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1. Introduction 

The development of modern industry has put 

forward higher requirements for the lubrication perfor-

mance of hydrodynamic slider bearings. In fact, the manu-

factured bearing surface often has somewhat surface 

roughness. When the bearing surface roughness is compa-

rable to the bearing clearance, the surface roughness 

should influence the bearing performance [1-3]. 

There have been a lot of studies on mixed lubrica-

tion by considering the surface roughness effect. It was 

ever popularly followed that in a hydrodynamic lubricated 

contact the load is carried by both the hydrodynamic film 

and the solid asperity contact [4-6]. There have been the 

arguments that such a model may be over simplified be-

cause of neglecting the effect of the physically adsorbed 

layer on the lubricated surface.  

Molecular dynamics simulations (MDS) as well 

as experiments showed the existence of the physically ad-

sorbed boundary layer in a hydrodynamic contact [7-10]. 

However, there were the difficulties in simulating the be-

havior of the adsorbed layer in an engineering hydrody-

namic problem because of MDS taking over large cost of 

computer storage and computational time. In recent years, 

Zhang developed the closed-form explicit flow equations 

respectively for the adsorbed layer flow and the intermedi-

ate continuum fluid flow in the two-dimensional multiscale 

flow problem [11]. The advantage of this multiscale ap-

proach is to give fast solution and be able to solve the en-

gineering problem.  

The present paper attempts to study the effect of 

the surface roughness in the hydrodynamic inclined fixed 

pad thrust slider bearing with ultra low surface separations 

considering the physically adsorbed boundary layer. It is 

aimed to give the new results of the surface roughness in-

fluence on this mode of bearing. 

2. Studied bearing 

Fig. 1 shows the hydrodynamic inclined fixed pad 

thrust slider bearing with ultra low surface separation in-

volving surface roughness. This bearing occurs when the 

load is very heavy and the bearing surface is not smooth so 

that there is only a very small gap between the bearing 

surfaces. 

The upper surface of the bearing is stationary with 

the sinusoidal roughness, and the lower surface is assumed 

as perfectly smooth and moves with the speed u . The 

whole width of the bearing is l, and the tilting angle of the 

bearing is θ. The upper and lower surfaces are assumed as 

identical, and the adsorbed layers on both of them have the 

same thickness hbf. The intermediate continuum fluid film 

thickness is h , the surface separation is htot, and that on 

the exit of the bearing is htot,o. The used coordinates are 

also shown in Fig. 1. 

 

Fig. 1 Hydrodynamic inclined fixed pad thrust slider bear-

ing with ultra low clearance involving surface 

roughness 

3. Numerical analysis 

Considering that the viscosity and density of the 

fluid will be affected by the pressure in this severe condi-

tion, the piezo-viscous effect of the fluid is considered in 

the present study. In addition to this, this study is based on 

the following assumptions: a) the side leakage is negligible; 

b) no interface slippage occurs on any interface; c) the 

flow is isothermal; d) the working condition is steady-state. 

3.1. For the present bearing 

According to the nanoscale flow equation [12], 

the total mass flow rate per unit contact length through the 

boundary lubrication area (without the intermediate con-

tinuum fluid film) is: 
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where: htot = htot,o+ xtanθ + Rzsin(ωx+φ)/2; p is the film 

pressure; ,2

eff

bf  and ,2

eff

bf  are respectively the average 

density and the effective viscosity of the adsorbed layer in 

the boundary lubrication area; S is the parameter accoun-

ting for the non-continuum effect of the adsorbed layer. 

According to the multiscale flow equation [11], 

the total mass flow rate per unit contact length through the 

sandwich film lubrication area (with the intermediate con-
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tinuum fluid film) is:
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(2)

 

where: λbf = hbf/h, n is the equivalent number of the fluid 

molecules across the adsorbed layer thickness; D and Δx 

are respectively the fluid molecule diameter and the sepa-

ration between the neighboring fluid molecules in the ad-

sorbed layer in the x coordinate direction; Δn-2 is the sepa-

ration between the neighboring fluid molecules across the 

adsorbed layer thickness just on the boundary between the 

adsorbed layer and the intermediate continuum fluid; ρ and 

η are respectively the bulk density and the bulk viscosity of 

the fluid; pressure; ,2

eff

bf  and ,2

eff

bf  are respectively the 

average density and the effective viscosity of the adsorbed 

layer in the sandwich film flow; q0 = Δj+1 / Δj; q0 is aver-

agely constant; Δj is the separation between the (j + 1)th and 

jth fluid molecules across the adsorbed layer thickness; 
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local viscosity between the jth and (j – 1)th and fluid mole-

cules across the adsorbed layer thickness, and 

, , 1 0/line j line j q  + = .  

The fluid bulk viscosity is expressed as: 
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where 

( )9/ 5.1 10 9.67aG ln − =  + 
 and ηa is the fluid bulk 

viscosity at atmospheric pressure. The fluid bulk density is 

expressed as: ( )1a p  = +  , where a  is the fluid 

bulk density at atmospheric pressure and β is constant. 

As shown in Fig. 1, there are the (N+1) discre-

tized points evenly distributed in the whole area. Accord-

ing to Eq. (1), the pressure gradient on the Kth discretized 

point is: 
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According to Eq. (2), the pressure gradient on the 

Kth discretized point is: 
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for , 2 .tot K bfh h  (4) 

 

where: htot,K=htot,o+ xKtanθ + Rzsin(ωxK+φ)/2; a = up/2, b =  
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The backward difference gives that: 
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where: Kp  and 1Kp −  are respectively the hydrodynamic 

pressures on the Kth and (K-1)th discretized points and 

δx=l/N. 
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for htot,M > 2hbf.  (9) 

 

The load per unit contact length carried by the 

bearing is then calculated as: 
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3.2. For the classical mode of the bearing 

For comparison, the numerical analysis of the 

classical mode of the bearing (ignoring the adsorbed layer) 

is carried out in this section. 

 

Fig. 2 The classical mode of the bearing with surface 

roughness 

As shown in Fig. 2, for the classical mode of the 

bearing, there are the (N+1) discretized points evenly dis-

tributed in the whole area. The pressure gradient on the Cth 

discretized point is: 
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where: htot,C=htot,o+ xCtanθ + Rzsin(ωxC+φ)/2 and qm,C is the 

mass flow rate per unit contact length in the classical mode 

of bearing. 

The finite difference gives that 
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for C = 1, 2,…, N. (12) 

 

The load per unit contact length carried by the 

bearing is calculated as: 
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3.3. Normalization 

The dimensionless parameters are defined as fol-

lows: 
,

, ,

,

, , ,
tot Mx x

x x C tot M

bf tot o bf

h
H

h h h

 
 = = =  

1 2 1 1

, ,1 , ,2

, , , , ,
bf tot a

cr bf cr bf a a a

h h c
H H M N c

h h

 

  
= = = = =  

,1 ,2 ,1

1 2 13
, , , ,

eff eff eff

bf bf bfa

a bf

d
d Cy Cy Cq

h

  

  
= = = =  

,2 ,

2

,

, , , .

eff

bf tot om
m

a tot o a a

phq w
Cq Q P W

u h u u



   
= = = =  

Here , ,1cr bfh  is the critical thickness for charac-

terizing the rheological properties of the adsorbed layer in 

the sandwich flow, and , ,2cr bfh  is the critical thickness for 

characterizing the rheological properties of the adsorbed 

layer in the boundary lubrication area.  

3.3.1. For the present bearing 

The dimensionless pressure on the thK  discre-

tized point is: 1
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where: Qm is the dimensionless mass flow rate per unit 

contact length through the bearing: 
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The dimensionless load carried by the bearing is: 
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3.3.2. For the classical mode of bearing 

The dimensionless pressure on the Cth discretized 

point is: 
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where: Qm,c is the dimensionless mass flow rate per unit 

contact length through this bearing. 
The dimensionless load carried by the bearing is: 
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3.4. Numerical solution procedure 

Fig. 2 shows the numerical solution procedure, 

from which it can be seen that the calculation results are 

converged by controlling the precision of Qm. Then, sub-

stitute Qm into Eqs. (14) or (15) to calculate the pressure on 

each discrete point, and get the final result for the present 

bearing. For the classical bearing, the numerical calcula-

tion method is the same. 

 

Fig. 3 The numerical solution procedure 

4. Calculation 

Exemplary calculations were carried out for the  

following input parameter values: 

D = 0.5 nm; Δn-2 /D = Δx / D = 0.15; l = 100 μm; θ = 

1.0×10-4 rad; α = 1.6×10-8 m2/N; β = 0.4×10-9 Pa-1; u = 

1×10-6 m/s; w = 2π/ λ; λ = l/20; φ = π; ηa = 0.03 Pa·s. 

The parameters Cq1(H1) and Cq2(H2) are general-

ly expressed by the following well used formula: 
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where: H is H1 or H2; m0, m1, m2 and m3 are respectively 

shown in Table 1. 

The parameters Cy1(H1) and Cy2(H2) are generally 

expressed by the following well used formula: 
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where: H is H1 or H2; a0, a1 and a2 are respectively shown 

in Table 2. 

The parameter S(H2) is expressed by the 

following well used formula: 
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where: n0, n1, n2 and n3 are respectively shown in Table 3. 

The parameters F1, F2 and ε are respectively for-

mulated as [11]: 
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The weak, medium and strong fluid-bearing sur-

face interactions were respectively used. They respectively 

have the operational parameter values shown in Tables 1-4. 

Table 1 

Popularly used fluid density data for different fluid-bearing 

surface interactions 

Parameter 

Interaction 
m0 m1 m2 m3 

Strong 1.43 -1.723 2.641 -1.347 

Medium 1.30 -1.065 1.336 -0.571 

Weak 1.116 -0.328 0.253 -0.041 
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Table 2 

Popularly used fluid viscosity data for different flu-

id-bearing surface interactions 

Parameter 

Interaction 
a0  a1  a2 

Strong 1.8335 -1.4252 0.5917 

Medium 1.0822 -0.1758 0.0936 

Weak 0.9507 0.0492 1.6447E-4 

Table 3 

Popularly used fluid non-continuum property data for 

different fluid-bearing surface interactions 

Parameter 

Interaction 
n0  n1  n2 n3 

Strong 0.4 -1.374 -0.534 0.035 

Medium -0.649 -0.343 -0.665 0.035 

Weak -0.1 -0.892 -0.084 0.1 

Table 4 

Popularly used values of n, q0, γ, , ,1cr bfh  and , ,2cr bfh  for 

different fluid-bearing surface interactions 

Parameter 

Interaction 
n q0 γ , ,1cr bf

h , nm , ,2cr bf
h , nm 

Strong 8 1.2 1.5 40 80 

Medium 5 1.1 1 20 40 

Weak 3 1.03 0.5 7 14 

5. Results 

For the weak fluid-bearing surface interaction, in 

the bearing with Rz > 13.4 nm will occur the coexistence of 

the boundary lubrication and the sandwich film lubrication 

when htot,o =10 nm. For Rz < 13.4 nm is only present the 

sandwich film lubrication. For medium and strong flu-

id-bearing surface interactions, the cases are similar re-

spectively for Rz > 8.96 nm and Rz > 2.72 nm. 
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c) For the strong interaction                        d) Pressure distributions for different  

                                                           fluid-bearing surface interactions (Rz = 14 nm)  

Fig. 4 Dimensionless pressure distributions in the bearing for different surface roughness Rz and different fluid-bearing 

surface interactions when htot,o =10 nm and θ = 1×10-4 rad  

5.1. Pressure distribution 

Figs. 4, a-d plot the dimensionless pressure dis-

tributions in the bearing for different fluid-bearing surface 

interactions when the piezo-viscous effect is considered.  

As shown in Figs. 4, a-c, the hydrodynamic pres-

sure for the rough surface is always greater than that for 

the smooth surface, and the hydrodynamic pressure in-

creases significantly with the increase of the surface 

roughness.  

Fig. 4, d shows the pressure distributions in the 

bearing for different fluid-bearing surface interactions 

when htot,o =10 nm and Rz < 14 nm. The results show that 
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the hydrodynamic pressure for the weak interaction is less 

different from that calculated from classical hydrodynamic 

lubrication theory, while for the medium and strong inter-

actions they are more different from the classical calcula-

tions. The pressure for the medium interaction is about 10 

times larger than the classical calculation for the same op-

erating condition, and the pressure for the strong interac-

tion is about 1000 times larger than the classic calculation. 

It is shown that the adsorbed layer has a very significant 

effect on the pressure distribution in the bearing, stronger 

the fluid-bearing surface interaction, more obvious the 

effect of the adsorbed layer on the hydrodynamic pressure. 

Fig. 5 shows the comparison between the pressure 

distributions with and without the piezo-viscous effect 

respectively for the strong interaction in the present bear-

ing and for the classical calculation when Rz is 14nm. The 

pressure under the piezo-viscous effect is higher than that 

without the piezo-viscous effect for the strong interaction 

in the present bearing. The results show that the pie-

zo-viscous effect cannot be ignored for the strong interac-

tion in the present bearing. 
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Fig. 5 Piezo-viscous effects in the present bearing for the 

strong interaction and in the classical bearing when 

htot,o =10 nm and θ = 1×10-4 rad  

5.2. Carried load of the bearing 

Fig. 6 shows the dimensionless carried loads of 

the bearing with the fluid piezo-viscous effect for dif-

ferent fluid-bearing surface interactions when htot,o = 

=10 nm. With the increase of the surface roughness, the 

carried load of the bearing is increased significantly. It 

can be seen that the surface roughness very significantly 

improves the load-carrying capacity of the present 

bearing especially for the medium and strong interac-

tions. 

6. Conclusions 

The multiscale calculation was numerically made 

for the pressure and carried load of the inclined fixed pad 

thrust slider bearing with ultra low surface separation in-

volving the sinusoidal surface roughness on the stationary 

surface based on Zhang’s multiscale approach and mixed 

lubrication model [11, 12]. In the present bearing, there are 

both the boundary lubrication and the sandwich film lubri-

cation.  

Based on the obtained results, the conclusions are 

drawn as follows: 

a) The physically adsorbed layer has a very sig-

nificant effect on the pressure distribution and the carried 

load of the bearing. The pressure distribution and carried 

load of the bearing are increased with the increase of the 

fluid-bearing surface interaction strength. 

b) The bearing pressure and load capacity are in-

creased significantly with the increase of the surface 

roughness. Especially for the strong fluid-bearing surface 

interaction, the fluid piezo-viscous effect significantly in-

creases the bearing pressures and loads. 
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Fig. 6 Variation of the dimensionless carried load of the 

bearing with the surface roughness for different flu-

id-bearing surface interactions 
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S u m m a r y 

 

In this paper, the hydrodynamic effect in the 

tilting fixed pad thrust slider bearing with ultra low sur-

face separations is studied by the multiscale analysis 

considering the nanoscale surface roughness. The flow 

in the bearing is essentially multiscale incorporating 

both the adsorbed boundary layer flow and the interme-

diate continuum fluid flow. The numerical calculation 

results show that even the surface roughness on the 1nm 

scale has a strong influence on the generated pressure 

and carried load of the bearing, and the surface rough-

ness effect strongly depends on the fluid-bearing surface 

interaction. 

Keywords: adsorbed layer, hydrodynamic bearing, load, 
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