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1. Introduction 

Systems in which vibrational displacements are 

limited because elastic forces increase practically up to 

unlimited values, are investigated. Here systems having 

one degree of freedom are investigated in which vibrations 

have specific qualities for the case of conservative systems 

as well as for the case of forced harmonic excitations. Typ-

ical expressions for nonlinear stiffness are proposed. 

Systems of this type are important in the investi-

gations of dynamics in elements of manipulators and ro-

bots. Theoretical investigations of different types of robots 

are performed by V. A. Glazunov [1]. The use of vibratory 

drives in robots is analysed in [2]. Resonant zones of dy-

namical systems are investigated in [3]. Stabilisation of 

nonlinear vibrating systems is investigated in [4]. Mechan-

ical systems with impacts are analysed in [5]. Periodic or-

bits of vibrating systems are investigated in [6]. Nonlinear 

vibrations with impacts are analysed in [7]. 

Model of a pipe robot with limited values of dis-

placements is presented and investigated. Motion of the 

pipe robot for different parameters of the system is ob-

tained. Typical regimes of motion are investigated. 

The obtained results are used in the process of de-

sign of pipe robots. 

2. Model of the system with limited values of displace-

ments 

The investigated nonlinear vibrating system in 

general case is described by the following differential 

equation: 

,xmx Hx Fsin t+ + =  (1) 

where x is the displacement; m is the mass; H is the coeffi-

cient of viscous damping; x
  is the force of stiffness; F is 

the amplitude of harmonic excitation; ω is the frequency of 

harmonic excitation, t is the time variable, and the upper 

dot indicates differentiation with respect to it. 

Nonlinear stiffness is determined as the derivative 

of potential energy Π(x) with respect to x. 

Further two typical expressions of nonlinearity 

are proposed in the paper as having the desired qualities of 

limited displacement type and as being based on elemen-

tary functions. 

For nonlinear system of the following type: 
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For nonlinear system of the following type: 
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it is obtained that: 
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Further results of investigations for some typical 

expressions of nonlinearities with limited values of dis-

placements are presented. 

3. Investigation of dynamics of the system for the first 

type of nonlinearity 

The investigated nonlinear vibrating system is de-

scribed by the following differential equation: 
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where: x is the displacement; h is the coefficient of viscous 

damping; f is the amplitude of harmonic excitation; ν is the 

frequency of harmonic excitation; τ is the time variable and 

prime indicates differentiation with respect to it. 

Conservative system is described by the following 

differential equation: 
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3.1. Investigation of the conservative system 

Results when x(0)=0, x´(0)=1 are presented in 

Fig. 1. Results when x(0)=0, x´(0)=1.5 are presented in 

Fig. 2. 

From the presented results the influence of non-

linearity to the dynamical behaviour of the investigated 

conservative system is seen. With the increase of initial 

velocity, the nonlinear effect of stiffness of limited dis-

placement type is greater and this is especially evident 

from the representation of force of stiffness as function of 

displacement. 

   

a) Displacement as function of time b) Velocity as function of time c) Force of stiffness as function of displacement 

Fig. 1 Investigation of the conservative system when x(0)=0, x´(0)=1  

   

a) Displacement as function of time b) Velocity as function of time c) Force of stiffness as function of dis-

placement 

Fig. 2 Investigation of the conservative system when x(0)=0, x´(0)=1.5  

3.2. Amplitude frequency characteristics of the conserva-

tive system 

The displacement amplitude frequency character-

istics as well as the velocity amplitude frequency charac-

teristics are presented in Fig. 3. 

In the presented graphical relationships constant 

part and amplitudes of the first three harmonics as func 

tions of frequency are seen. Hardening frequency 

responses are observed in the obtained graphical results. 

For small nonlinearity higher harmonics are negligible, 

while for higher nonlinearity the third harmonic increases 

substantially, though it is much smaller than the first har-

monic. 

 
 

a) Displacement amplitude frequency characteristics b) Velocity amplitude frequency characteristics 

Fig. 3 Amplitude frequency characteristics of the conservative system: constant part and amplitudes of the first three har-

monics 

3.3. Investigation of dynamics of the system with harmonic 

excitation 

The following values of the parameters of the in-

vestigated system were assumed: 

 0.1,  1.h f= =  (8) 

Two periods of steady state motion are represent-

ed in the following figures. 
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Results when 1 =  are presented in Fig. 4. Re-

sults when 1.5 =  are presented in Fig. 5. 

From the presented results the influence of non-

linearity to the dynamical behaviour of the investigated 

system with harmonic excitation is seen. With the increase 

of frequency of excitation, the nonlinear effect of stiffness 

of limited displacement type is greater and this is especial-

ly evident from the representation of force of stiffness as 

function of displacement. 

Based on the presented results qualities of dynam-

ic behavior of the investigated nonlinear vibrating system 

are observed. 

   
a) Displacement as function of time b) Velocity as function of time c) Force of stiffness as function of displace-

ment 

Fig. 4 Dynamics of the system when 0.1,  1,  1h f = = =  

   

a) Displacement as function of time b) Velocity as function of time c) Force of stiffness as function of displacement 

Fig. 5 Dynamics of the system when 0.1,  1,  1.5h f = = =  

4. Investigation of dynamics of the system for the sec-

ond type of nonlinearity 

The investigated nonlinear vibrating system is de-

scribed by the following differential equation: 

 2 ,
2

x hx tan x fsin


 + + =  (9) 

where: x is the displacement; h is the coefficient of viscous 

damping; f is the amplitude of harmonic excitation; ν is the 

frequency of harmonic excitation; τ is the time variable and 

prime indicates differentiation with respect to it. 

Conservative system is described by the following 

differential equation: 

 0.
2

x tan x


 + =  (10) 

The following notation of the force of stiffness is 

introduced: 
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4.1. Investigation of the conservative system 

Results when x(0)=0, x´(0)=1 are presented in 

Fig. 6. Results when ( ) ( )0 0,  0 1.5x x= =  are presented in 

Fig. 7. 

From the presented results the influence of non-

linearity to the dynamical behaviour of the investigated 

conservative system is seen. With the increase of initial 

velocity, the nonlinear effect of stiffness of limited dis-

placement type is greater and this is especially evident 

from the representation of force of stiffness as function of 

displacement. 

4.2. Amplitude frequency characteristics of the conserva-

tive system 

The displacement amplitude frequency character-

istics as well as the velocity amplitude frequency charac-

teristics are presented in Fig. 8. 

In the presented graphical relationships constant 

part and amplitudes of the first three harmonics as func-

tions of frequency are seen. Hardening frequency respons-

es are observed in the obtained graphical results. For small 

nonlinearity higher harmonics are negligible, while for 

higher nonlinearity the third harmonic increases substan-

tially, though it is much smaller than the first harmonic. 

4.3. Investigation of dynamics of the system with harmonic 

excitation 

The following values of the parameters of the in-

vestigated system were assumed: 

 0.1,  1.h f= =  (12) 

Two periods of steady state motion are represent-

ed in the following figures. 

Results when v=1 are presented in Fig. 9. Results 

when v=1.5 are presented in Fig. 10. 
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a) Displacement as function of time b) Velocity as function of time c) Force of stiffness as function of dis-

placement 

Fig. 6 Investigation of the conservative system when x(0)=0, x´(0)=1 

   

a) Displacement as function of time b) Velocity as function of time c) Force of stiffness as function of displacement 

Fig. 7 Investigation of the conservative system when x(0)=0, x´(0)=1.5  

  

a) Displacement amplitude frequency characteristics b) Velocity amplitude frequency characteristics 

Fig. 8 Amplitude frequency characteristics of the conservative system: constant part and amplitudes of the first three har-

monics 

From the presented results the influence of non-

linearity to the dynamical behaviour of the investigated 

system with harmonic excitation is seen. With the increase 

of frequency of excitation, the nonlinear effect of stiffness 

of limited displacement type is greater and this is especial-

ly evident from the representation of force of stiffness as 

function of displacement. 

Based on the presented results qualities of dynam-

ic behavior of the investigated nonlinear vibrating system 

are observed. From the presented results of investigations, 

it is concluded that qualitatively the behavior of systems 

with both types of nonlinearities of limited displacements 

type is mutually similar, but quantitative differences can be 

observed. 

   

a) Displacement as function of time b) Velocity as function of time c) Force of stiffness as function of displacement 

Fig. 9 Dynamics of the system when 0.1,  1,  1h f = = =  
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a) Displacement as function of time b) Velocity as function of time c) Force of stiffness as function of displacement 

Fig. 10  Dynamics of the system when 0.1,  1,  1.5h f = = =  

5. Model of the pipe robot with limited values of dis-

placements 

Schematic diagram of a pipe robot with nonlinear 

interactions of limited displacement type is presented in 

Fig. 11. 

 

Fig. 11 Schematic diagram of a pipe robot with nonlinear 

interactions of limited displacement type 

The investigated nonlinear vibrating system de-

scribing the motion of a pipe robot is represented by the 

following differential equations: 

 

( )
( )

( )

( )
( )

( )

1 1 2 1 22

1 2

0

2 2 1 2 12

1 2

1 2 2

2 2 2

1

1

,

1

1

 when 0
0,

 when 0

x h x x x x
x x

f sin

x h x x x x
x x

h x x

h x x






  + − + − =

− −
 =

   + − + − +
 − −

    
+ =  

    

 (13) 

where: x1 is the displacement of the vibrating mass inside 

the pipe robot; x2 is the displacement of the pipe robot; μ is 

the mass of the case of the pipe robot; h is the coefficient 

of viscous damping between the vibrating mass inside the 

pipe robot and the case of the pipe robot; h1 is the coeffi-

cient of viscous damping of the case of the pipe robot with 

respect to the pipe itself for positive velocity of motion of 

the pipe robot; h2 is the coefficient of viscous damping of 

the case of the pipe robot with respect to the pipe itself for 

negative velocity of motion of the pipe robot; f0 is the am-

plitude of harmonic excitation; ν is the frequency of har-

monic excitation; τ is the time variable, and the prime indi-

cates differentiation with respect to it. 
 

  

a) Displacement as function of time b) Velocity as function of time 

Fig. 12 Dynamics of the pipe robot when 1 0 20.1,  0.1,  0.2,  1,  1,  0.1h h f h = = = = = =  

The following values of the parameters of the in-

vestigated system were assumed: 

 10.1,  0.1,  0.2,  1.h h = = = =  (14) 

Two periods of steady state motion are represent-

ed in the following figures. Motion of the vibrating mass 

inside the pipe robot is represented by continuous lines and 

motion of the case of the pipe robot is represented by 

dashed lines. 

5.1. Investigation of dynamics of the system for low ampli-

tude of excitation 

The following value of amplitude of excitation is 

assumed: 

 0 1.f =  (15) 

Results when h2=0.1 are presented in Fig. 12. Re-

sults when h2=2 are presented in Fig. 13. 
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a) Displacement as function of time b) Velocity as function of time 

Fig. 13 Dynamics of the pipe robot when 1 0 20.1,  0.1,  0.2,  1,  1,  2h h f h = = = = = =  

  

a) Displacement as function of time b) Velocity as function of time 

Fig. 14 Dynamics of the pipe robot when 1 0 20.1,  0.1,  0.2,  1,  10,  0.1h h f h = = = = = =  

  

a) Displacement as function of time b) Velocity as function of time 

Fig. 15 Dynamics of the pipe robot when 1 0 20.1,  0.1,  0.2,  1,  10,  2h h f h = = = = = =  

 

In Fig. 12 motion of the pipe robot in the negative 

direction of the x axis is observed, while in Fig. 13 motion 

of the pipe robot in the positive direction of the x axis is 

observed. 

5.2. Investigation of dynamics of the system for high am-

plitude of excitation 

The following value of amplitude of excitation is 

assumed: 

 0 10.f =  (16) 

Results when h2=0.1 are presented in Fig. 14. Re-

sults when h2=2 are presented in Fig. 15. 

In Fig. 14 motion of the pipe robot in the negative 

direction of the x axis is observed, while in Fig. 15 motion 

of the pipe robot in the positive direction of the x axis is 

observed. 

For high amplitude of excitation, the distance 

travelled by the pipe robot is much greater than for low 

amplitude of excitation. 
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The obtained results are used in the process of de-

sign of pipe robots of advanced type. 

6. Conclusions 

Systems in which vibrational displacements are 

limited because elastic forces increase practically up to 

unlimited values, are investigated. Here systems having 

one degree of freedom are investigated in which vibrations 

have specific qualities for the case of conservative systems 

as well as for the case of forced harmonic excitations. 

Typical expressions for nonlinear stiffness are 

proposed. Displacement as function of time, velocity as 

function of time and nonlinear stiffness as function of dis-

placement are represented for various initial velocities of 

the conservative system. Also, the same quantities for var-

ious frequencies of excitation of non-conservative systems 

in steady state regimes of motion are investigated. 

Model of a pipe robot with limited values of dis-

placements is presented and investigated. The model has 

two degrees of freedom: the displacement of the vibrating 

mass inside the pipe robot and the displacement of the pipe 

robot itself. Motion of the pipe robot in the negative direc-

tion as well as motion of the pipe robot in the positive di-

rection for different parameters of the system is observed. 

For high amplitude of excitation, the distance travelled by 

the pipe robot is much greater than for low amplitude of 

excitation. 

The obtained results are used in the process of de-

sign of pipe robots of advanced type. 
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