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1. Introduction 

Thin structures have very good bearing perfor-

mance, high strength and stiffness, small weight and can 

bear a considerable load with a small thickness, which are 

widely used in engineering structures [1-3]. Such as compo-

nents for automobile and ship structures that improve load-

bearing capacity and reduce weight, coating structures that 

improve heat and wear resistance of metal surfaces, as a 

buffer and energy absorption component used in aerospace, 

rail transportation fields, etc. To ensure the force and mate-

rial strength of thin structure, it is necessary to carry out nu-

merical analysis of mechanical properties according to its 

geometric parameters.  

The boundary element method (BEM) is a more 

accurate and effective method developed after finite element 

method. Different from the basic idea of the finite element 

method (FEM), BEM only divides the elements on the 

boundary of the domain and approximate the boundary con-

ditions with the functions satisfying the governing equation 

[4-7]. Therefore, compared with the FEM [8, 9], BEM has 

the advantages of dimensionality reduction, fewer elements 

and simpler data preparation, which is suitable for solving 

stress concentration, infinite domain and semi-infinite do-

main problems [10, 11]. However, as the singularities of the 

kernel function in the boundary integral equation (BIE), the 

computational accuracy of weak singular integral directly 

affects the final results, so additional processing schemes 

must be given to remove these singularities to ensure the 

successful solution of BEM. Especially for thin-structural 

problems, poorly shaped elements (such as elements with 

large angles or narrow lengths) will appear in the discrete 

geometric model of thin structure [12-14], which will seri-

ously affect the accuracy of singular and near singular inte-

grals. Many works have been demonstrated that the near sin-

gular integrals can be accurately evaluated by analytical and 

semi-analytical methods [15, 16], Sinh and other nonlinear 

transformation methods [4, 17-19], etc. Therefore, accurate 

and effective calculation of weakly singular integral in BIE 

is the key to the implementation of boundary element anal-

ysis [20-23]. 

At present, there are many methods have been de-

veloped to handle the weak singular integrals, such as inte-

gral simplification method [24], element subdivision meth-

ods [25-26] and polar coordinate transformation methods 

[20, 27-31]. When the position of the source point is close 

to the boundaries of the element, the computational accu-

racy cannot be guaranteed only by using the coordinate 

transformation method [32]. To obtain high calculation ac-

curacy, the integral element needs to be subdivided into sev-

eral integral blocks with good shape. And there are many 

element subdivision methods, such as the singular points di-

rectly connected to the element vertexes [12], interval block 

method [12], tree structure methods [25], etc. When these 

subdivision methods are employed, some integral blocks 

with poor shape (such as the integral blocks with large angle 

and large aspect ratio) will be subdivided, which increases 

the difficulty in dealing with singular integral and decrease 

the computational accuracy. In addition, the polar coordi-

nate transformation is the key to removing the weak singu-

larities of the integral of the kernel. It converts the surface 

integral into the double integral of circumferential and radial 

direction, and then transforms the integral of radial direction 

to eliminate the singularities. Therefore, when this transfor-

mational method is employed, it needs to recalculate the in-

tegral interval of the integral block in the radial and circum-

ferential directions every time, which is more troublesome 

to implement [32]. 

In this paper, the weakly singular boundary inte-

grals of the displacement kernel function in the BIE of elas-

tic thin-structural problems are considered. When the BIE is 

discrete by several elements, for the numerical integration 

of a discrete element, firstly, the subdivision techniques of 

the quadrilateral elements are developed according to the lo-

cation of the source point, the element shape and the nearest 

distance from the source point to the element; and then, 

based on this subdivision technology, a simpler coordinate 

transformation method is constructed to remove the weak 

singularities of the singular integral blocks obtained by the 

proposed subdivision technology. Compared with the con-

ventional polar coordinate trans-formation method, the pre-

sented method does not need to calculate their integral in-

terval and is simpler and more effective. Finally, the subdi-

vision technology and coordinate transformation method are 

applied to the BEM analysis for the elastic structure to real-

ize an accurate and effective solution to the thin-structural 

problems. 

The outlines of the paper are as follows: the BIE 

and its numerical discretization of the thin-structural prob-

lems are described in section 2. In section 3, the treatment 

of the weakly singular integrals is presented in detail. The 

verification results of numerical examples are given in Sec-

tion 4. At last, the conclusions are given. 
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2. The boundary integral equations for thin-structural 

problems 

The BIE of 3D elastic analysis for thin-structural 

problems is shown in Eq. (1) [33]. P and Q are the source 

and field points; cij(P) is a constant associated with the 

boundary type;
* ( , )iju P Q  and 

* ( , )ijt P Q  are the kernel func-

tion of displacement and traction, respectively, and their ex-

pressions are shown in Eq. (2) [34]: 
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where: G and v denote the shear modulus and Poisson's ratio; 

r is the distance from the source point to field point; uj(Q) 

and tj(Q) represent the variables of displacement and trac-

tion on the boundary Γ; ni and ni are the components of the 

external normal vector in i and j direction, respectively. By 

discretizing the integral equation Eq. (1) with N elements, 

Eq. (1) can be expressed as: 

 

*

1 1

*

1 1

( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ,

e

e

N n

ij j j ij
e

N n

j ij
e

c P u P t u P Q N Q d Q

u t P Q N Q d Q












= =


= =

 
=  − 

 

 
−  

 

  

  

 (3) 

 

in which, n is the number of nodes on each element, and 

Nα(Q) is the shape function of the αth node on the element. 

It can be seen from Eq. (2), the integrals of the displacement 

kernel function have weak singularities, while the integrals 

of the traction kernel function have strong singularities. The 

numerical results have shown that strongly singular inte-

grals can be accurately calculated by the approximate ex-

pansion method and regularization method [35, 36]. In this 

paper, the weakly singular integrals of the displacement ker-

nel function are mainly considered. 

3. The processing method of weak singular boundary in-

tegral 

To construct the weak singularity elimination tech-

nique proposed in this paper, one discrete element Γe is con-

sidered at first, and the integral of the displacement kernel 

function is simplified into the following form (Eq. (4)). 

Where f(P, Q) is a smooth function without singularity; ϕ(Q) 

is the corresponding shape function: 

 

( , )
( ) ( ) .

e
e

f P Q
I P Q d

r



=   (4) 

 

We can see in Eq. (4), the weak singularity will 

arise when r is equal to zero. Additional schemes for han-

dling weak singular integrals need to be considered. To 

achieve the purpose of solving the weakly singular integral 

accurately, the element subdivision technique associated 

with the weak singular boundary integral needs to be con-

sidered at first. 

3.1. The element subdivision technique for solving singular 

integrals 

As the uncertainty of the position of the source 

point (which may fall on the interior, edges and vertices of 

the element), the subdivision method will be different. 

When the position of the source point is given, the nearest 

distance d from the source point to the edges of the element 

can be calculated. And then a very small quadrilateral with 

a length of 0.2d is constructed near the source point and the 

source point is included in it.   

In which, the selection of 0.2d is an empirical value 

obtained from a numerical test to avoid mutual interference 

between integral blocks. The specific operations are as fol-

lows: Firstly, to ensure that the shape of the singular integral 

block is good, we need to choose a regular quadrilateral that 

includes the source points. The choice of side length of the 

quadrilateral is very important. Too large selection of the 

side length will lead to a too large singular integral region, 

which requires too many Gaussian points and reduces the 

computational efficiency. In addition, the interference be-

tween integral blocks should be avoided. Therefore, this pa-

per starts from 0.5d. In the selection, it is found that if the 

side length of the constructed quadrilateral is large, espe-

cially for the element whose source point S falls near the 

center, small integral blocks will be divided near the edge, 

and the density of integral blocks cannot be guaranteed, 

which is the reason why 0.2d is selected as the side length 

of the small quadrilateral in this paper. 

By extending the four sides of the small quadrilat-

eral and intersecting the integral element, several quadrilat-

eral integral blocks can be obtained. Take the quadrilateral 

element as an example, the specific subdivision schemes are 

shown in Figs. 1–5. Fig. 1 is the result of the first step sub-

division when the source point falls on the vertex of the in-

tegral element. 

 

Fig. 1 The source point is located at the vertex 

Fig. 2 shows the results of the first step subdivision 

when the source point falls on different locations of the edge, 

where Fig. 2, a is the result when the source point is near the 

vertex, Fig. 2, b is the near the vertex when the source point 

is away from the vertex. Fig. 3 shows several different cases 

of the first step subdivision when the source point falls in-

side the integral element. Figs. 3, a - c are the results when 

the source point is close to the vertex, the edge and the cen-

ter, respectively. 

In the second step, the vertices of the small quadri-

lateral containing the source point are connected with the 

source point, and several triangular integral blocks contain-

ing singular points S can be obtained (as show in Fig. 4). For 
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the sake of integral, the quadrilateral R1-R8 without source 

point in Figs. 1 - 3 should also be further subdivided. The 

subdivision method is as follows Fig. 5): If the value of l /d 

is less than 1, the integral block can be seen as a regular 

integral element.  If l /d is greater than 1, the integral block 

is equally divided into four sub-elements. Repeat for sub-

elements until all sub-elements are regular integral elements. 

Then the normal Gauss integral can be applied to the above 

regular integral elements. 

In addition, if the shape of the integral element is 

narrow, the element can be subdivided according to the pro-

portion of the longest (Lmax) and shortest edge (Lmin) of the 

element (as shown in Fig. 6, if Lmax/Lmin < 2, the element 

cannot be subdivided (Fig. 6, a). If 2 < Lmax/Lmin < 3, the 

element needs to be divided into  two integral sub-elements 

 

a 

 

b 

Fig. 2 The source point is located at the edge of the element 

 

a 

 

b 

 

c 

Fig. 3 The source point falls inside the element 

 

              a                             b                               c 

Fig. 4 The subdivision method of the small quadrilateral R0 

containing source points 

•
S

•
S

•
S

d

l
l

d

 

Fig. 5 The subdivision method of the quadrilateral R1-R8 

without source point 

(Fig. 6, b), and so on). And then the integral sub-elements 

with source points can be further subdivided according to 

the subdivision method in Figs. 1 - 3. Furthermore, if there 

is a slender integral block in the subdivision result (such as 

the slender quadrilateral integral block in Figs. 1 - 3), the 

integral block can still be further subdivided according to 

the method in Fig. 6, to ensure that there is no integral block 

with large aspect ratio in the subdivision results. 

 

        a                        b                                     c 

Fig. 6 The element subdivision method of slender quadrilat-

eral elements 

3.2 The elimination method of weak singularity 

We can see from the above element subdivision 

method, the source points are first contained in a small quad-

rilateral, and then the vertices of the small quadrilateral are 

connected to the singular points, and four singular integral 

blocks are obtained at last.  

 

Fig. 7 The method of coordinate transformation of triangu-

lar integral blocks 

The integral block without source points can be 

solved by conventional Gaussian integral. However, due to 

the singularity of the triangular integral block containing the 

source point, a simple Hammer integral cannot eliminate the 

singularity in the integrand, so it needs special treatment. 

Taking Eq. (4) as the integral form, to remove the 

weak singularities of the integral block containing the 

source point, the (α, β) local coordinate system is employed 

at first [37], and the corresponding mapping system is 

shown in Fig. 7. The specific process of the coordinate 

transformation method is as follows: 



 182 

0 1 0

0 1 0

( )
,

( )

a

a

x x x x

y y y y





= + −


= + −
 (5) 

0 2 0

0 2 0

( )
,

( )

b

b

x x x x

y y y y





= + −


= + −
 (6) 

 

( )

( )

a b a

a b a

x x x x

y y y y





= + −


= + −
  , [0,1].    (7) 

 

Substituting Eq. (5) and Eq. (6) into Eq. (7), the 

expression Eq. (8) can be derived: 
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Through this transformation in Eq. (8), the integral 

block in the xy place is mapped into a regular quadrilateral 

in the αβ place. The coordinates of the two vertexes of the 

quadrilateral are (0,0) and (1,1), that is, the value range of 

the α and β is [0,1]. The Jacobian of the transformation is 

αS. 

 

0 1 1 2 2 0 0 2 1 0 2 1 .S x y x y x y x y x y x y= + + − − −  (9) 

 

Through this transformation, the integral form of 

Eq. (4) in the triangular integral block with the singular 

points can be rewritten as: 
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From Eqs. (5) - (9), we can see the Jacobian ob-

tained by this coordinate transformation method contains 

quasi-zero factor α, which just offsets the quasi-zero factor 

in the denominator of integral equation Eq. (4), and the sin-

gularity can be eliminated. Moreover, this coordinate trans-

formation method can transform the integral interval of α 

and β to [0,1] directly, which does not need to calculate the 

integral interval of each integral block. Compared with the 

traditional polar coordinate transformation, it is simpler and 

more effective. 

4. Numerical examples 

In this part, three numerical examples are given to 

verify the accuracy and effectiveness of the proposed 

method. Firstly, the accuracy of the proposed method on one 

element is verified, where different source positions and el-

ement shape types are considered. Finally, the present 

method is employed to analyse the elastic analysis of the 

thin-structural problem. The computational formula of rela-

tive error is shown in Eq. (12): 

 

Relative Error = ,n e

e

I I

I

−
 (12) 

 

in which, In represents the numerical results and Ie is the cor-

responding reference solution. The reference solution is ob-

tained by using the element subdivision coupled with the 

coordinate transformation method with a large number of 

Gaussian integral points. For the convenience of calculation, 

the paper assumes f(P,Q)=1.0 in Eq. (4). The integral form 

Eq. (4) is applied to solve the weakly singular integrals in 

the first example. 

4.1. The integral element with different source points and 

aspect ratios 

To verify the accuracy of the proposed method, the 

quadrilateral element with different source points and aspect 

ratios is considered. The four vertices of the quadrilateral 

element are (0.0, 0.0, 0.0), (1.0, 0.0, 0.0), (1.0, 1.0, 0.0) and 

(0.0, 1.0, 0.0), and the aspect ratio is a = 1. 

 

Fig. 8 The selections of the source points (aspect ratio is a) 

Fig. 8 shows the selections of the source points, 

and the coordinates of the source points are taken as (0.0, 

0.0, 0.0), (0.125, 0.125, 0.0), (0.25, 0.25, 0.0), (0.375, 0.375, 

0.0) and (0.5, 0.5, 0.0), respectively. The relative errors and 

the total number of Gaussian points obtained by the pro-

posed method and the traditional method (coordinate trans-

formation coupled with the traditional element subdivision 

method, which the source point is directly connected with 

the vertexes of the element) are shown in Table 1. 

Table 1 

The results of singular integrals of quadrilateral elements 

(a=1) 

Source points 

Gauss-

ian 

points  

Proposed 

method 

Gauss-

ian 

points  

Tradi-

tional 

method 

(0.0,0.0,0.0) 

(0.125,0.125,0.0) 

128 

448 

5.44E-12 

6.35E-08 

128 

484 

5.44E-12 

3.49E-05 

(0.25,0.25,0.0) 

(0.375,0.375,0.0) 

448 

448 

1.07E-07 

1.48E-07 

484 

484 

7.68E-07 

4.56E-09 

(0.5,0.5,0.0) 256 2.51E-07 256 2.51E-07 

When a = 2, the four vertexes of the quadrilateral 

element are given as (0.0, 0.0, 0.0), (2.0, 0.0, 0.0), (2.0, 1.0, 

0.0) and (0.0, 1.0, 0.0). The source points are (0.0, 0.0), 

(0.25, 0.125, 0.0), (0.5, 0.25, 0.0), (0.75, 0.375, 0.0) and 

(1.0, 0.5, 0.0), respectively. The relative errors and the total 

number of Gaussian points of the weak singular integrals are 

as shown in Table 2. 

When a = 5, the four vertices of the quadrilateral 

element are given as (0.0, 0.0, 0.0), (5.0, 0.0, 0.0), (5.0, 1.0, 

0.0) and (0.0, 1.0, 0.0). The source points are (0.0, 0.0), 

(0.625, 0.125, 0.0), (1.25, 0.25, 0.0), (1.875, 0.375, 0.0) and 

(2.5, 0.5, 0.0), respectively. The results of relative errors and 

the number of Gaussian integral points are shown in Ta-

ble 3. 
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When a = 10, the four vertices of the quadrilateral 

element are given as (0.0, 0.0, 0.0), (10.0, 0.0, 0.0), (10.0, 

1.0, 0.0) and (0.0, 1.0, 0.0), the source points fall on (0.0, 

0.0), (1.25, 0.125, 0.0), (2.5, 0.25, 0.0), (3.75, 0.375, 0.0) 

and (5.0, 0.0), respectively. The results of relative errors and 

the number of Gaussian integral points are as shown in Ta-

ble 4. 

Table 2 

The numerical results of singular integrals of quadrilateral 

elements (a=2) 

Source points 

Gauss-

ian 

points  

Proposed 

method 

Gauss-

ian 

points  

Traditional 

method 

(0.0,0.0,0.0) 

(0.25,0.125,0.0) 

200 

576 

6.13E-12 

1.52E-07 

192 

576 

4.65E-11 

1.71E-04 

(0.5,0.25,0.0) 

(0.75,0.375,0.0) 

576 

576 

2.57E-07 

3.57E-07 

576 

576 

9.53E-05 

9.72E-06 

(1.0,0.5,0.0) 384 7.92E-07 400 1.37E-05 

Table 3 

The numerical results of singular integrals of quadrilateral 

elements (a=5) 

Source points 

Gauss-

ian 

points  

Proposed 

method 

Gaussian 

points  

Tradi-

tional 

method 

(0.0,0.0,0.0) 

(0.625,0.125,0.0) 

192 

576 

4.46E-12 

1.06E-07 

200 

576 

3.02E-07 

7.41E-03 

(1.25,0.25,0.0) 

(1.875,0.375,0.0) 

576 

576 

1.84E-07 

2.59E-07 

576 

576 

5.97E-03 

3.31E-03 

(2.5,0.5,0.0) 384 1.87E-07 400 5.54E-03 

Table 4  

The numerical results of singular integrals of quadrilateral 

elements (a=10) 

Source points 

Gauss

ian 

points  

Proposed 

method 

Gauss-

ian 

points  

Tradi-

tional 

method 

(0.0,0.0,0.0) 

(1.25,0.125,0.0) 

192 

576 

3.69E-12 

8.51E-08 

200 

576 

5.20E-06 

1.97E-02 

(2.5,0.25,0.0) 

(3.75,0.375,0.0) 

576 

576 

1.50E-07 

2.13E-07 

576 

576 

2.77E-02 

2.97E-02 

(5.0,0.5,0.0) 384 4.77E-07 400 4.66E-02 

 

Fig. 9 The comparisons of relative errors with different 

source points 

Fig. 9 shows the comparisons of relative errors 

with different source points and aspect ratios. From Table 1 

– Table 4 and Fig. 6, it can be seen when using the same 

Gaussian integral points, the accuracy of the proposed 

method has remained high with the increase of the aspect 

ratio of the integral element (even if the integral element be-

comes narrow and long). With the proposed method, the 

weakly singular integrals in the BIE can be accurately eval-

uated, at the same time, the influence of weak singular inte-

grals can be eliminated in the solution of thin structural 

problems. 

4.2 The thin plate structure 

In the second example, the proposed method is em-

ployed for the elastic analysis of thin plate structure. As 

shown in Fig. 10, the length, width and height of the thin 

plate are l=10 mm and h=1 mm. Young’s modulus and Pois-

son’s ratio are E=1 MPa and v=0.25, respectively. To facil-

itate comparison, the quadratic displacement fields with an 

analytical solution are imposed on the boundary of the thin 

plate and the formulas are expressed as follows: 

 
2 2 2

2 2 2

2 2 2

2 3 3

3 2 3

3 3 2

x

y

z

u x y z

u x y z

u x y z

= − + +

= − +

= + −

. (13) 

 

Fig. 10 The geometrical model of the thin plate 

 

Fig. 11 The discrete model of the thin plate 

 

Fig. 12 The results of traction in the x direction  

 

The geometrical model of the plate is discretized 

into 140 quadrilateral elements (Fig. 11). The flanks of the 

plate are discretized by several slender quadrilateral ele-

ments. A series of sample points are selected on line x=10  
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Fig. 13 The results of traction in the y direction  

 

Fig. 14 The results of traction in the z direction  

 

Fig. 15 The results of the Von Mises stress 

and z=0.5. The numerical results obtained by applying the pro-

posed method and the traditional method are as shown in Figs. 9 - 

12. The symbols ‘proposed-Linear, ‘proposed-Quad’, ‘Tradi-

tional-Linear’ and ‘Traditional-Quad’ denote the numerical results 

of the proposed method by using linear and quadratic elements, the 

numerical results of the traditional method by using linear and 

quadratic elements, respectively. It can be observed from Figs. 12 

to 15, compared with the traditional method (coordinate transfor-

mation coupled with the traditional element subdivision method, 

in which the source point is directly connected with the element 

vertex), the numerical results of the proposed method are in better 

agreement with the analytical solution and have higher accuracy, 

which further verify the accuracy and effectiveness of the proposed 

method. 

4.3. The thin plate with a hole 

To further verify the computational accuracy and 

generality of the proposed method, a thin plate with a hole 

is considered in the third example. The geometric parame-

ters of the thin plate are as shown in Fig. 16. The Young’s 

modulus and Poisson’s ratio are E = 1 MPa, v = 0.25. 

Eq. (13) is treated as the boundary conditions which are im-

posed on the external boundary of the thin plate. 

10

1
10x

z
y

Unit：mm  

Fig. 16 The model of the plate with a hole 

 
 

Fig. 17 The discrete model of the thin plate with a hole 

 

80 quadrilateral elements with different shapes 

areused in all boundaries of the geometric model (Fig. 17 is 

the corresponding discrete model). The flanks of the model 

are discretized by several narrow elements. The sample 

points are selected on the centreline of the right side, and the 

numerical results obtained by using the proposed method 

and the traditional method are shown in Figs. 18 and 19.  

It can be seen from Fig. 18 and Fig. 19, compared 

with the traditional method,   the numerical results obtained 

 

 

Fig. 18 The results of the traction in x and z direction 
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by the proposed method are in better agreement with the an-

alytical solution and have higher computational accuracy, 

while the numerical results of the traditional method have 

diverged, which further verify the accuracy of the proposed 

method. 
 

 

Fig. 19 The results of the Von Mises stress and the traction 

in y direction 

4.4. The cylindrical revolution structures 

To verify the validity and universality of the pro-

posed method, a cylindrical revolution structure is consid-

ered in the last example. As shown in Fig.20, the geometric 

parameters of the model are: h=1.8 m, r1=r3=1.8 m, r4=2 m, 

r2=2 m.   The material  parameters  are  given as:   Young's  

P

x

z
y

h

r1
r2

r3

r4

 

Fig. 20 The geometric model 

 

Fig. 21 The results of the displacement Uy on the line of ex-

ternal surface (z=0, x>0) 

 

Fig. 22 The results of the Von Mises stress on the line of 

external surface (z=0, x>0) 

modulus is 145 GPa, the density is 7800 kg/m3, and the Pois-

son's ratio is 0.25. The uniform press is 1 MPa. 96 quadratic 

elements are imposed in all the boundaries of the model. The 

results of FEM by using 54649 elements are regarded as a 

reference solution. The numerical results of the proposed 

method and FEM are as shown in Figs. 21 and 22. 

It can be observed in Figs. 21 and 22, the numerical 

results obtained by the proposed method agree well with that 

obtained by the FEM, which further verify the validity of 

the proposed method. 

5. Conclusions 

Based on the properties of the weak singular inte-

grals in the boundary integral equations of elastic problems, 

an element subdivision technique combined with αβ coordi-

nate transformation method is proposed in this paper. The 

proposed method is simpler to implement, no matter where 

the source point is in the element, no matter what the ele-

ment shape is, accurate and stable computational results can 

be obtained. Then, the proposed method is employed to an-

alyze the thin-structural problem, and the numerical compu-

tational results show that the proposed method can be used 

to evaluate thin-structural problems accurately and effi-

ciently. 
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J. Hou, L. Zeng, Y. Zhong, D. Zhao, M. Zhao 

A SUBDIVISION TRANSFORMATION METHOD FOR 

WEAKLY SINGULAR BOUNDARY INTEGRALS IN 

THIN-STRUCTURAL PROBLEM 

S u m m a r y 

A subdivision transformation method evaluated for 

weakly singular integrals is proposed in this paper, and the 

method is implemented as follows: based on the position of 

the source points, the shape information of the elements and 

the nearest distance from the source point to the integral el-

ement, a subdivision technology is constructed at first. With 

this subdivision technology, the integral element can be di-

vided into several integral blocks with good shapes. And 

then, a simpler coordinate transformation method is con-

structed to remove the weak singularities of the integral 

blocks obtained by the subdivision technology. Compared 

with the conventional polar coordinate transformation 

method, the present transformation method does not need to 

calculate their integral interval, which is simpler and more 

effective to implement. Finally, the paper gives three nu-

merical examples to verify the accuracy and validity of the 

present method. 
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singular integrals, element subdivision, coordinate transfor-

mation. 
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