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1. Introduction 

In material fracture tests, the notch length and the 

artificial crack formed at the tip are theoretically specified 

as the crack length a. The stress concentration arising at the 

crack tip as a result of the applied stress causes fibre and 

matrix damage within and between the layers of the poly-

meric composite material [1, 2]. When the stress at the crack 

tip region reaches the effective fracture toughness of the ma-

terial, uncontrolled fracture occurs in the material.  

Many methodologies are used to estimate critical 

fracture toughness [3-5]. In the Internal Flaw Model (IFM), 

the stress concentration and hence damage region at the 

crack tip is defined as the energy-intensity region and the 

effect of this region is considered as the additional crack 

length [6]. The Point-Stress Criterion (PSC) states that the 

material will break if the stress value, which occurs after a 

certain characteristic distance d0 from the crack tip, reaches 

the tensile strength σ0 [7]. The methods based on the afore-

mentioned critical distance have recently been discussed in 

detail [8]. 

Reaching the tensile strength after a certain dis-

tance from the crack tip means that a higher stress than ten-

sile strength occurs at the crack tip. Therefore, it will be 

more meaningful to indicate that this (higher) value should 

be fracture toughness rather than stress. Establishing a rela-

tionship between the stress concentration at the crack tip and 

the stress intensity factor (SIF) would be meaningful ap-

proach in determining the critical fracture stress. Therefore, 

it is much more appropriate to consider tensile methods and 

fracture toughness together [9, 10]. In order to define the 

crack nucleation mechanism in the stress concentration re-

gion in brittle materials, theories have been put forward to 

use the energy and stress criteria in combination instead of 

applying them separately. In this case, the fracture tough-

ness and geometry of the material come to the fore. In the 

combined method called finite fracture mechanics, the stress 

and energy flux acting through a small structural distance 

from the crack tip determine the fracture stress of the mate-

rial [11-13]. 

In this study, by using the Irwin Equation in the 

load direction derived in the region close to the crack tip, a 

theoretical constant value was obtained for the crack tip ra-

dius in a three-point bending and tensile specimen with a 

single edge crack. This ensures that the components of the 

SIF are the crack-tip stress and the stress concentration fac-

tor (SCF) Kt. The fracture stresses of various crack length to 

width ratios a/W were determined using SCFs with theoret-

ical radius and the obtained results were compared with the 

actual fracture stresses and the results of other methodolo-

gies. 

2. The relationship between SIF and SCF 

In Fig. 1, there is a hyperbolic notch in a part sub-

jected to stress in both directions. The tip radius of curvature 

of the notch is ρ. The coordinate system starts inside the 

endpoint by r = ρ/2. When ρ/a (a half the two-tips crack 

length) is small compared to one, the origin is very close to 

the focal point of the ellipse or hyperbola representing the 

surface of the crack. This field equation in the load direction 

is similar to that for a "mathematically sharp" plane crack 

[14]. 

 

Fig. 1 Stress field coordinate system at hyperbolic notch tip 

[14] 

The elastic stress distribution in the load direction 

adjacent to the elliptical holes and hyperbolic notches will 

be as in Eq. 1 [14]. The KI and σy represents the Mode-I SIF 

and the stress in the load direction at the notch tip. 
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θ = 0° and r = ρ/2 should be used for the maxi-

mum stress in the load direction at the crack tip: 

( )
1/2

2 .max IK =  (2) 

To include the SCF on the left side of Eq. 2, the 

maximum stress σmax should be multiplied and divided by 

the nominal stress σn occured at the tip. To include only the 

SIF on the right-hand side of the equation, the notch tip ra-

dius ρ should theoretically have a value of 1.2732 mm. The 

SCF in which tip curvature is taken theoretically as  

ρ = 1.2732 mm acts as a stress multiplier KI/σ in the SIF  

(Eq. (3)).  

,I t nK K = (ρ = 1.2732 mm). (3) 
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Thus, the maximum stress (in MPa) in the load di-

rection to be encountered at the tip of the notch with a theo-

retical radius of 1.2732 mm will have the same value with 

the effective fracture toughness in terms of MPa.mm1/2. 

3. Three-point bending specimen 

In a three-point bending specimen (TPB) with a 

critical fracture stress σf, the stress at the crack tip σf-a will 

be [W/(W-a)]2σf at the end of the controlled fracture process 

(Fig. 2). The a and W represent the crack length and height, 

respectively. The end of controlled fracture will indicate that 

effective fracture toughness Keff has been reached. The Keff 

will be equal to the stress occurring at the crack tip multi-

plied by the SCF produced by the notch with the same crack 

length but with a tip radius of 1.2732 mm. 

The Keff determined for any crack size will also be 

valid for the others. Since the SCF values of all crack lengths 

based on ρ = 1.2732 mm will be calculated using Table 1 

and Eq. (4), the critical stress will be found for any crack 

length. 

 

Fig. 2 Schematic view of TPB test specimen 

Fig. 3 shows the bending specimen with an ellipti-

cal notch on one side. In Table 1, the relevant stress concen-

tration factor components prepared according to the notch 

length a and radius of curvature ρ parameters are tabulated 

[15]. Eq. (4) shows the polynomial expression of the SCF 

with the a/W ratio of the components. 

 

Fig. 3 Bending of a thin beam element [15] 

2 3

1 2 3 4 ,tK C C C C  = + + + ( ).a W =  (4) 

Table 1  

SCF components of bending moment β = a/ρ [15] 

 0.5 2   2 20   

C1 1.795+1.481β-0.211β2 2.966+0.502β–0.009β2 

C2 –3.544–3.677β+0.578β2 –6.47–1.126β+0.019β2 

C3
 

5.459+3.691β–0.565β2

 
8.023+1.253β–0.020β2

 
C4 –2.678–1.531β+0.205β2 –3.57–0.634β+0.010β2 

4. Single edge-cracked tensile specimen 

In the single edge-cracked tensile specimen 

(SENT), unlike the TPB, hybrid stress (tensile and bending) 

acts on the crack tip region and the effect of bending stress 

increases as the crack length increases. The SCF in the 

SENT may be considered as the superposition of the bend-

ing and tensile SCFs. 

The SCFs for the bending and tensile stress com-

ponents are calculated using Table 1 and Table 2, respec-

tively. The Eq. (4) is also valid for the tensile SCF compo-

nent. The theoretical value (1.2732 mm) is used for the tip 

radius ρ of the SCF components. Fig. 4 shows the tensile 

specimen with an elliptical notch on one side. 

 

Fig. 4 Tensile loading in line with middle of ligament [15] 

Table 2 

SCF for loading in line with middle of ligament 

β = (a/ρ)1/2 [15] 

 0.5<β<2.0 2 20   

C1 0.907+2.15β-0.023β2 0.953+2.136β–0.005β2 

C2 0.710–11.289β+1.708β2 –3.255–6.281β+0.068β2 

C3
 

0.672+18.754β–4.046β2

 
8.023+6.893β–0.064β2

 
C4 0.175–9.759β+2.365β2 –4.851–2.793β+0.128β2 

The SIF acting on the crack tip of the pin-loaded 

tensile specimen is found by Eq. (5): 

( )
2
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where: f  is the fracture stress of the specimen. 

In Linear Elastic Fracture Mechanics, the SIF and 

the related geometric correction factor Y of the single edge-

cracked tensile specimen is specified by Eqs. (6) and (7) 

[16], respectively α = a/W: 

( )
1/2

,I fK Y a =  (6) 

 
2 3 41.12 0.231 10.55 21.71 30.38 ,Y    = − + − +

( )0.6 .   (7) 

 

Eqs. (5) and (6) will give the very close results at 

all crack lengths if the Eq. (5) is based on theoretical tip cur-

vature 1.2732 mm as seen in Table 3. The both equations 

are for the pin-loaded condition where bending moment 

transfer is not restricted. 

If Eqs. (6) and (7) are used for the clamped-end 

condition, the higher fracture stress obtained in this condi-

tion at a certain a W  crack length ratio will be multiplied 

by the higher the SCF produced by pin-loaded condition.  



360 

The geometric correction factors that should be 

used in the clamped-end condition for the SENT specimen 

are given in the first four columns of Table 4 [18-22]. In this 

case, the SCF in Eq. (5) needs to be compensated for the 

clamped-end condition.  

Table 3 

The comparison of the SCFs of Neuber’s and photoelastic 

results with Eq.5 for the pin-loaded SENT 

a/W Neuber’s [17] Photoelastic [17] This paper 

0 1 -    

0.1 4.9   4.8 

0.2 7.7 7.1 7.0 

0.3 11   9.9 

0.4 17 15 14.4 

0.5 25 -  21.9 

0.6 39 38 35.3 

0.66 -  47 48.9 

0.7 64 -  62.3 

0.8 124 126 130 

Table 4 

The comparison of Y  of clamped-end condition with 

1.059Y1/2 for pin-loading 

a/W 
Blatt et al. 

[18] 

Marchand 

et al. and 

Ahmed et 

al. [19, 20] 

Dao and 

Mettu 

[21] 

Bowie et 

al. [22] 

This paper 

1.059Y1/2 

0.05 1.1228 1.14 1.1389 1.13 1.1385 

0.1 1.1528 1.166 1.1581 1.16 1.1642 

0.2 1.2411 1.251 1.2291 1.25 1.2442 

0.3 1.3654 1.378 1.3604 1.37 1.3655 

0.4 1.5147 1.539 1.5178 1.52 1.5370 

0.5 1.6951 1.726 1.7029 1.70 1.7769 

0.6 1.9026 1.934 1.9192 1.91 2.1240 

0.7 2.1569 2.171 2.1801 2.17  

0.8 2.498 2.481 2.5322   

0.9 3.1502 3.113 3.1637   

0.95 4.0864 4.052 4.137   

 

If the geometric correction factor for the pin-load 

condition is used for clamped-end condition, it is possible to 

reach a constant SIF. The square of the SIF obtained at each 

a/W from Eq. (5) will reach a constant value when divided 

by the geometric correction factor of the related a/W (Eq. 

(8)). In other words, the strain energy release rate GI needs 

to be normalized with Y, (α = a/W): 
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Considering Eq. (8), using the geometric correc-

tion factor of pin-loading for the clamped-end condition, the 

classical SIF Equation in Linear Elastic Fracture Mechanics 

should be as seen Eq. (9): 

( )
1/2

.I fK Y a =  (9) 

In this case, Eq. (5) will have the form as seen in 

Eq. (10): 
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The fifth column in Table 4 shows the values of 

1.059Y1/2. It is seen that the values have a linear relationship 

up to 0.4a W   crack length ratio. 

Eq. (2), adapted for various crack length ratios, will 

take a form as seen in Eq. (11) at the limit of 0a W → . The 

σ0 represents the tensile strength of the specimen: 

( )
1/2

01.12 ,QK  = (ρ = 1.2732 mm). (11) 

5. Model verification 

Thornel 300 carbon fiber/epoxy  0 / 90 / 45
ns


 

laminated composite material, the results of which were ex-

amined in another study, is considered to ensure objectivity 

and to compare with other estimation methodologies [23]. 

The σ0, E11, E22 and υ12 are 581 MPa, 138 GPa, 11 GPa and 

0.35, respectively. For the TPB, the span was 4.4 times the 

width W (W=25 mm) and for the clamped-end SENT, length 

L between jaws was 4.6 times the width W (W=40 mm). 

In the TPB specimen, the experimental fracture 

stress at a/W = 0.24 was determined as σf = 269 MPa in its 

study (Table 5). The equivalent of this stress at the crack tip 

is calculated as σf-a = 466 MPa. The SCF is calculated as a 

result of Table 1 which was used for ρ = 1.2732 mm and for 

the related crack length. The fracture toughness is calculated 

as 1440 MPa.mm1/2. Dividing the obtained value by the 

SCFs for the other crack length ratios, using Table 1, will 

give the crack tip stress values σf-a and after that the fracture 

stresses σf can be reached. 

Table 5 

The TPB critical fracture and crack tip stresses 

a/W Kt σf, MPa σf-a, MPa Kt σf-a, MPa 

0.24 3.094 269 466 1440 

0.36 2.916 202 494 

0.48 2.708 144 532 

0.60 2.487 93 580 

0.72 2.212 51 652 

In Table 6, when the ratios of obtained fracture 

stresses to experimental values are examined, the error rate 

is 1.2 % at the most. It is seen that this rate is 4.5 % in DZM, 

19 % in IFM and 9 % in PSC. 

Table 6 

The TPB test results comparison (in MPa) 

a/W Exp. DZM 
IFM  

c0=1.64 mm 

PSC 

d0=0.63 mm 
This paper 

0.24 269 Ref.    

0.36 202 198 205 195 202 

0.48 144 140 149 139 144 

0.60 92 92 100 92 93 

0.72 52 54 62 56 51 
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Fig. 5 shows the deviations in the ratio of the criti-

cal fracture stress to the tensile strength for the TPB speci-

men when different values are used for ρ. If the a/W = 0.24 

ratio is chosen as a reference, it is seen that the error rate 

increases as the a/W ratio increases for ρ = 0.636 mm. If ρ = 

1.9092 mm is used, it turns out that the error rates hover 

around the 0.0 % level as a sinusoidal wave, but the ampli-

tude is higher than that of 1.2732 mm. 

At the reference crack length ratio of a/W = 0.20, 

the experimental fracture stress was determined as 204 MPa 

in the SENT specimen in the study [23]. Using ρ = 12732 

mm as a tip radius of curvature at the related crack lengths 

of a/W in both the bending and tensile specimen SCF tables 

(Table 1 and 2), the KI is obtained as 1431 MPa.mm1/2 in Eq. 

(5). Using Eq. (8), the SIFs for other a/Ws are found. If the 

found values are substituted in Eq. (5), the critical stress val-

ues σf are approximated. The constant Keff is obtained by 

placing the found critical fracture stress in Eq. (10). It can 

be seen in Table 7 that Keff is 1222 MPa.mm1/2 for the sample 

under consideration. 

 

 

Fig. 5 The deviation results of different ρ values 

Table 7 

Obtaining constant effective fracture toughness in the 

SENT sample 

a/W 
KI, Pa.mm1/2 

Eq. (8) 

σf, MPa 

Eq. (5) 

Keff, MPa.mm1/2 

Eq.(10) 

≈0.0 1294  

1222 

0.2 1431 204 

0.3 1574 150 

0.4 1771 116 

0.5 2052 94 

0.6 2444 69 

 

The graphical representation of KI values obtained 

in the second column of Table 7 using Eq. (8) is given in 

Fig. 6. The decreasing curve towards the a/W = 0 limit is 

seen in the figure. 

Table 8 includes the comparison of the fracture 

stress results of the tensile specimen between the other 

methodologies and the specified method in this paper. It is 

seen that the deviation rates of all methodologies from the 

experimental results increased compared to the TPB results. 

Considering that the variation between test samples is 8%, 

it can be considered that the closest results are obtained by 

the specified method in this paper and the DZM. The char-

acteristic distances for IFM and PSC are the same as the val-

ues in Table 6. 

Using Eq. (8), KI was obtained as 1294 MPa.mm1/2 

for the 0a W   limit from the a/W = 0.2 (ref.) in Table 7. 

At the very small crack length ratio 0a W  , the σ0 tensile 

strength is determined as 577 MPa using Eq. (11), which is 

close to the experimental result 581 MPa. 

If the experimentally obtained critical fracture 

stresses are replaced in Eq. (6), but the geometric correction 

factors in Table 4 are used, it is seen that the average Keff 

values are close to 1222 MPa.mm1/2 (Table 9). 

 

Fig. 6 The increasing mode of KI due to pin-loaded geomet-

ric factor Y in the clamped-end condition 

Table 8 

Tensile test results comparison (in MPa) 

a/W Exp. DZM IFM PSC This paper Eq. (12) 

0.2 204 223 175 169 204 (Ref.) 

0.3 135 137 121 113 150 

0.4 113 108 84 77 116 

0.5 87 92 56 52 94 

0.6 71 54 37 33 69 

Table 9 

Tensile test sample Keff result comparison 

a/W Ref. [9] Ref. [10, 11] Ref. [12] Ref. [13] 

0.2 1269 1279 1257 1278 

0.3 1130 1140 1126 1134 

0.4 1214 1233 1216 1218 

0.5 1171 1192 1176 1174 

0.6 1171 1190 1181 1176 

Avg. 1191 1207 1191 1196 

6. Conclusions 

It is seen that the SCF tables prepared for isotropic 

materials can give the critical fracture stresses and effective 

fracture toughness values of anisotropic materials close to 

the actual values. As in isotropic materials, it is seen that 

anisotropic materials have a constant fracture toughness 

value and when this value is reached, the material breaks. 

Roughly, the controlled crack propagation phase makes the 

difference. 

In the stress distribution equation occurring in front 

of an elliptical cavity or notch, it has been stated that the 

critical fracture stress and SIF can be found by using the 

theoretical radius of curvature of the notch which provides 

the σmax = KI at the stress concentration tables. Using 
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1.2732 mm to the tip radius of curvature in the SCF corre-

sponds to the Y(πa)1/2 value in the corresponding a/W ratio. 

The fracture toughness values obtained in the 

three-point bending and the tensile tests are close to each 

other as they should be in the same material. The difference 

is due to that the bending specimen used for SCF data does 

not fully correspond to the three-point bending specimen. 

The fracture stress results obtained from the model 

proposed in this paper are quite close to the experimental 

values in the three-point bending test and the deviation rates 

are lower than those of the DZM, IFM and the PSC meth-

odologies. But, it is also seen that there is an increase in the 

deviation rates of the tensile test compared to the three-point 

bending test results. In this increase, the presence of tensile 

and bending stresses at the crack tip, which varies depend-

ing on the crack length ratio, is effective. However, when 

compared with the rates of other methodologies, it is seen 

that it can be applied successfully. 

In order to use the SIF equation in Linear Elastic 

Fracture Mechanics in the tensile test results, the loading 

type should be considered. This study gives important re-

sults in terms of indicating that the increasing stress inten-

sity factor of the pin-loaded tensile test with the geometric 

correction factor Y corresponds to a constant effective frac-

ture toughness if normalization is made by using the geo-

metric correction factor. 
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G. Saracoglu 

USING THE STRESS CONCENTRATION FACTOR IN 

DETERMINING THE FRACTURE TOUGHNESS 

S u m m a r y 

This paper offers the use of stress concentration 

factor in determining the critical fracture stress and fracture 

toughness of polymeric composite materials at various crack 

length ratios. The stress intensity factor has been turned into 

a function of the stress concentration factor derived from the 

maximum stress occurring at the notch tip and the tip stress 

generated by the force applied to the sample. This conver-

sion allowed the use of a fixed theoretical radius 1.2732 mm 

instead of the actual radius of the notch or crack. On the 

edge cracked three-point bending and tensile samples, the 

specified method detects the three-point bending fracture 

stresses with a maximum error rate of 1.2 %. This study also 

establishes a relationship between the clamped end and the 

pin-loaded tensile specimens and states that the underlying 

mechanism of the stress intensity factor of the clamped end 

tensile specimen is based on the normalization of the stress 

intensity factor of the pin-loaded conditions with the geo-

metric correction factor. 

Keywords: fracture toughness, fracture stress prediction, 

stress concentration factor, stress intensity factor, edge-

cracked sample. 
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