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1. Introduction 

 

Recently, a new category of composite materials 

known as heterogeneous composite materials has attracted 

interest of many researchers. Heterogeneous composite 

materials are functionally graded materials (FGMs) with 

gradient compositional variation of the constituents from 

one surface of the material to the other which results in 

continuously varying material properties. These materials 

are advanced, heat resisting, erosion and corrosion re-

sistant, and have high fracture toughness. The FGMs con-

cept is applicable to many industrial fields such as aero-

space, nuclear energy, chemical plant, electronics, bio-

materials and so on. 

For a homogeneous hollow annular disk or tube, 

the elastic behavior of this class of structures subjected to 

external pressure is well-known [1]. Fukui and Yamanaka 

[2] used the plane elasticity theory (PET) for the derivation 

of governing equation of a thick-walled FGM tube under 

internal pressure and solved the obtained equation numeri-

cally by means of the Runge-Kutta method. Closed-form 

solutions are obtained by Tutuncu and Ozturk [3] for cy-

lindrical and spherical vessels with variable elastic proper-

ties obeying a simple power law through the wall thickness 

which resulted in simple Euler-Cauchy equations whose 

solutions were readily available. A similar work was also 

published by Horgan and Chan [4] where it was noted that 

increasing the positive exponent of the radial coordinate 

provided a stress shielding effect whereas decreasing it 

created stress amplification. Hongjun et al. [5] and Zhifei 

et al. [6] provided elastic analysis and exact solution for 

stresses in FGM hollow cylinders in the state of plane 

strain with isotropic multi-layers based on Lamé's solution. 

Given the assumption that the material is isotropic with 

constant Poisson’s ratio and exponentially varying 

Young’s modulus through the thickness, Tutuncu [7] ob-

tained power series solutions for stresses and displace-

ments in functionally-graded cylindrical vessels subjected 

to internal pressure alone. Using Airy stress function, Nie 

and Batra [8] are obtained analytical solutions for plane 

strain static deformations of a functionally graded (FG) 

hollow circular cylinder. Zamani Nejad et al. [9] developed 

3-D set of field equations of FGM thick shells of revolu-

tion in curvilinear coordinate system by tensor calculus. 

Ghannad and Zamani Nejad [10] present the general meth-

od of derivation and the analysis of an internally pressur-

ized thick-walled cylinder shell with clamped-clamped 

ends. 

The main objective of this paper is to present a 

complete closed-form solution for pressurized FGM thick-

walled cylindrical shells. The analytical solution is ob-

tained for all roots of Navier equation in plane strain and 

plane stress conditions. 

 

2. Basic formulations of the problem 

 

Consider a thick hollow FGM cylinder with an 

inner radius ri, and an outer radius ro, subjected to internal 

and external pressure Pi and Po, respectively. 

 

 

Fig. 1 Cross-section of thick cylinder 

 

The PET is based on the assumption that the 

straight lines perpendicular to the central axis of the cylin-

der remain unchanged after loading and deformation. Ac-

cording to this theory, the deformations are axisymmetric 

and do not change along the longitudinal cylinder. In other 

words, the radial deformation is dependent only on radius 

(ur (r)). In addition, normal stresses are principal stresses. 

For an inhomogeneous thick hollow cylinder, the 

axisymmetric radial and circumferential stresses σr and σθ 

are dependent on r. They satisfy the following equilibrium 

equation in cylindrical coordinates, 

 
1

0r
r

d

dr r



     (1) 

where the body force has been neglected. 

To obtain the distribution of σr and σθ, they are 

expressed in terms of a single radial displacement compo-

nent ur by the constitutive equations of non-homogenous 
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and isotropic materials 

 r rA B
E r

B A 

 

 

    
    

    
 (2) 

where E is Young’s modulus and given the ending condi-

tions A and B are related to Poisson’s ratio, υ, and 

r
r

r

du

dr

u

r







 





 (3) 

where r  and   are radial strain and circumferential 

strain, respectively. Axial stress in the thick cylindrical 

shells is defined as follows 

 x r       (4) 

here α is dependent on end conditions. 

A case is considered in which the Young’s modu-

lus E has a power-law dependence on the radial coordinate, 

while the Poisson’s ratio υ is a constant value. 

The radial coordinate r is normalized as ir r / r  

The Young’s modulus through the wall thickness is as-

sumed to vary as follows 

   
n

iE r E r  (5) 

here Ei is the Young’s modulus at the inner surface r = ri, 

and n is the inhomogeneity constant determined empirical-

ly. 

Substitution of Eqs. (3) and (5) into Eq. (2), and 

the use of Eq. (1) lead to the Navier equation 

   
2

2

2
1 1 0*r r

r

d u du
r n r n u

drdr
      (6) 

where υ
*
 = B/A and given the ending conditions of the cyl-

inder, it is determined. Substituting   m

ru r r  in Eq. (6), 

the characteristic equation is obtained as follows, 

   2 1 1 0*m n m n      (7) 

The roots of characteristic equation are 

 

 

1 2

2

1

2

4 1

,

*

m n

n n



 


   


  


 (8) 

These roots may be (a) real, (b) double, (c) com-

plex conjugate. 

 

3. Ending conditions of the cylinder 

 

The distribution of stresses and displacement in a 

thick-walled cylinder in the conditions of plane stress, 

plane strain and a cylinder with closed ends will be calcu-

lated. In each of the above-mentioned conditions, the coef-

ficients of A and B are expressed as follows: 

1) plane stress (cylinder with open ends), 

0  0x x,    

2

2

1

1

1

A

B








 



 

 (9) 

2) plane strain (Cylinder with closed ends and 

constrained), 0  0x x,    

  

  

1

1 1 2

1 1 2

A

B



 



 

 
   



  

 (10) 

3) cylinder with closed ends and non-constrained, 

0  0x x,   : 

  

  

2

2 1 1 2

3

2 1 1 2

A

B



 



 

 
   



  

 (11) 

For homogeneous and nonhomogeneous thick cy-

lindrical shells, the (1) and (2) conditions are used. The 

condition (3) is used only for homogeneous thick cylindri-

cal shells. α in terms of different end conditions is as fol-

lows 

0 Planestress

Planestrain

0.5 Closed cylinder

 




 



. (12) 

4. Solution for heterogeneous thick cylinder 

 

Now, Eq. (6) for real, double and complex roots 

will be solved given the cylinder ending conditions. Fol-

lowing that, in each of the conditions, parametric equations 

of radial stress, circumferential stress and radial displace-

ment will be derived. 

 

4.1. Real roots 

 

In this case, 0   and we have, 

1

2

2 2

2 2

n
m

n
m






   





   

 (13) 

and 

 2 4 1*n n     (14) 

 

The solution of Eq. (6) is as follows 
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  1 2
1 2

m m

ru r C r C r   (15) 

Substituting Eq. (15) into Eq. (3) and the use of 

Eq. (2), the radial stress is obtained as 

     1 21 1

1 1 2 2

n m m

r iE r C Am B r C Am B r         (16) 

For a cylinder subjected to internal and external 

pressure, constants C1 and C2 are determined using bound-

ary conditions as 

1r ir

r or k

P

P









  


  

 (17) 

Thus 

  
  

  
  

2 1

2 1

1 2

2 1

1 1

1

1

1 1

2

2

nm m

i o i

m m

i

nm m

i o i

m m

i

k P k P r
C

E Am B k k

k P k P r
C

E Am B k k

 

 


 
  


 


  


 (18) 

where 

o

i

r
k

r
  (19) 

Using Eqs. (18), (2) and (15), the radial stress, 

circumferential stress and radial displacement are obtained 

that follows 

 
 

     1 22 1

1 2

1

1 1

r

n

m mm mn n

i o i om m

r
k P k P r k P k P r

k k




     
 

 (20) 

 
 

     1 22 1

1 2

1

1 11 2

1 2

n

m mm mn n

i o i om m

r A Bm A Bm
k P k P r k P k P r

Am B Am Bk k






   
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   
 (21) 

 
 

     1 22 1

1 2

1 1

1 2

1 1m mm mn ni
r i o i om m

i

r
u k P k P r k P k P r

Am B Am BE k k

  
    

   
 (22) 

It could be seen that radial stress does not depend 

on A and B. Rather, it depends on υ
*
 and n. Circumferential 

stress and radial displacement are dependent on A and B. 

The value of effective stress based on von Mises 

failure theory is as follows 

     
0.5

2 2 21

2
eff r x x r             

 
 (23) 

With Substituting Eq. (4) into Eq. (23), the 

Eq. (23) could be rewritten in terms of α as follows 

  

 

0.5
2 2 2

2

1

1 2 2

r

eff

r





   


   

    
 
 
    

 (24) 

Now, given the ending conditions of the cylinder, 

Eqs. (21) and (22) are written as follows: 

 

a) plane stress 

 
 

     1 22 1
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1
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n
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 (25) 

 
 
 

     1 22 1

1 2

2

1 1
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1 1 1i m mm mn n

r i o i om m

i

r
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m mE k k



 

 
  

    
   

 (26) 

  
0.5

2 2
eff r r         (27) 

b) plane strain 

 
 

 
 

 
  

 

 
  

1 2

1

1 22 11 21 1

1 2

1 1
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n

m m

m mm mn n

i o i o
k k

r m m
k P k P r k P k P r

m m



   

   



 




    
   

     
 (28) 

 
  

   
  

 
  1 22 1
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1 1
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1 1 2 1 1
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i

r

i

m mm mn n
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r
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E
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 

   

 


  
   

      
 (29) 

     
0.5

2 2 2 21 1 2 2eff r r                
 

 (30) 
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In reference [3], radial and circumferential stress-

es are obtained in plane strain and 0   conditions. The 

equation of radial stress has been obtained correctly while 

the equation of circumferential stress has been derived 

incorrectly. To correct Eq. (10),  
1

a R


 must be substi-

tuted by  
1

rR a
 

, based on the notations given in the 

above-mentioned paper. The corrected equation appears at 

the present paper. 

4.2. Double roots 

 

In Eq. (8), if 0  , then the equation will have 

double roots. 

1 2
2

n
m m m     (31) 

In this case, the solution of Eq. (6) is as follows 

   1 2

m

ru r C C lnr r   (32) 

Substituting Eq. (32) into Eq. (3) and the use of Eq. (2), the radial stress is obtained as 

        1

1 2

n m

r iE r C Am B C A Am B lnr r         (33) 

Applying the loading conditions (Eq. (17)), the constants C1 and C2 are obtained 

 
   

 

1
1

1 2 1

1
1

2

m n
m

i o
i

m n
i i o o i

m
m ni

i o

i

A P k Pr
C

E Am B lnk Am B P ln r k P ln r

r
C P k P

E Am B lnk

 


 


 

         
        


     

 (34) 

C1 and C2 are substituted in Eq. (32) and using Eqs. (3) and (2). Thus, 

 
 

1

1

r

m n

m n

i o

r k
P ln k P lnr

lnk r


 

  
   

 
 (35) 

 
 

 

1 2 2
1 1

2

m n

m n m n

i o i o
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r B A A Bm k
P k P P ln k P lnr

Am B rAm B




 

   


    
           

 (36) 

 
 

 
1 1

m

i

r

i

m n m n

i o i o

r
u

E ln k

r A k
P k P P ln k P lnr
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   
 

  
          

 (37) 

Just as the procedure above, it could be seen that radial stress does not depend on A and B. Rather, it depends on 

υ
*
 and n. Circumferential stress and radial displacement are dependent on A and B. Now, given the ending conditions of 

the cylinder, Eqs. (36) and (37) are written as follows: 

a) plane stress 

 
 
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m n

m n m n

i o i o
ln k

r m k
P k P P ln k P lnr

m rm



 



 

   
 

    
           

 (38) 
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u

E ln k
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

 
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 (39) 

b) plane strain 
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
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 (40) 

 
    
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1 1 2 1
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i
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u
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  

  
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 
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 (41) 

4.3. Complex roots 

 

In Eq. (8), if 0  , then the equation will have 

complex roots. 
 
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2

,

, , 4 1
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m z iy m z iy
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
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    

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In this case, the solution of Eq. (6) is as follows 

     1 2

z

ru r C cos y ln r C sin y ln r r     (43) 

Substituting Eq. (43) into Eq. (3) and the use of 

Eq. (2), the radial stress is obtained as 

                1

1 2

n z

r iE r C Az B cos ylnr Ay sin y lnr C Az B sin y lnr Aycos y lnr r              (44) 

Applying the loading conditions (Eq. (17)), the constants C1 and C2 are obtained. 

 
          

1
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1

z
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
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where 
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 (47) 

C1 and C2 are substituted in Eq. (43) and using Eqs. (3) and (2). Thus, 
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 (49) 
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And also as before, it could be seen that radial stress does not depend on A and B. Rather, it depends on υ
*
 and n. 

Circumferential stress and radial displacement are dependent on A and B. Now, given the ending conditions of the cylin-

der, Eqs. (49) and (50) are written as follows: 

a) plane stress 
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 (52) 

where 
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b) plane strain 
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 (55) 
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where 

   
2 2

1 1D z y             . (56) 

5. Solution for thick homogenous and isotropic cylinders 

 

In thick homogenous and isotropic cylinders, 

Young’s modulus and Poisson’s ratio are both constant. By 

substituting n = 0 into Eq. (5), homogenous materials are 

obtained. 

.E const  (57) 

Using Eqs. (1) to (3) and (57), the Navier equa-

tion in terms of the displacement is 

2 0r r rr u ru u     (58) 

The solution of Eq. (58) is as follows 

  1 2
1 2

m m

ru r C r C r   (59) 

The characteristic equation is obtained as follows 

2 1 0m    (60) 

It could be observed that the roots of characteris-

tic equation are real (roots are in set of 0  ). 
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m
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  
 (61) 

Substituting 1 1m    and 2 1m    in Eq. (59) 
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Boundary conditions for stresses given by 
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With substituting the boundary conditions, the 

constants of C1 and C2 become 
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C1 and C2 are substituted in Eq. (62) and using 

Eqs. (3) and (2). Thus, 
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It could be seen that r  and   are independent 

of A, B and E. 

That is radial and circumferential stresses in ho-

mogeneous and isotropic thick-walled cylinders subjected 

to constant pressure and same dimensions with different 

values of Young’s modulus are independent of the ending 

conditions of the cylinder. 

Radial displacement depends on A, B and E. Axial 

stress and radial displacement (Eq. (67)) depend on ending 

condition as follows: 

a) plane stress 
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b) plane strain 
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c) cylinder with closed ends 
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H H H

eff r     . (76) 

6. Results and discussion 

 

For a case study and investigation of the graphs 

obtained from the numerical results, consider a thick-

walled cylinder with the internal radius of ri = 40 mm, the 

outer radius of ro = 60 mm and length of L = 800 mm. The 

Young’s modulus, Ei at internal radius has the value of 

200 GPa. It is also assumed that the Poisson’s ratio, υ , has 

a constant value of 0.3. The applied internal pressure 

and/or external pressure are 80 MPa. 

 

6.1. Homogeneous cylinder 

 

Radial and circumferential stresses in homogene-
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ous and isotropic cylinders are independent on the mechan-

ical properties and ending conditions of cylinders. Axial 

stress is independent on mechanical property while it is 

dependent on ending conditions of the cylinder. Radial 

displacement is dependent on both of them (mechanical 

properties and ending conditions). 

 

 

Fig. 2 Distribution of radial stress, Pi = 80 MPa (homoge-

neous cylinder) 

 

 

Fig. 3 Distribution of circumferential stress, Pi = 80 MPa 

(homogeneous cylinder) 

 

Figs. 2 to 6 are plotted according to the internal 

pressure Pi = 80 MPa. Distribution of compressive radial 

stress based on Eq. (65), distribution of tensile circumfer-

ential stress based on Eq. (66), distribution of uniform axi-

al stress based on Eqs. (68), (71) and (74), distribution of 

effective stress based on Eqs. (70), (73) and (76) are shown 

in Figs. 2 to 6, respectively. 

 

 

Fig. 4 Distribution of axial stress, Pi = 80 MPa (homoge-

neous cylinder) 

 

Distribution of radial displacement based on 

Eqs. (69), (72) and (75) for the homogeneous cylinder is 

shown in Fig. 5. Figures show that the value of radial dis-

placement is the highest for the plane stress condition and 

the cylinder with closed ends it is the lowest. For axial 

stress, the value of radial displacement is the lowest for the 

plane stress condition and for the cylinder with closed ends 

it is the highest. 
 

 

Fig. 5 Distribution of radial displacement, Pi = 80 MPa 

(homogeneous cylinder) 
 

 

Fig. 6 Distribution of radial displacement, Pi = 80 MPa 

(homogeneous cylinder) 
 

Distribution of von Mises effective stress, for 

plane strain, plane stress conditions and for the cylinder 

with closed ends is shown in Fig. 6. It is observed that the 

values of von Mises effective stress for cylinder with 

closed ends and for plane strain condition are close togeth-

er. In addition, the value of von Mises effective stress, is 

the lowest for cylinder with closed ends and for plane 

stress condition it is the highest. 
 

6.2. Heterogeneous cylinder 
 

In nonhomogeneous and isotropic cylinders, radi-

al and circumferential stresses are not independent on me-

chanical properties and ending conditions, rather, due to n 

they are dependent on mechanical properties and due to 

υ
*
 = B/A are dependent on ending conditions. Module of 

elasticity through the wall thickness is assumed to vary as 

   
n

iE r E r  in which the range 2 2n    is used in 

the present study. In Fig. 7, for different values of n 

module of elasticity along the radial direction is plotted. 
 

 

Fig. 7 Distribution of Young’s modulus 
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The value of υ
*
 based on ending conditions of the 

cylinder is as follows: 

0 3 Plane stress

0 4286 Plane strain

*
.

.



 


 (77) 

Distribution of stresses and displacement in dif-

ferent ending conditions do not have significant differ-

ences, therefore, the figures are plotted for plane strain 

condition. 

 

6.2.1. Internal pressure 

 

In this section, the nonhomogeneous cylinder is 

only under internal pressure, Pi = 80 MPa. 

 

 

Fig. 8 Distribution of radial stress, Pi = 80 MPa (heteroge-

neous cylinder) 

 

 

Fig. 9 Distribution of circumferential stress, Pi = 80 MPa 

(heterogeneous cylinder) 

 

Fig. 8 shows the distribution of the compressive 

radial stress along the radius. The value of stress in inner 

and outer layers is the same, and for both layers H

r r/   is 

1. Along the radius, for n < 0, the radial stress decreases 

whereas for n > 0 the radial stress increases. The decrease 

and increase of the stress depend on |n|. Fig. 9 shows the 

distribution of the circumferential stress along the radius. 

The value of stress in inner and outer layers is not the 

same, and for both layers H

r /    is not 1. The value of 

the circumferential stress is more than the homogeneous 

material for n < 0in the inner half of the wall thickness 

while it is less than that in the outer half. This will be re-

verse, where n > 0. For n < 0, the circumferential stress 

decreases as the radius increases whereas for n > 0 the cir-

cumferential stress along the radius increases. The curve 

associated with n = 1 shows that the variation of circum-

ferential stress along the radial direction is minor and is 

almost constant across the radius which can be an ad-

vantage in terms of stress control. It is observed that in the 

range of the inner layer of the cylinder, the graphs con-

verge and behave similarly. Fig. 10 shows the distribution 

of the radial displacement of the cylinder along the radius. 
H

r ru / u  is not 1 at any point. For n < 0 the radial displace-

ment of the cylinder is more than where the material is 

homogeneous and it is the reverse for n > 0. Yet this ratio 

remains almost constant along the wall thickness. 

Distribution of effective stress based on Eq. (30) 

is shown in Fig. 11. It could be noted from this figure that 

at the same position, almost for (r/ri) < 1.2, there is a de-

crease in the value of the effective stress as n increases, 

whereas for (r/ri) > 1.2 this situation is reversed. 
 

 

Fig. 10 Distribution of radial displacement, Pi = 80 MPa 

(heterogeneous cylinder) 
 

 

Fig. 11 Distribution of effective stress, Pi = 80 MPa (hete-

rogeneous cylinder) 
 

6.2.2. External pressure 
 

In this section, the nonhomogeneous cylinder is 

only under external pressure, Po = 80 MPa. The distribu-

tion of the compressive radial stress of the cylinder along 

the radius is shown in Fig. 12. The value of the stress in the 

inner and outer layers of the cylinder is the same and 

1H

r r/   . In the cylinder wall the radial stress increases 

for n < 0 and decreases for n > 0. The magnitude of de-

crease  or increase of the stress depends on |n|. 
 

 

Fig. 12 Distribution of radial stress, Po = 80 MPa (hetero-

geneous cylinder) 
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Fig. 13 Distribution of circumferential stress, Po = 80 MPa 

(heterogeneous cylinder) 

 

The distribution of the compressive circumferen-

tial stress of the cylinder along the radius is shown in 

Fig. 13. The value of the stress is not the same in the inner 

and outer layer and H/    does not equal 1. 

The value of the circumferential stress is more 

than the homogeneous material for n < 0 in the inner half 

of the wall thickness while it is less than that in the outer 

half. This will be reverse, where n > 0. The circumferential 

stress is almost constant along the radius for n = 1 It is 

observed that in the range of the inner layer of the cylinder, 

the graphs converge and behave similarly. 

 

 

Fig. 14 Distribution of radial displacement, Po = 80 MPa 

(heterogeneous cylinder) 

 

Fig. 14 shows the distribution of the radial dis-

placement of the cylinder along the wall thickness. H

r ru / u  

does not equal 1 at any point. The value of the radial dis-

placement is more than the homogeneous material for 

n < 0 while it is less than that for n > 0. Yet this ratio re-

mains almost constant along the wall thickness. 

 

6.2.3. Internal and external pressure 

 

The nonhomogeneous cylinder is subjected to the 

internal and external pressures, Pi = Po = 80 MPa. 

 

 

Fig. 15 Distribution of radial stress, Pi = Po = 80 MPa (he-

terogeneous cylinder) 

 

Fig. 16 Distribution of circumferential stress, 

Pi = Po = 80 MPa (heterogeneous cylinder) 

 

The distribution of the compressive radial stress 

of the cylinder along the wall thickness is shown in 

Fig. 15. 

The value of the radial stress in the inner and out-

er layers of the cylinder is the same and 1H

r r/   . In 

the cylinder wall, the radial stress is more than the radial 

stress of the homogeneous cylinder for n < 0 and is the 

reverse for n > 0. In the homogeneous cylinder, radial 

stress is almost constant along the wall thickness. 

The distribution of the compressive circumferen-

tial stress of the cylinder along the wall thickness is shown 

in Fig. 16. The value of the circumferential stress is not the 

same in the inner and outer layers of the cylinder and 
H/    does not equal 1. The value of the circumferential 

stress is more than the homogeneous material for n < 0 in 

the inner half of the wall thickness while it is less than that 

in the outer half. This will be reverse, where n > 0. The 

circumferential stress is almost constant along the radius 

for n = 0. It is observed that in the range of the inner layer 

of the cylinder, the graphs converge and behave similarly. 

Fig. 17 shows the distribution of the radial dis-

placement of the cylinder along the wall thickness. H

r ru / u  

is not 1 at any point. In the cylinder wall, the radial dis-

placement  is  more  than   the  radial  displacement  of the 

 

 

Fig. 17 Distribution of radial displacement, Pi = Po = 

= 80 MPa (heterogeneous cylinder) 

 

Table 

Comparison of values of effective stress resulting from 

PET and FEM in the middle layer 
 

Pressure, MPa  n =2 n =1 n = 0 n =+1 n =+2 

Pi = 80 
PET 145.7 154.4 161.7 167.1 170.6 

FEM 143.2 156.2 161.7 165.7 167.6 

Po = 80 
PET 151.0 161.3 169.7 175.6 179.5 

FEM 151.2 161.4 169.7 175.8 179.5 

Pi = Po =  

= 80 

PET 32.08 32.04 32 31.90 31.67 

FEM 32.09 32.04 32 31.90 31.69 
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homogeneous cylinder for n < 0 and is the reverse for 

n > 0. In the homogeneous cylinder, radial displacement is 

almost constant along the wall thickness. 

In Table, the values of effective stress resulting 

from analysis of cylinder through PET and FEM for plane 

strain condition under internal pressure and/or external 

pressure in the middle layer are given. 

 

7. Conclusions 

 

It can be concluded that for both positive and 

negative values of n, the circumferential stress in the non-

homogeneous cylinder decreases in one half and increases 

in the other. In the nonhomogeneous cylinder compared to 

the homogeneous one, with no external pressure, the radial 

stress increases and the radial displacement decreases for 

positive n. For negative n both radial stress and radial dis-

placement increase in the cylinders subjected to external 

pressure. In contrary, the radial stress and radial displace-

ment decrease for positive n. Decrease or increase of the 

radial stress and radial displacement depend on |n|. Accord-

ing to the requirements for decreasing of the displacement 

and stress in the nonhomogeneous cylinders, the positive 

or negative values of n could be applied.  
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AUKŠTO SLĖGIO STORASIENIO KEVALO 

PAGAMINTO IŠ NEVIENALYTĖS AUKŠTOS 

KOKYBĖS MEDŽIAGOS PILNAS TAMPRUSIS 

SPRENDIMAS 

R e z i u m ė 

Laikant, kad tamprumo modulis radialine krypti-

mi kinta netiesiškai, o Puasono koeficientas yra pastovus, 

remiantis plokštumos tamprumo teorija sudarytos asimetri-

nio storasienio cilindro kevalo, pagaminto iš nevienalytės 

aukštos kokybės medžiagos ir apkrauto vidiniu bei išoriniu 

slėgiu, svarbiausios bendrosios lygtys. Sudarytos Navje 

lygtys realioms, sudvejintoms ir kompleksinėms šaknims 

analitiškai skaičiuoti plokščiosios deformacijos ir plokščių-

jų įtempių atvejais. Baigtinių elementų metodu apskaičiuo-

ta radialinių apskritiminių įtempių ir radialinių poslinkių 

pasiskirstymas priklausomai nuo nevienalytiškumo kons-

tantų yra palygintas su vienalytės medžiagos įtempimų ir 

radialinių poslinkių pasiskirstymu, o rezultatai pavaizduoti 

grafiškai. 

 

 

M. Ghannad, M. Z. Nejad 

 

COMPLETE ELASTIC SOLUTION OF PRESSURIZED 

THICK CYLINDRICAL SHELLS MADE OF 

HETEROGENEOUS FUNCTIONALLY GRADED 

MATERIALS 

 

S u m m a r y 

 

Assuming  the Young’s modulus vary nonlinearly 

in the radial direction, and the Poisson’s ratio is constant, 

on the basis of plane elasticity theory (PET), the governing 

equations for axisymmetric thick cylindrical shells made of 

nonhomogeneous functionally graded materials (FGMs) 

subjected to internal and external pressure in general case 

are derived. The analytical solution of the Navier equations 

for real, double and complex roots and plane strain, plane 

stress and the cylinder with closed ends conditions are ob-

tained. The radial stress, circumferential stress and radial 

displacement distributions depending on an inhomogeneity 

constant are compared with those of the homogeneous 

case, the solution using finite element method (FEM) and 

presented in the form of graphs. 

 

Keywords: elastic solution, thick cylindrical shell, hetero-

geneous functionally graded materials. 
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