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1. Introduction 

The determination of the critical fracture stresses 

of the materials is primarily to determine the fracture tough-

ness. The transformation of a flaw into a micro and then 

macro-crack size in the material and reaching a level that 

may endanger safety is related to this concept. 

Many fracture models have been developed to pre-

dict the critical fracture stresses of materials [1]. These 

methodologies are grouped into stress fracture [2-5], frac-

ture mechanics [6-8], and progressive damage models [9-

12]. Stress fracture models especially the Point-Stress Cri-

terion (PSC) and the Area-Stress Criterion (ASC) are more 

widely used because of relative simplicity [13]. These two-

parameter criteria indicate that the characteristic distance at 

which the tensile strength is reached from the tip of the 

notch or crack is a material property. The results of the ex-

periments carried out later allowed these criteria to be mod-

ified as a three-parameter model. These criteria have been 

extended to include any laminate with a symmetrical struc-

ture using the anisotropic plate solution introduced by 

Lekhnitskii [2]. 

The Inherent Flaw Model (IFM) has been widely 

used in approaches based on Fracture Mechanics according 

to the above classification [8]. The model considers the high 

energy regions due to stress concentration at the crack or 

notch tips as additional crack length and is similar to the 

PSC due to its simplicity. But, all of these models are based 

on the characteristic distance and needs at least two mechan-

ical test results. 

The loss of properties of materials over time fol-

lows a certain mathematical path, independent of the influ-

encing factor and material. This mathematical way is in the 

form of a decreasing exponential function. The Residual 

Property Model (RPM) is a different methodology in that it 

presents the loss of material property in its general form 

[14]. The model can give valid results up to a limit where 

linearity is no longer valid. However, to apply the model, 

two experimental points are needed as with the other meth-

odologies mentioned above to predict the exact variation of 

mechanical properties of polymeric materials as a function 

of energy involved, regardless of the extent of the damage 

and/or the source of the damage. 

This paper is important in terms of estimating crit-

ical fracture stresses of all crack length to width ratios a/W 

and tensile strength σ0 based on only the data of one fracture 

test. While doing this, the complementary equation, not the 

alternative of the stress intensity factor (SIF) equation, was 

proposed in Fracture Mechanics. The fact that the method 

proposed in this study is simple and applicable to all flaws 

as well as the ability to detect critical fracture stresses of 

other defect rates and un-notch strengths from one test data 

makes it different from other methodologies positively. In 

this way, Irwin's Equation is considered in the load direction 

derived in the region close to the crack tip, a theoretical con-

stant value was obtained for the crack tip radius. To assess 

the validation of this new methodology, five different cases 

from the literature were evaluated and compared with the 

PSC and the IFM. 

2. The proposed method 

In Fig. 1, there is a hyperbolic notch in a part sub-

jected to stress in both directions. The tip radius of curvature 

of the notch is ρ. The coordinate system starts inside the 

endpoint by r = ρ/2. When ρ/a (a half the crack length) is 

small compared to one, the origin is very close to the focal 

point of the ellipse or hyperbola representing the surface of 

the crack. This field equation in the load direction is similar 

to that for a "mathematically sharp" plane crack [15]. 

 

Fig. 1 Stress field coordinate system at hyperbolic notch tip 

[15] 

The elastic stress distribution in the load direction 

adjacent to the elliptical holes and hyperbolic notches will 

be as in Eq. (1) [15]. KI and σy represents the Mode-I SIF 

and the stress in the load direction at the notch tip. 

( )

( )

1/2

1/2

3
1

2 2 22

3
.

2 22

I
y

I

K
cos sin sin

r

K
cos

rr

  




 



 
= + + 

 

+

 

(1)

 

θ = 0° and r = ρ/2 should be used for the maxi-

mum stress in the load direction at the crack tip (Eq. (2)): 

( )
1/2

2 .max IK =  (2) 

 

If the theoretical tip curvature radius of 1.2732 mm 

is used for ρ in Eq. (2), the maximum stress (in MPa) in the 

direction of the load at the tip of the notch and the stress 

intensity factor (SIF, KI) (in MPa.mm1/2) will be equal to 

each other in value. Indeed, for crack propagation in a 

stressed specimen that contains cracks, the stress intensity 
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at the crack tip must reach fracture toughness. The value of 

the stress intensity achieved will be the same as the maxi-

mum stress that occurs in front of a notch with a tip radius 

of 1.2732 mm, which will be considered imaginary instead 

of this crack. So, using the theoretical value of ρ (1.2732 

mm) for very small crack length ratios, Eq. (3) will be 

achieved at the limit of a/W=0. The σ0 represents the tensile 

strength of the specimen: 

( )
1/2

0 ,IK  = (ρ = 1.2732 mm). (3) 

In Linear Elastic Fracture Mechanics, SIF is stated 

by Eq. (4). The geometric correction factors Y for various 

test specimens are given in [16]. 

( )
1/2

.I fK Y a =  (4) 

Regardless of the crack size, Eqs. (3) and (4) will 

give the same result for a material toughness. Thus, the ratio 

of critical fracture stress σf to tensile strength σ0 will depend 

on constant theoretical tip radius σ0, crack length a, and ge-

ometric correction factor Y as in Eq.5: 
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Eq. (5) will yield all the critical fracture stresses 

including approximate tensile strength with only single frac-

ture test data of any kind of specimen. For the pin-loaded 

single-edge cracked tensile specimen, the geometric factor 

Y given in [16] is used as in Eq. (5). However, since the Y 

given in [16] is suitable for the pin-loaded condition, it 

should be used as Y1/2 in Eq. (5) when used for clamped-end 

single-edge cracked specimen as seen in Eq. (6): 
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(ρ = 1.2732 mm). (6) 

 

The propagation of the crack or notch is possible 

by reaching the material toughness value at the tip point. 

Therefore, at a theoretical tip radius of 1.2732 mm, the stress 

value (in MPa) that will occur at the tip will be the same as 

the toughness value (in MPa.mm1/2). When ρ = 1.2732 mm 

value is entered in Eq. (1), the maximum principal stress 

distribution that will occur in front of the defect will be as 

in Eq. (7): 
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It should be noted that in Eq. (7), the origin of r lies 

within 0.6366 mm of the theoretical crack or notch.  

Not just cracks, circular holes can be solved simi-

larly. The maximum stress that will occur at the edge of a 

hole of radius R (other than 1.2732 mm) in the specimen 

under the tensile stress will correspond to a certain ratio 

( )
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 of fracture toughness with respect to the value 

of radius R as in Eq. (8): 
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The σmax is also the critical fracture stress σf multi-

plied by the stress concentration factor Kt. Therefore, it is 

indicated on the right-hand side of the Eq. (8). 

The stress concentration Kt at the very small crack 

length emerging from the hole edge is given by Eq. (9) [17]: 
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Since the theoretical ρ of 1.2732 mm is the equiv-

alent of 4  , Eqs. (8) and (9) can be linked. As a result of 

this connection, Eq. (10) is reached: 
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If the stress concentration Kt is taken as in Eq. (10) 

and the stress intensity KI is taken as in Eq. (3) and put in 

Eq. (8), σf/ σ0 is obtained as in Eq. (11): 
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The factor Y in Eq. 11 is included to consider the 

effect of the specimen edge on the hole edge. The Y is the 

polynomial equation of the central crack specimen. 

If the tensile strength σ0 of the specimen including 

a circular hole is known, the critical fracture stress σf can be 

found with the help of Eq. (11), or vice versa. 

3. Model verification 

The proposed approach has been applied to 

 0 90 / 45
ns

 Thornel T300 carbon fiber/epoxy laminated 

composite including cracks and holes with different test 

methods. The results of them examined in their studies [10, 

18]. The σ0, E11, E22 and υ12 are 581 MPa, 138 GPa, 11 GPa 

and 0.35, respectively. The proposed method was compared 

with the results of the DZM, PSC and IFM as well as the 

experimental results. 

The method has also been applied to [0/90] woven 

glass fiber/polyester laminated composite material for cen-

tral cracked specimen [19]. The σ0, E11, E22 are 291 MPa, 

7491 MPa and 6376 MPa, respectively.  

The first specimen considered is the single-edge 

cracked tensile carbon fiber/epoxy laminated composite 

(SENT) specimen (Fig. 2, a) [18]. If the σ0 (581 MPa) is used 

in Eq. (6), it is sufficient to enter the crack length a to deter-

mine the related σf. Eq. (5) was not used since the SENT 

specimen under consideration was tested with the clamped-

end. 

In Table 1, it is seen that the maximum deviation 

rate of the proposed method from the test results is 9.13%. 

It is also seen that the DZM, IFM and PSC are 9.3%, 

– 49.2% and –54.2%, respectively. 
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a 

 
b 

Fig. 2 [0/90/±45]ns specimen: a) SENT; b) TPB schematic 

view 

Table 1  

SENT test results comparison (in MPa) 

a/W Exp. DZM 
IFM  

c0=1.64 mm 

PSC 

d0=0.63 mm 

This paper 

Eq. (6) 

0.2 204 223 175 169 198 

0.3 135 137 121 113 147 

0.4 113 108 84 77 113 

0.5 87 92 56 52 87 

0.6 71 54 37 33 67 

The second example is the three-point bending 

(TPB) carbon fiber/epoxy laminated composite specimen 

(Fig. 2, b) [18]. The other methodologies have determined 

the critical fracture stresses of other crack lengths by taking 

the critical fracture stress determined at a/W = 0.24 as refer-

ence. The same reference could be used for the proposed 

method. However, Table 2 is based on the tensile strength. 

It is seen that the proposed method gives very close results 

with the DZM and PSC. 

Table 2  

TPB test results comparison (in MPa) 

a/W Exp. DZM 
IFM  

c0=1.64 mm 

PSC 

d0=0.63 mm 

This paper 

Eq. (5) 

0.24 269 269 (Ref.) 267 

0.36 202 198 205 195 196 

0.48 144 140 149 139 139 

0.60 92 92 100 92 92 

0.72 52 54 62 56 54 

The third example is the compact tension (CT) 

specimen from the same material (Fig. 3, a) [18]. While the 

results close to the experimental results are obtained up to 

a/W = 0.45, it is seen that the deviation rate increases at 

larger a/Ws. 

  

a b 

Fig. 3 [0/90/±45]ns spec.: a) CT; b)  CEN schematic view 

 

The fourth example is the specimen with a central 

crack (CEN) specimen (Fig. 3, b). In [18], this specimen was 

fabricated from random glass fiber/polyester material. Alt-

hough the proposed method gives results very close to the 

actual values at all a/Ws, the tensile strength found differs 

from the actual value since the fiber structure in the material 

does not show linear elastic characteristics. Therefore, in ad-

dition, a woven glass fiber/polyester material of a different 

study [19] is also included in Table 4. According to the ref. 

a/W =0.194, the tensile strength of the glass fiber/polyester 

laminated composite was determined as 277 MPa with an 

error rate of –4.8%. 

Table 3  

CT test results comparison (in MPa) 

a/W Exp. DZM 
IFM  

c0=1.64 mm 

PSC 

d0=0.63 mm 

This paper 

Eq. (6) 

0.35 50 51 49 44 50 

0.45 39 39 38 34 41 

0.55 29 28 27 24 33 

0.65 19 18 18 16 26 

Table 4  

CEN test results comparison (in MPa) 

[18] [19] 

a/W Exp. (Eq.5) a/W Exp. (Eq. 5) 

0.0 135 205 0.000 291 Ref. 277 

0.2 75 (Ref.) 0.194 127 133 Ref. 

0.3 60 60 0.291 104 108 103 

0.4 53 49 0.388 88 93 88 

   0.485 77 82 78 

The last two examples are related to the tensile 

specimens, which is produced from the same material but 

has the circular holes with a radius of 5 mm and 10 mm 

(Fig. 4) [10]. In the original study, by changing the width W 

on the W0=140 mm plate, the critical fracture stress values 

in the plates containing the holes with 5 and 10 mm radii 

were determined. 

 

Fig. 4 [0/90/±45] circular central hole spec. schematic view 

Table 5  

Predicted strengths for specimens with R=5 mm circular 

holes of various ratios W/W0 (in MPa) 

W/W0 Exp. DZM IFM c0=1.64 mm 
This paper 

Eq. (10) 

1. 284 288 301 291 

2/3 290 286 294 290 

1/2 285 282 286 288 

1/3 276 268 263 284 

1/4 267 253 247 264 

1/5 237 236 229 248 

1/7 206 195 183 207 
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When the proposed method is used, critical frac-

ture stresses were determined with an error margin of +4.6% 

to –2.9%. The DZM has deviation rates of +1.4% to –5.3%, 

and the IFM has the range of +6% to –11.2% as seen in Ta-

ble 5. 

The critical fracture stresses obtained when the 

hole radius is increased to 10 mm are shown in Table 6. It is 

seen that the proposed method has the satisfactory deviation 

rates (max. –3.95%) according to the experimental results. 

It is also seen that the DZM and the IFM have deviation rates 

of –7.7% and –7.9%, respectively. 

Table 6  

Predicted strengths for specimens with R=10 mm circular 

holes of various ratios W/W0 (in MPa) 

W/W0 Exp. DZM IFM c0=1.64 mm 
This paper 

Eq. (10) 

1. 242 243 241 236 

2/3 236 226 222 229 

1/2 228 212 210 219 

1/3 190 184 178 190 

1/4 156 144 145 151 

4. Conclusions 

In this study, a simple approach is proposed that 

can be applied to all test kind samples whether the defect in 

the material is a sharp-edged crack or a hole with a certain 

radius. By generating an additional equation to the SIF of 

the Classical Fracture Mechanics, it is possible to determine 

the values of the other crack length ratios from one critical 

fracture stress. Using the two equations together also pro-

vides the tensile strength to be found from only one critical 

fracture stress value. The other methodologies put forward 

in this regard, on the other hand, can provide the determina-

tion of all values by using at least two data (e.g., tensile 

strength and a critical fracture stress) [1]. Fracture occurs 

when the stress intensity factor at the tip of the defect 

reaches the fracture toughness of the material. The use of 

the theoretical tip radius value, which will allow the value 

of the fracture toughness in MPA.mm1/2 to be equal to the 

maximum stress in MPa, has brought an easy approach and 

has provided values close to the experimental results in 

many test methods.  

In order for the method to be successful, the mate-

rial must show linear elastic characteristics from a certain 

crack length ratio to the a/W=0 limit point.  

 
Declarations 

 

Funding. The author declares that there is no finan-

cial support of any foundation for this work. 

Conflict of interest/Competing interests. The au-

thor declares that he has no known competing financial in-

terests or personal relationships that could have appeared to 

influence the work reported in this paper. 

 
 

 

 

 

 

References 

 

1. Awerbuch, J.; Madhukar, M. S. 1985. Notched 

strength of composite laminates: predictions and exper-

iments – a review, Journal of Reinforced Plastics and 

Composites. 

https://doi.org/10.1177/073168448500400102. 

2. Whitney, J. M.; Nuismer, R. J. 1974. Stress fracture 

criteria for laminated composites containing stress con-

centrations, Journal of Composite Materials 8: 253-265.  

https://doi.org/10.1177/002199837400800303. 

3. Karlak, R. F. 1977. Hole effects in a related series of 

symmetrical laminates. proceedings of failure modes in 

composites iV, The Metallurgical Society of AIME, 

Chicago, pp. 106−117.  

4. Pipes, R. B.; Wetherhold, R. C.; Gillespie, J. W. 1979. 

Notched strength of composite materials, Journal of 

Composite Materials 13: 148 - 160. 

https://doi.org/10.1177%2F002199837901300206. 

5. Tan, S. C. 1987. Notched strength prediction and design 

of laminated composites under in-plane loadings, Jour-

nal of Composite Materials 21: 750 - 780. 

https://doi.org/10.1177%2F002199838702100804. 

6. Tan, S. C. 1988. Finite-width correction factors for ani-

sotropic plate containing a central opening, Journal of 

Composite Materials 22: 1080 - 1097. 

https://doi.org/10.1177%2F002199838802201105. 

7. Gillespie, J. W.; Carlsson, L. 1988. Influence of finite 

width on notched laminate strength predictions, Compo-

sites Science and Technology 32: 15-30. 

https://doi.org/10.1016/0266-3538(88)90027-9. 

8. Waddoups, M. E.; Eisenmann, J. R.; Kaminski, B. E. 

1971. Macroscopic fracture mechanics of advanced 

composite materials, Journal of Composite Materials 5: 

446 - 454.  

https://doi.org/10.1177/002199837100500402. 

9. Mar, J. W.; Lin, K. Y. 1977. Fracture mechanics cor-

relation for tensile failure of filamentary composites 

with holes, Journal of Aircraft 14: 703-704. 

https://doi.org/10.2514/3.44618. 

10. Backlund, J. C.; Aronsson, C. 1986. Tensile fracture 

of laminates with holes, Journal of Composite Materials 

20: 259 - 286.  

https://doi.org/10.1177%2F002199838602000304. 

11. Chang, F. K.; Chang, K. 1987. A progressive damage 

model for laminated composites containing stress con-

centrations, Journal of Composite Materials 21: 834 - 

855. 

https://doi.org/10.1177%2F002199838702100904. 

12. Tan, S. C. 1991. A progressive failure model for com-

posite laminates containing openings, Journal of Com-

posite Materials 25: 556 - 577. 

https://doi.org/10.1177%2F002199839102500505. 

13. Tsai, K. H.; Hwan, C.; Lin, M. J.; Huang, Y. S. 2012. 

Finite element based point stress criterion for predicting 

the notched strengths of composite plates, Journal of 

Mechanics 28: 401-406. 

https://doi.org/10.1017/jmech.2012.48. 

14. Papanicolaou, G. C.; Kosmidou, T.; Vatalis, A. S.; 

Delides, C. G. 2006. Water absorption mechanism and 

some anomalous effects on the mechanical and viscoe-

lastic behavior of an epoxy system, Journal of Applied 

Polymer Science 99: 1328-1339.  

https://doi.org/10.1002/app.22095. 

https://doi.org/10.1177/073168448500400102
https://doi.org/10.1177/002199837400800303
https://doi.org/10.1177%2F002199837901300206
https://doi.org/10.1177%2F002199838702100804
https://doi.org/10.1177%2F002199838802201105
https://doi.org/10.1016/0266-3538(88)90027-9
https://doi.org/10.1177/002199837100500402
https://doi.org/10.2514/3.44618
https://doi.org/10.1177%2F002199838602000304
https://doi.org/10.1177%2F002199838702100904
https://doi.org/10.1177%2F002199839102500505
https://doi.org/10.1017/jmech.2012.48
https://doi.org/10.1002/app.22095


368 

15. Creager, M.; Paris, P. 1967. Elastic field equations for 

blunt cracks with reference to stress corrosion cracking, 

International Journal of Fracture Mechanics 3: 247-252. 

https://doi.org/10.1007/BF00182890. 

16. Tada, H.; Paris, P. C.; Irwin, G. R. 2000. The Stress 

Analysis of Cracks Handbook, Third Edition. ASME 

Press, New York.  

https://doi.org/10.1115/1.801535 

17. Pilkey, W.; Pilkey, D. 2008. Peterson's stress concen-

tration factors. Third edition. John Wiley & Sons, Inc., 

Hoboken, New Jersey. 

https://doi.org/10.1002/9780470211106 

18. Aronsson, C.; Backlund, J. C. 1986. Tensile fracture 

of laminates with cracks, Journal of Composite Materi-

als 20: 287 - 307. 

https://doi.org/10.1177/002199838602000305 

19. Khashaba, U. A. 2003. Fracture behavior of woven 

composites containing various cracks geometry, Journal 

of Composite Materials 37: 20 - 5.  

https://doi.org/10.1177%2F0021998303037001679. 

G. Saracoglu 

THE THEORETICAL VALUE FOR THE TIP RADIUS 

OF CRACKS AND NOTCHES  

S u m m a r y 

In this paper, an additional equation that can be 

used in conjunction with the Stress Intensity Factor is pro-

duced, enabling the determination of all critical fracture 

stresses, including tensile strength, from only one mechani-

cal test data. In this context, the blind elliptical hole stress 

distribution area equation of Creager and Paris was used and 

the theoretical radius value was selected to ensure that the 

maximum principal stress (in MPa) at the tip point and the 

fracture toughness (in MPa.mm1/2) were equal in value. By 

using the obtained equation together with the stress intensity 

factor, the results very close to the experimental data were 

obtained in the test specimens with cracks and holes, regard-

less of the true radius of the crack tip. 

 

Keywords: critical fracture stress; the residual property 

model; fracture stress predicting method; the stress distribu-

tion. 
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