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1. Introduction 

 

Laminated polymeric composite materials are the 

preferred material group in many industries due to their high 

strength, fracture toughness, light weight and corrosion 

properties under certain conditions [1-2]. As with isotropic 

materials, these materials also need shape connection for as-

sembly. Therefore, they contain geometric discontinuities in 

circular, elliptical and various other shapes [3-7]. These dis-

continuities show notch effect under stress and cause stress 

concentration [8]. 

In order for composite materials to be used safely, 

the stress values and crack propagation at and near the notch 

and crack tip must be analysed.  In this context, analytical 

methods specific to anisotropic materials, finite element 

analysis method, semi-analytical methods using both ana-

lytical and finite element analysis methods have been pro-

posed [9]. In addition, considering that each composite char-

acteristic will require the application of micro-mechanical 

models, methods are also used to determine the strength 

stress in notched specimens by using the micro-mechanical 

models [10]. The 3D finite element model of composite 

laminates for progressive damage analysis based on contin-

uum damage mechanics was developed [11-13]. 

Although laminated composite materials present a 

different mechanical response (fibre rupture, fibre-debond-

ing, etc.) at and near the notch tip than isotropic materials, 

the methods are also used to adapt Linear Elastic Fracture 

Mechanics (LEFM) to composite materials on a macro-

scopic scale [14]. The Theory of Critical Distance (TCD) is 

the origin of some of these methods [15-17]. The Point 

Method (PM), which is the most widely used in the theory, 

states that fracture will occur if the stress value encountered 

in the load direction at a certain distance from the notch tip 

is equal to the tensile strength of the brittle material. 

In these methods, which are generally categorised 

under the titles of stress and energy methods, hybrid meth-

ods have been developed in which a stress and an energy 

method are used together. Finite Fracture Model is one of 

the most frequently used methods in order to respond to the 

situations where the crack is very small and very large in 

length, and also in hybrid systems that indicate that the frac-

ture mechanism works together with stress and energy [18]. 

Essentially, this method, which is another expression of 

LEFM in which the mathematical integrations required to 

express the fracture energy are performed in finite steps, 

contains one of the possible explanations for the ability of 

TCD to predict fracture conditions in notched structures. 

However, in terms of practicality, it is not widely used in 

industrial applications [19]. 

The loss of properties of materials over time fol-

lows a certain mathematical path, independent of the influ-

encing factor (corrosion, impact, fatigue, notch, etc.) and 

material. This mathematical way is in the form of a decreas-

ing exponential function. 

The Residual Property Model (RPM) is a macro-

scale method based on this differential equation. The model 

can give valid results up to a limit where linearity is no 

longer valid. To apply the model, two experimental points 

are needed to predict the exact variation of mechanical prop-

erties of polymeric materials as a function of energy in-

volved, regardless of the extent of the damage and/or the 

source of the damage [20]. 

However, many of the methods described above, 

have two limitations: Firstly, it is analytically complicated 

and secondly, it requires the knowledge of at least two char-

acteristic values of the material (such as tensile strength, 

characteristic distance or critical fracture values by perform-

ing at least two tests).  

This study focuses on the determination of the crit-

ical fracture stresses of brittle material at various notch 

length ratios, albeit on a macro-scale, with one characteristic 

value determined by using LEFM. 

2. The residual property method 

The Residual Property Model (RPM) is used to de-

scribe the residual mechanical properties of materials after 

damage. The model gives results close to actual values for 

changes in material properties, regardless of the cause of the 

damage and the type of material handled. The model is 

based on an exponential decay law of the mechanical deg-

radation of a material due to damage as in Eq. (1) [20]: 
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where: Pr is the residual property value related for the notch 

length currently considered; P0 is the original value of the 

same property for the un-notched sample (for example, the 

material tensile strength), and u is a function of each notch 

length a and sample width W. 

According to the model, the deterioration of a fea-

ture due to notch is explained by the Eq. (2): 

1
,

dy
s y

s dM
= +  (2) 

where: 
0 0

; ; .rP Pa
y M s

P W P

= = =  

Considering a cracked material M is the ratio of 

crack length to sample width. The closer the a/W ratio is to 

1, the closer the dy/dM will be to 0 , indicating that the ma-

terial has no significant mechanical properties. In this case, 

Pr/P0 will converge to s. Solving the differential equation of 

the RPM model, Eq. (3) is reached: 
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In this case, as M (representing a/W) approaches 0, 

Pr/P0 will approach 1 . 

The feature that makes this model equal with other 

models is that it needs two tests to determine P  and P0 val-

ues. In the method proposed below, the critical fracture 

stresses given by the method are obtained with only one 

data. 

3. The proposed method 

In the proposed method, Eq. (1) is simplified as 

seen in Eq. (4). When u, the length function of the notch, 

takes its maximum value of 5, the value of e-u reaches about 

0.67. This indicates that the load-carrying strength of the 

material is almost gone compared to the initial state without 

notch. 

A material releases energy following a nonlinear 

curve, as shown in Fig. 1. The abscissa of the graph shows 

the exponent u of the function e-u, and the ordinate shows 

the ratio of the fracture stress σr to the tensile strength σ0 
 
as 

seen in Eq. (4): 
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Fig. 1 The descending exponential curve giving the σr/σ0  

Fig.1 shows the approximate percentage of the ma-

terial's residual energy at each integer value of u based on 

increasing crack length. This type of curve follows a precise 

mathematical formula and is called a descendent exponen-

tial curve. The released strain energy curve is a decreasing 

exponential.  
In Fig. 2, there is a hyperbolic notch in a part sub-

jected to stress in both directions. The tip radius of curvature 

of the notch is ρ. The coordinate system starts inside the 

notch-tip by r = ρ /2. When ρ / a (a, half the crack length) is 

small compared to one, the origin is very close to the focal 

point of the ellipse or hyperbola representing the surface of 

the crack. This field equation in the load direction is similar 

to that for a "mathematically sharp" plane crack [21]. 

The elastic stress distribution in the load direction 

adjacent to the elliptical holes and hyperbolic notches will 

be as in Eq. (5) [21]. KI and σy represents the Mode-I stress 

intensity factor and the stress in the load direction near the 

notch tip, respectively: 
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Fig. 2 Stress field coordinate system at hyperbolic notch tip 

[21] 

θ = 0° and r = ρ /2 should be used for the maximum 

stress in the load direction at the crack tip as seen in Eq. (6): 

( )
1/2

2 .max IK =  (6) 

 

Whether the tip radius of the defect is small or 

large, fracture will occur when the stress intensity factor KI 

at the tip reaches the fracture toughness of the material. 

Therefore, by giving a value of 1.2732 mm to the ρ, the 

value of the stress intensity factor in σy is determined. 

In order to determine the stress σy at the tip, it is 

necessary to start the ordinate and abscissa of σy – r from the 

tip of the flaw (Fig. 3). The stress distribution in front of the 

flaw tip is determined by Eq. (7): 
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When the value of KI in Eq. (7) is stated as σy, the 

tensile strength σ0 will occur at a distance of r from the notch 

tip. Since the equivalent of 2πr is πρ, the expression of the 

stress intensity factor depending on the tensile strength and 

ρ is obtained as seen in Eq. (8). 

 

Fig. 3 Stress field coordinate system in front of the hyper-

bolic notch tip 

( ) ( )
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0 1.2732mm .IK   = =  (8) 
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In LEFM, stress intensity factor is stated by Eq. 

(9). The geometric correction factors Y for various test spec-

imens are given in [22]. 

( )
1/2

.I rK Y a =  (9) 

 

Regardless of the crack size, Eq. (8) and (9) will 

give the same result for material toughness. When Eq. (8) 

and (9) are set equal to each other and the ratio σr/σ0 is de-

noted by e-u, the equivalent of the exponential u is found. 

Thus, the exponent u will depend on the crack length a and 

the geometric correction factor Y as seen in Eq. (10): 
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Eqs. (4) and (10) will yield all the critical fracture 

stresses including approximate tensile strength with only 

single fracture test data of any kind of specimen. For the 

clamped-end single-edge cracked tensile and compact-ten-

sion specimens, the geometric factor given in [22] should be 

used as seen in Eq. (11): 
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The σ0 or the σr for all crack lengths can be approx-

imately determined using Eqs. (4) and (10) or (11) depend-

ing on specimen loading condition. 

The same approach can be applied to circular 

holes. The maximum stress that will occur at the edge of a 

hole of radius R in the specimen under the tensile stress will 

have the equality as seen in Eq. (12): 
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The σy is also denoted as the critical fracture stress 

σr multiplied by the stress concentration factor Kt on the 

right-hand side of the Eq. (12). 

The stress concentration factor for a very small 

length of crack propagating from the edge of the hole will 

be as in Eq. (13) [23]: 
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Since the theoretical ρ of 1.2732 mm is the equiv-

alent of 4/π, Eq. (12) and (13) can be linked. As a result of 

this connection, Eq. (14) is reached: 
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If the stress concentration Kt is taken as in Eq. (14) 

and the stress intensity KI is taken as in Eq. (8) and put in 

Eq. (12), σr/σ0 is obtained as in Eq. (15): 
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The factor Y in Eq. (15) is included to consider the 

effect of the specimen edge on the hole edge. The Y is the 

polynomial equation of the central crack specimen [22]. 

The exponent u is found for the circular hole as 

seen in Eq. (16). The ρ in the equation is equal to 1.2732 

mm: 

( ) ( )
1/2 1/2
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 (16) 

 

The σ0 or σr for all circular hole defects can be ap-

proximately determined using Eqs. (4), (15) and (16). 

4. The model verification 

The proposed approach has been applied to 

 0 90 / 45
ns

  Thornel T300 carbon fiber/epoxy laminated 

composite including crack (three-point bending-TPB) and 

central circular hole tensile specimen (Fig. 4). The results of 

them were examined in their studies [24-25]. The σ0, E11, 

E22, and υ12 are 581 MPa, 138 GPa, 11 GPa and 0.35, re-

spectively. The proposed method was compared with the ex-

perimental results. 

  

a b 

Fig. 4  0 90 / 45
ns

 spec: a) TPB: b) circ. hole schem. view 

The first sample is the three-point bending (TPB) 

specimen (Fig. 4, a) [24]. Table 1 is based on the tensile 

strength for the proposed method. When the results are ana-

lysed in Table 1 according to actual ones, it is seen that the 

method has a deviation rate between +3.84% and –3.47% 

range. The related graphical representation is given in 

Fig. 5. 

Table 1  

TPB test results comparison (in MPa) 

a/W Exp. DZM 
IFM 

c0=1.64 mm 

PSC 

d0=0.63 mm 
Eq. (10) and (4) 

0.24 269 269 (Ref.) 267 

0.36 202 198 205 195 196 

0.48 144 140 149 139 139 

0.60 92 92 100 92 92 

0.72 52 54 62 56 54 

In the 140×316 mm2·(2W = 140 mm) specimen 

with a hole with a radius of 5 mm (Fig. 4, b), the radius of 

the hole was kept constant and the width of the specimen 

was changed, as can be seen in the first column of Table 2, 

in its study [25]. 

When the proposed method is used, critical frac-

ture stresses were determined with an error margin of +4.6% 

to –2.9%. The DZM has a deviation range of +1.4% to –

5.3%, and the IFM has the range of +6% to –11.2% as seen 

in Table 2. The graphical representation is given in Fig. 6. 
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Fig. 5 The comparison of actual and predicted rates of TPB 

specimen 

Table 2  

Predicted critical stresses (R = 5 mm circular holes of  

various ratios W/W0 (in MPa) 

W/W0 Exp. DZM IFM c0=1.64 mm Eq. (16) and (4) 

1. 284 288 301 291 

2/3 290 286 294 290 

1/2 285 282 286 288 

1/3 276 268 263 284 

1/4 267 253 247 264 

1/5 237 236 229 248 

1/7 206 195 183 207 

 

Fig. 6 The comparison of actual and predicted rates with  

R = 5 mm hole at various R/W ratios 

5. Conclusions 

In this study, the critical fracture stress values of a 

material containing a crack or a hole were obtained by using 

a stress field function based on a coordinate system starting 

from r = ρ /2 inside the defect in a specimen containing an 

elliptical defect. The stress intensity factor is equal in value 

to the stress value at the defect tip, which will facilitate the 

calculations. Accordingly, this equality was achieved by 

taking the tip radius of the defect as 1.2732 mm. The main 

idea here is that the fracture toughness value is independent 

of the geometry of the defect or the part. When the stress 

intensity factor at the flaw tip reaches the fracture tough-

ness, fracture will occur. Note that Eq.6 is similar to the as-

ymptotic critical distance equation in the Finite Fracture 

Method [18] as seen Eq. (17): 
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.IC
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 
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 =  

 
 (17) 

Although similar equations have been reached 

from different perspectives, this study is different in that 

other data can be determined with only one datum, inde-

pendent of the size of the defect. Another advantage is that 

it is a simple approach. 

The Residual Property Model is an important ap-

proach to finding intermediate values by reducing the vari-

ety of factors affecting the material to a differential equa-

tion. However, with this study, it will be possible to deter-

mine these values with only one datum in terms of Fracture 

Mechanics. 
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G. Saracoglu 

THE MODIFIED RESIDUAL PROPERTY MODEL FOR 

FRACTURE MECHANICS 

S u m m a r y 

In this paper, the application requirement of the 

Residual Property Model based on the decrescent exponen-

tial function is reduced to only one mechanical test datum. 

For this, by using Creager and Paris's elastic stress field 

equation in front of the blunt elliptical hole, the theoretical 

radius was chosen for the tip curvative and the maximum 

stress in the load direction at the tip is ensured to be equal 

the fracture toughness. Thus, the workload of the model is 

reduced by making the u exponent in the e-u function de-

pendent on the geometric correction factor and the crack 

length. It was applied to the laminated composite specimens 

with three-point bending and the specimens including circu-

lar hole, and critical fracture stress values close to actual 

values were achieved. 

Keywords: fracture toughness, fracture stress prediction, 

stress concentration factor, stress intensity factor, the resid-

ual property model. 
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