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1. Introduction 

Due to the advantage of no friction, no need of 

lubrication and long service life, magnetic bearing allows 

the rotor to run at a high speed. It has a good application 

prospect in transportation, industry and other fields [1, 2]. 

Active magnetic bearing can improve rotor stability via the 

feedback control, however, the five-degree-of-freedom (5-

DOF) magnetic bearing has a small coupling effect be-

tween the axial and radial directions which can be ignored, 

so the axial direction can be controlled separately. It 

should be emphasized that in the radial direction, the four 

degrees of freedom of magnetic bearing rotor have nonlin-

ear and strong coupling, and it should be considered in the 

control [3]. For this kind of coupling system, the method 

adopted by Yang L. et al. is to force decoupling by retain-

ing the diagonal elements of the coupling matrix, and then 

design decentralized independent controller. The decou-

pling control method will cause a certain error in the sys-

tem model, which ignored the gyroscopic effect produced 

by the high-speed of rotor [4, 5]. Therefore, these control 

methods are often difficult to meet practical needs. Yi J. et 

al. adopted the feed-forward decoupling internal model 

control method to achieve the radial deflection decoupling 

control [6, 7]. Zheng Shiqiang et al. adopted cross-

feedback nutation phase margin tracking compensation 

control method to achieve nutation modal stability control 

in the full speed range [8]. All the decoupling methods 

mentioned above have high requirements on the accuracy 

of the mathematical model of the control object. When the 

system control process contains many non-linear and time-

varying variables, it is difficult to meet the control re-

quirements. Fang J. et al. used the inverse system solution 

method to achieve the decoupling of the system, but the 

method requires the equation to be invertible [9]. The intel-

ligent decoupling method has its advantages in solving 

system nonlinear problems, such as, neural network sys-

tems have self-learning and adaptive capabilities, but it 

needs to be combined with other control method to satisfy 

rotor stability control [10]. Moreover, this intelligent de-

coupling method requires pre-training of samples, which 

requires a large amount of calculation. 

For the control of the magnetic bearing rotor sys-

tem, the commonly used control methods include LQR 

control, robust control, adaptive control, etc. [11, 12]. Alt-

hough the robust control considering the model disturbance 

has a certain tolerance to the model perturbation, the con-

trol method also needs to reasonably choose the sensitivity 

weighting function [13]. Neural network control requires a 

lot of training of parameters, which puts forward high re-

quirements for real-time performance and hardware [14]. 

Liu Yu et al. used the H  method to control the magnetic 

levitation spindle, However, only the single-degree-of-

freedom model of magnetic bearing is analysed, and the 

position coupling of the rotor is not taken into considera-

tion [15]. Based on the multi-degree-of-freedom magnetic 

bearing model, Noshadi et al. used the fuzzy PID algorithm 

to control it，but the inertial coupling problem is also not 

considered [16]. Among the various control methods men-

tioned above, some did not consider the coupling problem 

between the rotor degrees of freedom, or some are forced 

decoupling of the system, or assumed that there was no 

inertial coupling in the structure, etc., which would lead to 

deviations in the control. 

What’s more, the 5-DOF magnetic bearing is non-

linear and its parameters are difficult to accurately estimate 

and predict, thereupon, it is necessary to adopt a robust 

control method for the 5-DOF magnetic bearing rotor sys-

tem. Sliding mode control has the advantages of fast re-

sponse, insensitive to parameter changes, and easy control 

to achieve [1]. It can achieve parameter uncertainty or 

time-varying systems control; therefore, it is used in this 

paper. 

This paper proposes a linear output feedback 

method for decoupling the active magnetic bearing system 

and designs a controller based on sliding mode control for 

controlling a 5-DOF magnetic bearing. The controller as-

sures the control stability and robustness to the variations 

in the system parameters and disturbances due to the exter-

nal disturbance of the magnetic bearing. According to the 

dynamic characteristics of the magnetic bearing, the 5-

DOF mathematical model of the magnetic bearing control 

system is developed; the coupling problem between the 

degrees of freedom is analyzed; and the linear output feed-

back method is applied to decouple the system. Finally, the 

sliding mode controller is designed, and the control per-

formance of other controllers after decoupling the system 

is compared.  

The organization of the paper is as follows: a 

magnetic bearing dynamic model is presented in section a 

II; and linear output feedback is used to decouple the mag-

netic bearing model in section III; Fuzzy PD controller and 

Sliding mode variable structure controller are designed in 

section IV. Two representative simulation results are dis-

cussed in section V. The last section concludes this paper. 

2. AMB-Rotor system dynamic model 

2.1. Radial active magnetic bearing model 

The basic principle of the active magnetic bearing 

control system in one degree of freedom is shown in Fig. 1. 

Active magnetic bearings generate electromagnetic force f, 

by applying current to make the rotor levitate to the desired 

position. In a typical stable active magnetic bearing model, 

the rotor is levitated at its equilibrium point ( 0 0,i x ), 0x is 
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at the center of two magnets and 0i  is the corresponding 

bias current of winding. As is usual in AMB systems, the 

radial electromagnetic bearing is driven in a differential 

mode. One electromagnet is driven by the sum of the bias 

current and control current 0 + ji i , the other one is driven 

by their difference 0 ji i− . Once the rotor deviates from the 

equilibrium position
0x  by disturbance, the distance be-

tween the rotor and the desired position is detected by the 

position sensor, and then the controller obtains the infor-

mation and outputs proper voltages to the power amplifi-

ers, which in turn apply currents to the electromagnets. The 

electromagnets then generate magnetic forces to balance 

the rotor to the desired position. 

Controller

-

Electromagnet

0 ji i+

0 ji i−

Power 

amplifier

x

0x x fm

Sensor

Signal 

Processing  

Fig. 1 Working principal diagram of active magnetic bear-

ing system 

 

It is assumed that the leakage magnetic flux, eddy 

current loss, and edge effect of the magnetic flux are not 

considered. The electromagnetic force generated by the 

active magnetic bearing in radial direction can be ex-

pressed as: 
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where:
2

0 0

1
;
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K n S= 0  is the vacuum permeability; n is 

the number of the coil turns on the magnetic actuator; 0S  

is the cross-sectional area of magnetic pole; x is the rotor 

position detected by the sensor. It can be seen from Eq. (1) 

that as the current i of the electromagnetic actuators in-

creases, the electromagnetic force obtained by the rotor 

increases; as the gap x between the rotor and the electro-

magnet increases, the electromagnetic force obtained by 

the rotor decreases. 

For the U-shaped magnetic pole structure in Fig. 1, 

the force f represents the difference of forces between both 

magnets, which affect the rotor with an angle α. Consider-

ing the effect, there is: 
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Since the AMB system is driven in a differential 

mode, one magnet is driven by current 0 + ji i , the other one 

driven by the difference 0 ji i− , as shown in Fig. 1, so the 

electromagnetic coil can generate positive and negative 

forces on the rotor. In Eq. (2), i is replaced by 0 + ji i and 

0 ji i− , similarly, the air gap x is replaced by 0 jx x−  and 

0 jx x+ ,so the electromagnetic force can be expressed as: 
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where: ,ji jx  are the control current and rotor displace-

ment at the j-th degree of freedom, respectively, and 0x  is 

the given air gaps. It can be seen from the Eq. (3) that the 

electromagnetic force of each degree of freedom is squared 

with the ratio of the current to the air gap. The force of the 

two counteracting magnets at an operating point can be 

deduced into the linear form by Taylor series expansion: 
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are called current force stiffness coefficient and displace-

ment force stiffness coefficient on the j -th degree of free-

dom, respectively. 

2.2. Rotor system model 

The force of the magnetic bearing rotor is shown 

in Fig. 2, the rigid rotor is suspended by two radial magnet-

ic bearings and one axial magnetic bearing. The position 

sensor and the magnetic actuator coil are integrated on a 

plane, which simplifies the position coupling of the sensor. 

As mentioned above, the axial and radial degrees of free-

dom of rigid rotor systems have only small couplings; axial 

motion is considered as a single degree of freedom in the 

magnetic bearing-rotor system. So, the axial and radial 

motions of the rotor can be analysed and controlled sepa-

rately.  

It is assumed that the electromagnetic force uni-

formly distributed on the rotor is a concentrated force, and 

its direction is consistent with the central axis of the rotor, 

and there is no resultant moment. 

Since the gravity of the rotor is much smaller than 

the electromagnetic force, the influence of the rotor's gravi-

ty is ignored [13]. It is assumed that the rotor is rigid and 

symmetric, that is, the moments of inertia on the x, y axis 

are equal. 

la

C

lb

                                                                               

Sensor-a

Fxa

xa

ya

Bearing-a

Fya

Z

yc

Y

X xc

Fz

wƟy

Ɵx

xb

Fxb

Bearing-b

Fyb
yb

Sensor-b

 

Fig. 2 Structure and force analysis of magnetic suspension 

rotor 

The parameter values of magnetic levitation are 

shown in Table 1 [17]. 
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Table 1 

System variables and parameter values 

Parameters Symbol Value 

Mass of rotor, kg m 2.8 

Rotary of inertia of axis X, kg/m2
 

Jx 0.0214 

Rotary of inertia of axis Y, kg/m2 Jy 0.0214 

Rotary of inertia of axis Z, kg/m2
 

Jz 7.646×10-4 

Distance from "a" to mass center, m la 0.1217 

Distance from "b" to mass center, m lb 0.13383 

Radial displacement stiffness, N/m Kxr -3.2368×105 

Axial displacement stiffness, N/m Kxz -6.2359×106 

Radial current stiffness, N/A Kir 43.7931 

Axial current stiffness, N/A Kiz 748.3099 

 

According to Newton’s second law, dynamic 

equations of the rotor can be expressed as follows: 
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where: m is the rotor mass; Jx and Jy are the rotary of iner-

tia of X, Y axis, and Jz is the rotary of inertia of Z axis; Fuν 

represents the force of the rotor at the supporting point of ν 

and the direction of the axis u, (ν = a, b; u = x, y); Fzc is 

the force of the rotor in the Z-axis direction; xc, yc and zc 

are the displacement of the rotor in the X-axis, Y-axis, and 

Z-axis directions at the center of mass, respectively; θx and 

θy are the rotation angles of the rotor around the X-axis and 

Y-axis at the center of mass, respectively; la and lb are the 

distances between the position sensors and the center of 

mass; ω is the rotor speed.  

Since the sensor position is in the plane a, b, the 

displacement parameters that can be obtained are xa, xb, ya 

and yb respectively. So, xc, yc and θx, θy can be replaced by 

xa, xb, ya and yb, and Eq. (6) can be expressed according to 

the geometric relationship: 
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According to Eq. (4), the electromagnetic force 

Fxa, Fxb, Fya, Fyb, Fz can be expressed as: 

 

 .

xa xr a ir xa

xb xr b ir xb

ya xr a ir ya

yb xr b ir yb

z xz c iz zc

F K x K i

F K x K i

F K y K i

F K y K i

F K z K i

 =  + 


=  + 


=  + 


=  + 
 =  + 

 (7) 

 

Describe Eq. (5) in the form of a state space equa-

tion as: 
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3. Linear output feedback decoupling of magnetic bear-

ing rotor 

 

The state space Eq. (8) can be expressed in anoth-

er form of differential Eq. (9). It can be seen that, except 

for the degrees of freedom in the Z-axis direction, the 

equations form in the remaining four degrees of freedom 
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are basically the similar. From the analysis of coupling 

relationship, xa and xb exist not only in the differential term 

of the second derivative of xa, but also in the second differ-

ential term of xb, which is also called inertial coupling. 
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Therefore, there is a coupling relationship be-

tween xa and xb, which is related to the structure of the ro-

tor itself. The coupling relationship between ya and yb is 

similar. In addition to the inertial coupling relationship 

between the degrees of freedom on the x, y axis, there is 

also a gyroscopic effect coupling between the radial four 

degrees of freedom of the axis because of the coefficient 

term ω contained on the axis x, y which is related to the 

rotor speed. According to related research [14], when the 

rotational speed of the rotor is below 60000 r/min, com-

pared with inertial coupling, the gyroscopic coupling has 

little influence on the system and can be ignored. 

Assuming that the rotor rotational speed is lower 

than 60000r/min in the paper, so the gyroscopic coupling 

between the axis x, y of the system can be ignored. There-

fore, there is only inertial coupling between the two de-

grees of freedom in x, y direction of rotor. Only by decou-

pling it can it be regarded as independent system and then 

it can be controlled independently. Since the Z-axis system 

is relatively independent, it can be controlled separately. 

Then the paper only focuses on the decoupling control of 

the x, y axis. In the following, a coupling system composed 

of two degrees of freedom on the x-axis is taken as an ex-

ample for study, and the solution for the y -axis is similar. 

The x-degree-of-freedom system is a two-input two-output 

system, and the system model is described as follows: 
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As long as Eq. (10) is decoupled, the system will 

become two independent subsystems. In general, the state 

space equation of a system can be decoupled under certain 

conditions by selecting an appropriate feedback matrix. 

For the system involved in this article, the system output is 

the displacement of the rotor, which can be directly meas-

ured by the position sensor. In this way, the output variable 

can be measured, which greatly facilitates the design of the 

controller, so the output feedback decoupling is adopted. 

The principle of linear output feedback decoupling is 

shown in Fig. 3. 

r

F

u y

P
s s s s s

s s s

X A X B U

Y C X

= +

=

 

Fig. 3 Linear output feedback decoupling principle 

 

From Fig. 3, the output feedback law is: 

 

  ,u F y P r= −  +   

 

(11) 

 

where: F is the feedback matrix; P is the compensation 

matrix. So, the corresponding closed-loop state equation is: 

 

( ) .s s s s s sX A B FC X B P r= − +   

 

(12) 

 

Linear output feedback decoupling is the required 

constant decoupling matrix pair ( , )F P , making the ( )H s  

matrix a diagonally rational matrix. 

 
1( ) ( ) .s s s s sH s C sI A B FC B P−= − +  (13) 
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If a suitable matrix F, P can be obtained by adopt-

ing a certain method, the closed-loop transfer function ma-

trix H(s) can be made into a non-singular diagonal matrix, 

that is, 2 independent subsystems, so as to achieve the de-

coupling between the various degrees of freedom of rotor. 

Output feedback decoupling can be obtained by 

generalizing the state feedback decoupling, so the design 

of the state feedback decoupling can be performed firstly. 

According to the well-known Morgan's theorem, the exist-

ence of a linear output feedback matrix pair (K, P) makes 

the closed-loop system decoupling condition is as follow 
*det( ) 0.sB  *

sB  is called the decoupling matrix, which 

plays an important role in decoupling calculations. It is 

defined as 

1
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where T

ic  is the i-th row of 

matrix Cs; di is called the decoupling index, which is an 

important indicator of the state of each subsystem. It is 

defined as follows: 
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i s s

min k c A B k n
d

n k c A B

  = −
= 

− =

 (14) 

 

If *det( ) 0,sB  , it is a system without inherent 

coupling. Then the closed-loop system can be decoupled 

by state feedback. 

Substitute the system parameters into Eq. (14) and 

calculate as d1 = 1, d2 = 1

 

and *
48.91860  -18.6947

= .
-18.6947   56.043

sB
 
 
   

It can be seen that 
*det( ) 0sB  , therefore, there 

exists a linear output feedback matrix pair (K, P) to 

achieve the decoupling of the system.  The matrix K, P can 

be obtained by the following equation: 

 

( ) ( )

( )

1
*

0

1
*

0

*
,

k

s s k k s s

s

K B C M C A

P B


−

=

−

 = +

 = 



 (15) 

 

where: { },imax d = 1 2{ , , , },k k k kmM diag m m m= 0  can 

choose any diagonal matrix, in order to simplify the calcu-

lation, let it be a unit matrix. The coefficient of the diago-

nal matrix kM  determines the pole configuration of the 

closed-loop system. To reduce the amount of calculation, 

M0 and M1 are all taken as zero matrices, that is, all poles 

are configured as zero poles. 

Substituting the relevant data to calculate, the ma-

trices K and P obtained respectively are 

 0.0234  0.0077
= ,

0.0077  0.0202
P

 
 
 

7.9994 3    -0.0107      0   0
= .

 -0.0689    7.9996 3     0   0

e
K

e

 
 
   

Linear output feedback is a generalized form of 

linear state feedback, according to Eq. (11) u K x= −  +  

.sP r FC x P r F y P r+  = − +  = −  + 
 
So: 

 

,sK FC=  (16) 

 

where: r is the 2-dimensional vector of the desired input. 

For rank rank[ ] 2.s

s

K
C

C

 
= = 

 
 

Therefore, the matrix F exists, and the system 

can be decoupled by linear output feedback.

 

From Eq. 

(16), the value of the feedback matrix F can be obtained  

as 
7.9994 3   -0.0107

= .
 -0.0689   7.9996 3

e
F

e

 
 
 

 

According to the system state equation given by 

Eq. (10) and the calculated matrix F and P values, the 

closed-loop transfer function of the system can be calculat-

ed as: 

 
1

2 2
1 1( ) ( ) { , }.s s s s sH s C sI A B FC B P diag

s s
−= − + = (17) 

 

According to the Eq. (17), the decoupled system 

includes two uncoupled second-order integral subsystems, 

which can be controlled separately. 

 

4. Design of controller of magnetic bearing 

 

According to the decoupled magnetic levitation 

model established in the previous section, a controller 

needs to be designed to make it levitate stably. Meanwhile, 

a fuzzy PD controller will be designed to compare the con-

trol performance with the SMC controller. 

 

4.1. Design of fuzzy PD controller 

 

Fuzzy controller has good robustness perfor-

mance. Firstly, fuzzy PD controller is used to control the 

decoupled system, and the principle is shown in Fig. 4. The 

input variable of the fuzzy inference module is the devia-

tion e and its differentiation de/dt. The output variables 

Δkp and Δkd are used to correct the PD controller coeffi-

cient in real time. After many trials, the initial values of kp 
and kd are chose as 150 and 20 respectively. The domains 

of e and de/dt are [-2.5e-5, 2.5e-5] and [-5e-5, 5e-5] re-

spectively. Divide the two domains of e and de/dt into sev-

en equal parts: [-2.5e-5, -1.66e-5, -0.833e-5, 0, 0.833e-5, 

1.66e-5, 2.5e-5] and [-5e-5, -3.33 e-5, -1.66e-5, 0, 1.66e-5, 

3.33e5, 5e-5], corresponding to fuzzy logic sets are {NB, 

NM, NS, ZO, PS, PM, PB}. The output domains of Δkp 

and Δkd are [-30, +30], [-20, +20] respectively. The mem-

bership functions of input and output variables are shown 

in Figs. 5 and 6 respectively.  

-

Fuzzification

Fuzzy rule 

reasoning

Defuzzification

PD 

controller

Magnetic 

Bearing 

System

/de dt

r e
kp kd

 

Fig. 4 Fuzzy PD controller principle 
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Based on the consideration of system stability, re-

sponse speed, overshoot and other factors, it is necessary to 

establish appropriate control parameters and their self-

tuning rules. In this method, when e is larger, the value of 

Δkp should be increased to speed up the system response. 

In order not to saturate the system differential due to the 

sudden increase of e in the early stage of the response, so 

that the control effect is not within the allowable range, the 

value of Δkd should be reduced. When the magnitudes of e 

and de/dt are relatively moderate, in order to reduce the 

overshoot of the system response, the value of Δkp should 

be appropriately reduced; when e is small, the value of Δkd 

should be appropriately increased, which can make the 

steady-state performance of the system better. When de/dt 

is larger, Δkp should take a smaller value. 

 

 

Fig. 5 Input membership function 

 

Fig. 6 Output membership function 

 

According to the above-mentioned parameter ad-

justment rules and the previous experience in the control of 

magnetic levitation systems, and combined with the 

movement law of the suspended rotor to analyze and sum-

marize, the fuzzy control rules of the system are estab-

lished as shown in Table 2. 

Table 2  

Fuzzy control rule table 

kp/kd 
de/dt 

NB NM NS ZO PS PM PB 

e 

 

NB PB/NS PB/NS PB/NS PB/NS PB/NS PB/NS PB/NS 

NM PS/PS PS/PS PS/PS PS/PS PS/PS PS/PS PS/PS 

NS PS/PB PS/PB PS/PB PS/PB PS/PS PS/PS PS/PB 

ZO ZO/PB ZO/PB ZO/PB ZO/PB ZO/PB ZO/PB ZO/PB 

PS PS/PB PS/PS PS/PS PS/PB PS/PB PS/PB PS/PB 

PM PS/PS PS/PS PS/PS PS/PS PS/PS PS/PS PS/PS 

PB PB/NS PB/NS PB/NS PB/NS PB/NS PB/NS PB/NS 

4.2. Design of sliding mode variable structure controller 

In the AMB controller, sliding mode control is 

proposed because of the nonlinear characteristics of the 

system and the high demand of controller in accuracy, ro-

bustness and responsiveness. Although the method will 

cause system chattering, it can be effectively reduced by 

different reaching law functions [15]. Equation (10) can be 

written as a multiple-input multiple-output system, which 

can be expressed as: 

 

1 11 12 1

212 21 22 2

1

11 12

2

( )   ( ) 0
( )

( )   ( )
,

( )
( ) [  ]

( )

x t A A x t
u t

Bx t A A x t

x t
y t C C

x t

       
= +       

      


 
=  

 

 (18) 

 

where: 1 ,n px R − 2 ,px R .pu R  

Assuming r is a desired input, the error is de-

scribed as: 

 

1= ( ).r x t −
 

(19) 

Then the error rate of change can be described as: 

2= ( ).r x t −
 

(20) 

 

Supposed =[ ,1],V v  the error vector is  
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=[   ] ,TE    the sliding mode surface function is designed 

as follows: 

 

1 2 [ ( )] ( ).s VE v r x t r x t= = − + −  (21) 

 

So, its differential equation can be written as: 

 

1 2 [ ( )] ( ).s v r x t r x t= − + −  (22) 

 
Combined with Eq. (15), its differential form is 

further expressed as: 

 

2 21 1 22 2 21 [ ( )] ( ) ( ) ,s v r x t r A x t A x t B u= − + − − −  (23) 

 

where: ν satisfies the Hurwitz polynomial. 

Sliding mode variable structure control will pro-

duce high-frequency chattering for the system. The expo-

nential approach law can shorten the approach time, make 

the system variable movement reach the switching surface 

at a very low speed, and weaken the system chattering. The 

law of exponential approach is defined as: 

 

- ( ) ,s sgn s ks= −
 

(24) 

 

where: 0,  0k   are chose parameters. From Eq. (18), 

the sliding mode control law is defined as: 

 

21

1

2 21 1

22 2

{ [ ( )] ( )

( ) ( ) }.

u B v r x t r A x t

A x t sgn s ks

−= − + − −

− − −
 

(25)
 

 

The tracking error of the system composed of the 

decoupled system model and the designed controller must 

be bounded and stable. According to the chose sliding 

mode switching surface, the Lyapunov function is chosen 

as: 

 
2 / 2.V s=  (26) 

 

There force, its differential equation can be writ-

ten as: 

 

2

( )

[ sgn( )]= ,

V ss s v

s ks s ks s

 

 

= = + =

= − − − −
 

(27)
 

 

where: , ,k v  are constants more than zero. It can be calcu-

lated that 0V   from the Eq. (27). Under the sliding mode 

control of exponential reaching law, the tracking error of 

the system is bounded and stable. 

According to the magnetic bearing decoupling 

model discussed above, the matrix coefficients of Eq. (10) 

can be obtained and are expressed as 11

0  0
= ,

0  0
A

 
 
 

12 =A  

1  0
= ,

0  1

 
 
 

21

0  0
= ,

0  0
A

 
 
 

22

0  0
= ,

0  0
A

 
 
 

21

1  0
= ,

0  1
B

 
 
 

11 =C

1  0
= ,

0  1

 
 
 

12

1  0
= .

0  1
C

 
 
 

 

The final sliding mode control law can be ob-

tained by substituting these parameters into Eq. (25). 

5. Results and discussions 

Computer simulations are performed to verify the 

effectiveness of the decoupling control method designed 

by Matlab/Simulink for the 5-DOF magnetic bearing. The 

desired position of control is to make the rotor stably levi-

tate at 0.125 mm from the geometric center of the magnetic 

bearing and compare the control performance of PD con-

troller, fuzzy PD controller and sliding mode variable 

structure controller (SMC).  

 

5.1. Position response control 

 
The input signal is a step signal, which is used to 

simulate the step response performance of the suspended 

rotor under different controllers. Three cases of conven-

tional PD controller, Fuzzy PD controller (with the same 

initial parameters) and sliding mode controller (SMC) con-

trol applied to the magnetic bearing are simulated respec-

tively. The simulation results are shown in Fig. 7. In Fig-

ure, the blue solid lines represent the case SMC controller; 

the red dashed-lines represent the case with Fuzzy PD con-

troller, the violet dashed-dotted lines represent the case 

with PD controller. 

It can be known that in the case of ordinary PD 

controller, with control parameter kp=150, kd =20, the 

adjustment time of is 0.497 s and no overshoot. By com-

paring the control performance of ordinary PD controller, 

it can also be known that in the case of Fuzzy PD control, 

with the same initial parameters, the adjustment time is 

obviously shortened to 0.277s, but there is a little over-

shoot. It needs to be emphasized that in the case of sliding 

mode controller, with control parameters ν =100, ε =0.001 

the adjustment time is 0.05 s, which has faster response 

performance than the two controllers mentioned above.  

 

Fig. 7 Comparison of position response of three control 

methods 

 

Fig. 8 shows the control performance comparison 

between the decoupling and non-decoupling of the magnet-

ic levitation with four degrees of freedom at xa=0.125 mm, 

xb=ya=yb=0 mm. It can be seen from the simulation results 

that due to the coupling characteristics between variables, 

although the un-decoupled magnetic suspension system is 
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controlled by PID, xa, xb, ya and yb all oscillate, which can-

not be controlled at the desired position, and the control 

performance is difficult to meet the requirements. However, 

after the system is decoupled and controlled, it stabilizes at 

0.125mm after a certain oscillation and overshoot, and the 

other three xb, ya and yb have been stabilized at the given 

desired position of 0mm, indicating that the system has 

been successfully decoupled in the coordinate X and Y di-

rections, and achieved good results. 

  

a b 

  

c d 

Fig. 8 Position response of the system with 4-DOF 

5.2. Anti-disturbance control 

In order to know the anti-disturbance performance 

of the system after decoupling, the control desired values 

of xa, xb, ya and yb are all set to 0.125 mm, and then external 

disturbance is added in the displacement direction of xa at 

1 s to make it deviate from the equilibrium position by 0.2 

mm.  

Three cases of conventional PD controller, Fuzzy 

PD controller (with the same initial parameters) and sliding 

mode controller (SMC) control also applied to the magnet-

ic bearing are simulated respectively. The simulation re-

sults are shown in Fig. 9. In figure, the violet solid lines 

represent the case SMC controller; the blue dashed-dotted 

represent the case with Fuzzy PD controller, the red 

dashed-lines lines represent the case with PD controller. 

By comparing the control performance of differ-

ent methods, it can also be known that in the case of SMC 

controller, with control parameters ν=100, ε=0.001, under 

the influence of external disturbance, the displacement 

change of xa is much smaller than that of conventional PD 

controller and Fuzzy PD controller. In detail, PD controller 

and fuzzy PD controller are almost equivalent in anti-

disturbance performance, resulting in an excessive over-

shoot. Although it finally stabilized at the desired position, 

it deviates too much from it during the adjustment process. 

However, when the SMC controller is used, under the in-

fluence of external disturbance, the displacement change is 

very small, and it is almost always maintained at the de-

sired position, indicating that SMC has a good anti- dis-

turbance performance. 

 

 

Fig. 9 Comparison of anti-disturbance output of three con-

trol methods 

 

In order to observe the control stability of the four 

degrees of freedom in the radial direction of the rotor un-

der SMC controller when the rotor is subjected to external 

disturbances, it can be known from Fig. 10 that there are 

fluctuations in the xa direction. After being controlled by 

SMC, it can still remain stable, as shown in Fig. 10a. The 

remaining three degrees of freedom xb, ya and yb are always 

stable at the desired position, as shown in Fig. 10b–d, 

which shows that the degrees of freedom are independent 

of each other and prove the successful decoupling of the 

system. Therefore, SMC controller can make the system 

resist the influence brought by disturbance and has strong 

anti- disturbance performance. 

  

a b 

  

c d 

Fig. 10 The output of each degree when disturbance is ap-

plied in the xa direction 

 

5.3. Tracking control 
 

In order to enable the suspension rotor to track the 

required suspension height requirements, a reference track-

ing signal with an amplitude of 0.14  0.3mm and a fre-

quency of 10 rad/s is given in the xb direction, and the de-

sired value of other degrees of freedom is given as 0.125 
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mm to verify the tracking of the SMC controller algorithm 

performance.  

  

a b 

  

c d 

Fig. 11 The output of each degree when a square wave is 

input in the xb direction 

 

It can be known from Fig. 11 that the control re-

sults can track the desired value on each degree of xa, xb, ya 

and yb, indicating that the SMC controller can make the 

rotor track desired position. 

Through the comparative analysis of the control 

results of position response, it is concluded that the PD 

controller, fuzzy PD controller and SMC controller can 

ensure the stability of the system without overshooting. 

However, compared with the difference in control perfor-

mance, SMC controller has very good rapidity and re-

sponse characteristics than the first two controllers. More-

over, SMC controller makes the controlled system have 

better anti-disturbance performance, so that the rotor 

reaches a stable state more quickly and smoothly. Finally, 

the controller can achieve the rotor to quickly track the 

desired position. 

6. Conclusions 

A 5-DOF magnetic bearing model was estab-

lished and the radial coupling problem of the magnetic 

bearing rotor was analyzed. The study looked into the con-

trol problem of AMB coupling relationship, and proposed 

a control method applied to the stability control based on 

sliding mode control. In the decoupling method, the rotor 

system is decoupled through linear output feedback decou-

pling, which achieves the independence of the four degrees 

of freedom in the radial direction of the magnetic suspen-

sion rotor. In the process of control, the sliding mode con-

troller is designed. The dynamic performance and stability 

characteristic of the AMB with the proposed SMC control-

ler are better than the conventional PD controller and fuzzy 

PD controller. Moreover, the SMC controller can effective-

ly improve the performance of the AMB in term of anti-

disturbance and signal tracking performance, so it has the 

advantage of robustness. This paper only studies the de-

coupling control of active magnetic bearing from the simu-

lation, and the experimental verification research should be 

studied in the future. 
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B. Li, L. Zeng 

 

POSITION DECOUPLING CONTROL OF RIGID 

ROTOR OF ACTIVE MAGNETIC BEARING 

 

S u m m a r y 

 

The magnetic bearing rotor system has the prob-

lem of positional coupling in the direction of the radial 

degrees of freedom. This paper proposes a linear output 

feedback method which decouples the multi-variable cou-

pling system into four single-degree-of-freedom second-

order integral subsystems. Firstly, a five-degree-of-

freedom (5-DOF) mathematical model of active magnetic 

bearing rotor is derived. Then, a sliding mode variable 

structure controller is designed for the decoupled subsys-

tems and the stability of system is guaranteed by the Lya-

punov stability theory. The results of computer simulation 

show that the design controller of sliding mode variable 

structure controller can more effectively enhance the mag-

netic bearing rotor performance stability compared with 

the conventional PD controller, fuzzy PD controller, no 

matter in the position respond control and anti-disturbance 

control. Moreover, the sliding mode variable structure con-

troller make the system have better tracking performance. 

Keywords: magnetic bearings; position control; 

decoupling; linear output feedback method; sliding mode 

control. 
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