from the posterior be )( frgi np . These 

values were calculated as: 

i

frg

frg

n

i
frgi

n
np 0e

)!2(

)(
)(

2

0  −
−

−
= , (12a) 

i

frg

frg

n

i
frgi

n
np 0e

)!2(

)(
)(

2

0  −
−

−


= , (12b) 

where: i0  and i0  are the values of 0  sampled in the 

simulation run i from .634)0 .5,0Gamma(  and 

.63)4 .5,3Gamma( , respectively . A total of n = 10 000 sim-

ulation runs was used. The simulation produced two triplets 

of the samples related to the fragment numbers 2, 3 and 4: 

} , ... 1, ),( { nimpim ==p  (m = 2, 3, 4), (13a) 

} , ... 1, ),( { nimpim ==p  (m = 2, 3, 4). (13b) 

Descriptive measures of these samples are given in 

Table 3. Histograms of the sample pairs ( mp , mp' ) (m = 2, 

3, 4) are shown in Fig. 5. 

Results expressed by Table 3 and Fig. 5 indicate 

that epistemic uncertainty in the fragment number probabil-

ities )( frgfrg nNP =  is large. The coefficients of variation 

(COVs) of the prior samples mp  range between 51 % and 

109 %. This can be explained by diffuseness of the prior dis-

tribution .634)0 .5,0Gamma( . The COV of this distribution 

is equal to 141 % and the 5th to 95th percentile credible in-

terval is (0.003, 3.03). Thus the width of the credible inter-

val exceeds by far the range of the interval of displaced frag-

ment numbers considered in the analysis, namely, the inter-

val [0, 2]. The variability of the posterior samples mp  is 

smaller. COVs of mp  vary from 34 % to 56 %. The COV 

of the posterior .63)4 .5,3Gamma(  is equal to 53.5 %, 

whereas the 90 % credible interval is (0.23, 1.56). It is rela-

tively narrow when compared to the interval [0, 2]. 

 

a 

 

b 

 

c 

Fig. 5 Histograms of the sample pairs ( mp , mp' ) generated 

to assess prior and posterior uncertainty in the frag-

ment number probabilities )( mNP frg = : a) the case 

m = 2; b) the case m = 3; c) the case m = 4 

 

The large uncertainty related to the fragmentation 

probabilities )( frgfrg nNP =  can be seen as a positive result 

in a sense. This uncertainty reflects the vagueness of infor-
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mation related to the potential number of fragments gener-

ated by vessel explosions. A part of this information is ex-

pressed by the data given in Table 2. This information could 

not be called very diffuse. For instance, the Clopper-Pearson 

95 % confidence intervals of the proportions )( frgnfr  given 

in Table 2 are relatively narrow (Table 4). The vagueness 

related to the probabilities )( frgfrg nNP =  stems from the 

decision to use the fairly diffuse CNI prior density of the 

displaced average number of fragments, 0 . 

Table 3 

Descriptive measures of the samples of probability values, 

mp  and mp' , generated to assess uncertainty in the proba-

bilities )( mNP frg =  (m = 2, 3, 4) 

Sample Mean Median COV, % Min Max 

2p  0.624 0.697 51.4 8.6×10–6 1.000 

3p  0.190 0.195 68.2 1.3×10–8 0.368 

4p  0.087 0.043 109 8×10–17 0.271 

2p  0.504 0.503 34.4 4.1×10–2 0.954 

3p  0.314 0.336 19.2 4.5×10–2 0.368 

4p  0.126 0.119 56.4 1.1×10–3 0.271 

 

The decision to use a less diffuse prior distribution 

of 0  could be difficult to justify in PRA reasoning. A pos-

sible argument for this is that the data given in Tables 1 and 

2 covers a fairly diverse population of 259 vessels that un-

derwent BLEVEs. It could be difficult to say how many of 

these vessels are similar or analogous to the specific ves-

sel(s) under study. 

Numerical results obtained in this example indicate 

that the diffuseness of the prior distribution of 0  is not a 

critical problem due to the influence of new data on the 

prior. Information on four hypothetical accidents was suffi-

cient to reduce the COV of the distribution of 0  2.5 times, 

from 141 % to 56 %. This led to a tangible reduction of 

COVs of the samples mp  and mp' , the variability of which 

indirectly expresses epistemic uncertainty in the fragmenta-

tion probabilities )( frgfrg nNP = . 

Table 4 

Clopper-Pearson 95 % confidence intervals calculated for 

three proportions (frequencies) given in Table 2 

Proportion Confidence interval (CI) Width of CI 

)2(fr  (0.400, 0.5390) 0.139 

)3(fr  (0.307, 0.443) 0.136 

)4(fr  (0.0750, 0.1660) 0.091 

 

For a fixed parameter value 0 +2, the sum of the 

three probabilities 2)|( 0 += frgfrg nNP  ( frgn  = 2, 3, 4) 

will be a value slightly lower than unity. However, sums of 

the simulated probability values, i  =  =
4

2
)(

frgn frgi np  

and i   =  =
4

2
)(

frgn frgi np , can exceed unity in the case of 

large variances of the samples mp  and mp' . Descriptive 

measures and histograms of the simulated samples ε =

} , ... 1, , { nii =  and ε = } , ... 1, , { nii =  are given in Ta-

ble 5 and Fig. 6. 

Table 5 

Descriptive measures of the samples ε  and ε  consisting 

of simulated sums of the prior and posterior fragment num-

ber probabilities )( frgi np  and )( frgi np  

Sample Mean 
Proportion of ex-

ceedance of 1.0 
Min Max 

ε  0.901 0.429 (43 %) 5.9×10–4 1.587 

ε  0.943 0 0.382 0.99998 

 

Fig. 6 Histograms of the samples ε  and ε  consisting of 

simulated sums of the prior and posterior fragment 

number probabilities )( frgi np  and )( frgi np  

In case of the prior fragment number probabilities 

)( frgi np , 43 % of elements of the sample ε  exceeded 

unity with the remainder of elements less than unity (Ta-

ble 5). In case of the probabilities )( frgi np , all elements of 

ε  were less than unity. This contradicts the fact that the 

sum of 2)|( 0 += frgfrg nNP  ( frgn = 2, 3, 4) is less than 

unity, no matter what is the value of Poisson parameter. The 

problem of statistical variability of ε  and ε  can be side-

stepped if the simulated probabilities )( frgi np  and 

)( frgi np  are used for a stochastic simulation of explosion 

accident. The simulation run i  must include the decision on 

how many fragments will be ejected. This decision can be 

simulated by generating a value of a random variable, iu , 

uniformly distributed over the intervals ] ]0, i  or ] ]0, i  . 

5. Discussion 

The Poisson-gamma model applied in this study to 

an estimation of the fragment number probabilities should 

be seen only as one of the possibilities to assess accuracy of 

these probabilities. The estimation was carried out as a prop-

agation of epistemic uncertainty through the probability 

mass function of the Poisson distribution. The use of this 

distribution was substantiated by the fact that it fairly well 

approximates frequencies (proportions) of individual frag-

ment numbers encountered in the past explosion accidents. 

Empirical frequencies were approximated by interpreting 

the Poisson parameter lambda as a mean number of frag-

ments per one vessel bursting. The use of this single-param-

eter model allows a relatively simple Bayesian analysis by 



 283 

developing and updating a prior Gamma distribution for 

lambda. 

The Poisson-gamma model has also two disad-

vantages in the context under study. Firstly, the single-pa-

rameter Poisson model may be too rigid for fitting to new 

data if a distribution of this data will substantially deviate 

from the standard Poisson scheme. For instance, an abnor-

mally large number of four or five fragments will be counted 

in future accidents. Secondly, the sum of the fragment num-

ber probabilities computed with lambda values sampled 

from Gamma prior and posterior may exceed unity. This 

fact violated the axiomatic definition of discrete probability 

distributions. However, this disadvantage can be easily side-

stepped if the generated values of fragment number proba-

bilities are used in an explosion accident simulation to make 

decision concerning a current number of fragments (see 

comments at the end of Section 4). 

An alternative to the Poisson-gamma model can be 

the multinomial-Dirichlet model. The former requires to de-

velop only one prior distribution, namely, the distribution of 

the lambda parameter, However, the latter is more flexible 

than the former because the multivariate Dirichlet distribu-

tion can be used for a direct quantification of epistemic un-

certainties in the fragment number probabilities. The uncer-

tainty propagation applied in this study becomes unneces-

sary. On the other hand, an application of the Dirichlet dis-

tribution will require to develop as many priors as many 

fragments are regarded in the prediction. The aforemen-

tioned CNI prior method could be used for this purpose. 

However, a special study is necessary to answer the question 

which of the two models is preferable for the prediction of 

fragment numbers. 

6. Conclusion 

This study proposed a procedure for predicting the 

number of primary fragments that can be generated by an 

explosion of a pressure vessel. The prediction in made in the 

form of fragment number probabilities. Bayesian analysis 

has been applied to assessing uncertainties related to frag-

ment number probabilities. The Bayesian approach has been 

used to combine data on number of fragments recorded in 

the past explosion accidents with expert opinion concerning 

the average number of fragments per one explosion acci-

dent. The main finding is that a Poisson-gamma model can 

be used for the estimation of fragment number probabilities 

in the Bayesian format and integrated in the PRA related to 

pressure vessels. 

The current data situation allows to develop a prior 

distribution of the average number of fragments per accident 

in the form of a gamma distribution. Epistemic uncertainty 

related to the average fragment number can be transformed 

into uncertainty in the fragment number probabilities by 

means of a stochastic simulation. The proposed procedure 

can be used for assessing risk posed by potential impact of 

fragments on vulnerable targets. 

The proposed approach was applied to fire induced 

pressure vessel explosions known as BLEVEs. The proce-

dure of the fragment number assessment is based on the use 

of post-mortem data on BLEVEs. Unfortunately, the cur-

rently available deterministic mechanical modelling does 

not allow to predict reliably the entire process of vessel frac-

tion that ends up with a formation of circumferential cracks 

and catastrophic failure of vessel. A convergence of the 

data-driven prediction and the mechanical modelling, deter-

ministic and probabilistic, is an issue to be solved in the fu-

ture. 
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E. R. Vaidogas 

 

EXPLOSIONS OF CYLINDRICAL PRESSURE 

VESSELS SUBJECTED TO FIRE: PROBABILISTIC 

PREDICTION OF A NUMBER OF FRAGMENTS 

S u m m a r y 

The aim of this study was to propose a procedure 

for a prediction of the number of fragments generated by fire 

induced explosions of cylindrical pressure vessels. The pre-

diction is carried out in terms of probabilities of individual 

fragment numbers. The prevailing numbers of two to four 

fragments are considered. The fragment number probabili-

ties are estimated by applying data on vessel fragmentations 

acquired in investigations of past explosion accidents. The 

pressure vessel explosions known as BLEVEs are consid-

ered. The Bayesian analysis is used for the estimation of the 

fragment number probabilities. This analysis is carried out 

on the basis of Poisson-gamma model. An approach to de-

veloping a gamma prior distribution for the average number 

of fragments per explosion accident is proposed. The assess-

ment of the fragment number probabilities is carried out by 

propagating uncertainty related to the average number of 

fragments to uncertainty in the fragment number probabili-

ties. The stochastic (Monte Carlo) simulation is used for this 

propagation. Findings of this study are viewed as a possibil-

ity to improve the assessment of risk posed by pressure ves-

sel explosions. 

Keywords: pressure vessel, explosion, BLEVE, fragment, 

Bayesian analysis, epistemic uncertainty, Poisson-gamma 

model. 
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