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Nomenclature 

 

uin – infiltration rate, m. s-1; u – velocity along the x-axis,  

m. s-1; v – velocity along the y-axis, m. s-1; h – height, m;  

e – thickness, m; k – coefficient of the permeability, m2. s-1;  

ϕ – porosity of the medium, %; ρ – density, kg. m-3;  

µ – dynamic viscosity, kg. m-1.s-1. 

 

1. Introduction 

Porous media are materials that are distinguished 

by the coexistence of a solid matrix with a network of chan-

nels, the pores, where one or more fluids can coexist [1]. A 

distinction is generally made between granular materials, re-

sulting from the stacking of grains of matter forming a non-

convex solid matrix (we also speak of "unconsolidated" me-

dia), and materials whose solid matrix is continuous (then 

called "consolidated”). 

There are several levels of description of flows in 

porous media, the size and number of which may vary de-

pending on the materials and applications considered [2-3]. 

However, we generally admit at least three scales of descrip-

tion characterized by the following properties: 

The pore scale (also referred to as the microscopic 

scale in these works): this is the smallest scale of the porous 

medium (from micrometer to millimeter) in the sense that it 

explicitly takes into account the geometry (complex) of the 

solid skeleton and the multiphase character of the flows: 

phases and interfaces are identifiable. Despite the restricted 

size of these levels of description, the use of continuum me-

chanics remains valid for most of the materials considered. 

The Darcy scale (also referred to as the macro-

scopic scale in these works): This is the usual scale for de-

scribing the porous medium (from millimeters to ten centi-

meters). For most engineering problems, a description at the 

pore scale is of little interest, either because the applications 

are more oriented towards a global description of the prop-

erties of the porous medium. Or because describing the res-

olution of the problem from the microscopic scale is diffi-

cult to implement due to the complex geometry of this scale 

and the resources necessary for solving it pore by pore. 

Therefore, a resolution of the problem at the Darcy scale in-

volves macroscopic state variables: at each point of the do-

main, the physical quantities result from an average over a 

minimum volume of the porous material, chosen so that its 

properties are representative of the environment. For multi-

phase flows, the interfaces are not visible and the occupation 

of the pore space is described in terms of mass or volume 

fraction. 

Large scales: This is the scale of the environment studied as 

a whole (from ten centimeters to kilometers). The study of 

these environments generally calls for a combined approach 

of geostatistical data and numerical simulations of the aver-

aged equations of the Darcy scale over areas of constant 

properties. 

The transition from a description of the micro-

scopic scale to higher scales is therefore done by assuming 

that the physical properties of the material remain un-

changed once the unit of description of the system is large 

enough. Thereby, the microscopic dynamics in a (VER) 

around different points in the material will show strong sim-

ilarities. This hypothesis, then justifies the use of an aver-

aged description of the physics of the Darcy scale, assuming 

that the elementary volume of the domain is in fact a REV, 

and therefore that the underlying microscopic physics varies 

little. 

Note that despite this assumption, we observe in 

practice a dependence of the physical properties on the size 

of the (VER) for highly heterogeneous porous media, espe-

cially towards large scales (Fig. 1). This is due to the struc-

turing of porous media which, depending on geological 

events (deposits by layers of sediment, earthquakes, etc.), 

will lead to an arrangement of pore networks that differ from 

one area to another. At the medium scale, depending on the 

heterogeneity of the material, we can consider the existence 

of different REVs. Therefore, areas with different dynamics, 

which will have to be taken into account. Under these con-

ditions, a statistical description of REV may be preferred. 

On the first scales of description, a disparity of the physical 

properties is present, according to the considered zones of 

the material. However, observed on a sufficiently large vol-

ume, these properties vary little from one point to another 

[3]. The same invariance is observed for larger arbitrary vol-

umes. However, for heterogeneous media, at large scales, 

variations can again appear on large scales due to a differ-

ence in microstructure. 

 

Fig. 1 Representative elementary volume (REV) of a porous 

medium 
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The Navier-Stokes equations are not directly appli-

cable to the porous material, as it is not known what happens 

microscopically in the pores with respect to pressures and 

velocities. It is therefore necessary to find by other means a 

macroscopic law valid on the scale of the VER (representa-

tive elementary volume) for a porous material, connecting 

pressure, speed, and external forces. We will see that such a 

law was found experimentally by Darcy. 

This problem has been studied for a long time since 

Beavers and Joseph [4] study Navier-Stokes flows above a 

porous block and already speak in their introduction of an 

extensive analytical literature. They show the existence of a 

sliding speed at the surface of the porous medium and pro-

pose a boundary condition. Subsequently, Saffman [5] 

mathematically justified this boundary condition and 

showed that Darcy's speed term could be neglected. There-

fore, he gave the condition known as the Beavers-Joseph-

Saffman condition. Certain numerical studies concerning 

the coupling of the equations of Stokes and Darcy take into 

account this boundary condition, while others do not con-

sider it. 

Many authors have coupled the Navier-Stokes 

equations for the fluid zone and the Darcy equation for the 

porous zone. Correa and Loula [6] propose a coupling be-

tween a Navier-Stokes finite element formulation and a 

mixed Darcy formulation using Taylor-Hood elements. 

J. M. Urquiza et al. [7] couple a mixed finite ele-

ment formulation of Navier-Stokes with a formulation of the 

Darcy equation taken in the form of a Poisson equation. 

G. Pacquaut et al. [8] express the weak formulation 

of each of the equations by including the Beavers-Joseph-

Saffman condition. A surface integral in taking into account 

the boundary conditions being common to each of the for-

mulations, they were able to inject the Darcy equation di-

rectly into the Navier-Stokes formulation, which allowed 

the coupling. In principle, this ultimately amounts to writing 

the weak formulation of Brinkman's equation. 

G. N. Gatica et al. [9] also carry out a (Navier-

Stokes) -Darcy coupling by comparing several types of ele-

ments to obtain a stable formulation. This time again, the 

solved formulation ultimately returns a weak formulation of 

the Brinkman equation. Masud [10] does the same type of 

study, this time clearly solving the Brinkman equation, 

which he writes under its strong formulation, however call-

ing it the (Navier-Stokes) -Darcy equation. 

H. Tan and K. M. Pillai [11] also propose a finite 

element formulation of Brinkman's equations. However, 

they propose a modified Brinkman equation to take into ac-

count a stress jump at the fluid-pore interface. 

The coupling between the Darcy and Navier-

Stokes equations has been widely studied previously using 

the finite volume method in domain immersion, due to nu-

merous applications involving porous materials and at the 

interface between the porous medium [12-13]. The domain 

immersion technique used was subsequently improved [14-

15]. 

The establishment of numerical models allowing 

calculations to be carried out at the microscopic scale thanks 

to a coupling between the Navier-Stokes equations and   

Darcy's law. The particularity of the reinforcements consid-

ered in this type of work is the presence of several scales of 

porosity. On the other hand, between the pores [16]. There-

fore, we have a domain containing both two matrices, one 

solid and the other fluid. 
 

2. Method 

 

The characterization of flows in porous media has 

been detailed. First of all, the levels of description of this 

class of materials have been reviewed and explained. The 

geometric characterization of porous media has made it pos-

sible to give a definition of the representative elementary 

volume, essential to distinguish each of the scales at which 

it is possible to describe flows. Then, the direct application 

of the mechanics of continuums at the microscopic scale 

made it possible to find the equations of continuity and con-

servation of the momentum that the fluid had to respect. By 

applying an averaging operator, these microscopic equa-

tions can be formulated at the Darcy scale, where several 

flow models coexist due to the simplifying assumptions 

made on the system. Finally, the study of the relative satu-

ration-permeability relationships has highlighted some ex-

isting models in the literature, as for the capillary pressure 

within the medium [17-18]. From a practical point of view, 

the flow characterization methods that require the fewest as-

sumptions about the system under study result from scaling 

operations. However, their complete resolution requires the 

resolution of a macroscopic model coupled with a micro-

scopic model. A good knowledge of the microstructure is 

therefore essential to validate the relevance of these ap-

proaches. 

Darcy's law describes the movement of fluid 

through the interstices of a saturated porous medium, 

which is mainly driven by a pressure gradient, and wherein 

momentum transfer due to shear stresses in the fluid is neg-

ligible the Darcy's Law interface calculates the pressure, 

the velocity field is then determined by the pressure gradi-

ent, fluid viscosity and permeability. 

The porous medium studied in this work presents a 

homogeneous and isotropic material fed by a source of the 

ifiltration velocity (Fig. 2). The walls at the top, bottom and 

the left side wall approximately the source are considered 

impermeable. The influence of several physical parameters 

are taken into account to simulate this type of material. 

 

Fig. 2 Physical model 

 

2.1. Mathematical model 

 

Darcy's law was established under specific condi-

tions, which limit its validity. The main underlying assump-

tions are: 

• Homogeneous, isotropic and stable solid matrix; 

• Homogeneous, isothermal and incompressible fluid; 

• Negligible kinetic energy; 

• Permanent flow regime; 

• Laminar flow; 
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• The spatial variations in density (compressibility, 

heterogeneity) and viscosity (temperature) of the liq-

uid phase are low enough for their effect to be gen-

erally neglected. 

Equation of continuity: 

 

.
u v

x y

 
=

 
 (1) 

 

Porous materials are modeled by adding momen-

tum source terms of the fluid flow equation described as 

Eqs. (2) and (3). Darcy's law is considered as the source term 

in these two equations. 
f

u
k


 and 

f

v
k


 are the source terms 

for the directions (X, Y) in momentum Eqs. (2), and (3). 

Equation of momentum along the X-axis: 
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Equation of momentum along the Y-axis: 
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At the level of the top, bottom and left side wall 

(non-slip conditions) u = v = 0; source level (input velocity) 

uin = 10-4, m/s; at the level of the right side wall (outflow)  

φ = u·(h·e), m3/s.  

The algorithm for the coupled Navier-Stokes, and 

Darcy equations resolution (Fig. 3), summarizes the steps in 

solving this study. 

• τ – represent the step of the iterative calculation; 

• τ = 0 – initialization of the calculation; 

• (τ+1) –next step of the iterative calculation; 

• The convergence test chosen for this simulation is  

R < 10-4 (weighted residue). 

 

3. Results and discussions 

 

The idea of this method is to fix the solution to 

known values on the nodes. Then we build the final solution 

by interpolating between each node. So, choosing a fine 

mesh means that we have a good knowledge of the solution 

we want to obtain. Conversely, for a coarse mesh, we then 

have a more approximate idea of the solution to be obtained. 

We do not know how in practice an interpolation is carried 

out, but we think that this one is done without taking into 

account the physical solution between two nodes. 

We noted the value of the residuals for each of the 

solutions. We found residuals in the same order of magni-

tude when we expected to have large residuals for coarse 

meshes. In conclusion, if we increase the number of nodes, 

then we decrease the errors due to interpolations between 

nodes, and the numerical solution is closer to reality. We 

also noted that the computation time increases with the fine-

ness of the mesh, but this increase is not significant for the 

meshes chosen in our simulations (Error < 1 %), Fig. 4. 

 

 

 
 

Fig. 3 Algorithm for the coupled Navier-Stokes, and Darcy 

equations resolution 

 
 

 

Fig. 4 Mesh test  

Begin 

Starting hypothesis:  
 

 

Solving the coupled Navier-Stokes, and Darcy 

equations as a function of iteration (τ+1): 
 

 

 

Display of results 

Convergence 

test:  
 

R < 10-4 

 

End 

Yes 

No 
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The evolution of the velocity and the pressure in 

the vertical plane in the middle of the material studied, are 

represented in Fig. 5. Comprises two successive phases, the 

transient phase, which depends strongly on the initial state 

of the system or the numerical solution is unstable and the 

steady-state phase, Independent of the initial state of the sys-

tem (initial conditions), where our numerical solution has 

become stable. The results obtained confirm a passage be-

tween an initial computation times towards an inertial com-

putation time of the system. 

 

Fig. 5 Convergence test of the numerical solution 

 

The balance between viscous and inertial forces is 

expressed by a non-dimensional parameter called the Reyn-

olds: 

 

. .
,

f

e

f

d u
R




=  (4) 

 

where: ρf is fluid density; d is diameter of the passage 

through which the fluid moves; u is fluid velocity; μf  is dy-

namic viscosity. 

We find ourselves theoretically solving the Navier-

Stokes equations in the case where Re << 1 (i.e. when the 

inertial terms are negligible). Moreover, the flow in this case 

is a Darcy-type flow. In the case where the Reynolds num-

ber is high, the relationship between the specific discharge 

and the hydraulic gradient is no longer linear. Therefore, the 

transition zone of Reynolds numbers in the range 1 to 10 is 

associated with the upper limit of Darcy's law. The lower 

limit of Darcy's law is associated with extremely slow flow.  

The results presented in Fig. 6, show that the values 

taken by the pressure drop are independent with respect to 

the filtration rate, the number of Re always remains lower 

than 1. Thus, the Darcy criterion is systematically validated 

in this present study.  

The resulting velocity field and the velocity vector 

field presented in Figs. 7 and 8, shows that the velocity is 

zero near the impermeable walls thanks to the non-slip con-

ditions of the wall, the maximum values are observed at the 

level of the infiltration zone. The results shown confirm the 

isotropy and homogeneity of the porous material chosen for 

this simulation. The flow of this material goes through two 

successive phases, in the first it is decelerated by the effect 

of the stresses of the solid matrix of the porous medium and 

in the second phase, it has become uniform under the effect 

of the infiltration of these pores. 

 

Fig. 6 Validation of the Darcy approach 

 

Fig. 7 The resulting infiltration velocity field 

 

Fig. 8 Infiltration velocity vector field 

 

Fig. 9 Velocity profiles in different levels relative to the 

thickness 

 

The Fig. 9 represent the velocity profiles located 

between different levels of the thickness of the material rel-

ative to the source of infiltration, in all cases; the speed is 
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zero at the level of the impermeable walls thanks to the con-

duction at the non-slip limits walls. By the effect of the 

channel, we have a parabolic drop in the speed profile close 

to the source and another profile with a square shape far 

from this source of infiltration. 

The influence of the infiltration rate of the behavior 

of the material is illustrated in Fig. 10, we always keep the 

same shape of the profile presented, but the decelerating 

flow phase is dominant compared to the uniform flow phase 

for a maximum flow and vice versa for a minimum flow. 

 
 

Fig. 10 Effect of infiltration rate 

 

The effect of porosity on the physical behavior of 

the simulated material with respect to a vertical reference 

line is shown in Fig. 11. By definition, porosity is also a nu-

merical value defined as the ratio between the volume of the 

voids and the total volume. In a porous medium (Eq. 5). It 

is noticed that the speed is worth maximum values if the 

fluid matrix, which dominates the total volume of the me-

dium compared to the solid matrix, and conversely this 

speed is worth minimum values in the case where it is the 

solid matrix, which dominates the totality of the volume of 

this medium. 

 

.
pores

pores

V

V
 =  (5) 

 

Fig. 11 Effect of porosity 

4. Conclusions 

 

Simulations were carried out on the physical be-

havior of a homogeneous and isotropic porous material by 

the numerical resolution of a Navier-Stokes approach cou-

pled with Darcy's law in the case where Re << 1. The results 

obtained allowed us to reach the following conclusions: 

Darcy's approach is systematically validated by a calcula-

tion of the Reynolds number (10-2 < Re <10-1). The satura-

tion of the porous material depends on the infiltration rate. 

The behavior of the material is influenced by several physi-

cal and geometric parameters such as the variation of the 

infiltration rate, the thickness of the material and its poros-

ity. For a porosity of 20 %, and an infiltration rate of  

10-4 m/s, 5.10-4 m/s and 10-3 m/s the saturated of the material 

is 3 times, 5 times, and 8 times of languor with respect to 

the source of infiltration. For a reference distance in the mid-

dle of the material, and for a porosity of 80%, 40%, and 

20%, the maximum velocity respectively are 10-4 m/s,  

5.10-6 m/s, and 10-7 m/s. 
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K. Hami, A. Talhi 

MODELING AND CHARACTERIZATION OF A FLOW IN A 

POROUS MEDIUM BY A COUPLED APPROACH 

BETWEEN THE NAVIER-STOKES AND DARCY 

EQUATIONS 

S u m m a r y 

In this present work, simulations were carried out 

numerically to characterize a porous material. The basic 

equations, which govern this problem, are those of the Na-

vier-Stokes equations coupled with the Darcy equation. In 

order to understand the phenomena at stake, a first test was 

first completed on the independence of the mesh compared 

to the numerical solution obtained, the second test is de-

voted to the validation of Darcy (Re <<1). The characteriza-

tion of the material is based on physical tests; the first is de-

voted to the porosity of the material, the second to the thick-

ness, and the trireme to the saturation. The results are pre-

sented on the one hand contours for the velocity fields and 

streamlines, and on the other hand, are illustrated with 

curves to interpret the physical parameters studied in rela-

tion to each other. 

Keywords: porous medium, Navier-Stokes, Darcy ap-

proach, CFD modelling. 
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