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1. Introduction 

K&C is a type of suspension analysis in which, 

kinematics and elasticity, are evaluated together. The sus-

pension systems consist of rigid subcomponents connected 

by kinematic joints and compliance elements [1]. While kin-

ematics deals with how a mechanism moves, compliance 

considers the influence of various deformable structures be-

tween these links. Thus, both kinematic and elastic proper-

ties are evaluated simultaneously in the system. The suspen-

sion K&C is more commonly employed for qualitative than 

quantitative research [2].  

The K&C characteristics of vehicle suspension 

systems are key characteristics by which the vehicle's steer-

ing, comfort, ride and handling performance can be evalu-

ated and explained [3]. For example, the vehicle responsive-

ness to steering input is substantially connected with sus-

pension stiffness in the lateral direction, and steer change 

rate can be used to estimate the understeering characteristic. 

In the development phase of the vehicle, by creating a target 

for each K&C characteristic, design variables such as the 

position of the suspension hardpoints, and the stiffness of 

the suspension bushings are tried to be determined optimally 

[4]. The McPherson suspension system, together with the 

anti-roll bar and the steering sub-components, creates a 

complex design environment, and previously they were sub-

jected to an optimization individually [5]. Since these sub-

systems are kinematically related, the introduction of MBD 

enabled the analysis of the wheel motion precisely and 

helped to evaluate and optimize the suspension characteris-

tics [6]. Another goal of the model development is to shorten 

development time by reducing the requirement for physical 

tests, observing vehicle characteristics in a continuous loop 

and test repeatability [7]. 

There are some documented papers in the literature 

on K&C optimization. Steering kinematics are improved fo-

cusing on the steering rack [8]. Steering linkage of a bus is 

optimized using RSM approach [9]. Multi-criteria optimiza-

tion of a suspension system is realized utilizing the conven-

tional regression models [10]. DOE approach is used for a 

solid axle of a heavy commercial vehicle on optimizing 

steering kinematics which used statistical analysis [11]. 

Double wishbone suspension is optimized within parallel 

wheel travel tests for the wheel alignment parameters using 

capability of ADAMS software [12]. DOE with ANOVA is 

realized for leaf spring suspension to optimize toe angle and 

wheelbase change using a statistical analysis approach [13]. 

To the best of the author’s knowledge, some publications 

are available in the literature on the steering kinematic opti-

mization of McPherson suspensions, but none focuses on 

the suspension hardpoints with multi-objective optimization 

using NN (neural network) modelling and GA (genetic al-

gorithm), comparing with conventional response surface 

methods in a limited design environment. As the K&C de-

velopment is an iterative process and subject to updates 

based on different vehicle subsystems, it is essential to find 

the best solutions in available limited and repeatedly vary-

ing design space.  

Hardpoints are the most fundamental elements of 

MBD model, as they describe and interpret all the model's 

critical positions [14]. In this study, we present the results 

of a project that used a neural network and a genetic algo-

rithm to achieve the K&C targets by defining the optimum 

hardpoints. Research has shown that combining NN and GA 

can effectively create significant results [15]. The hybrid 

NN-GA technique and the traditional RSM approach are 

compared and used to predict optimum hardpoints. The out-

comes of this paper are planned as conducting improved op-

timization studies: 1. according to frequent changes in the 

product development process without the need for re-exper-

imentation and re-analysis; 2. solving the problems requir-

ing assumptions and constraints based on experience, 

mainly by the trial-and-error method of experts, and a solu-

tion is sought by carrying over from previous projects;  

3. with an intelligent learning algorithms solution approach 

that can be easily adapted to when different options are en-

countered that can quickly gather the results at a low cost. 

2. K&C model and validation 

A compact-sized passenger vehicle is used in the 

study, and the complete McPherson front suspension system 

MBD model of the vehicle is created on ADAMS/Car for 

virtual K&C testing. K&C analyses characterize the suspen-

sion system, considering the kinematic properties of the sus-

pension and the deformation due to elastic components. 

K&C analyzes can be specified as leading analyses evalu-

ated for vehicle dynamics, comfort, and handling. In physi-

cal test bench, the examination is performed with the help 

of an activator that moves the wheel or applies force accord-

ing to the analysis type and with a test device that records 

the angles, positions, and kinematic suspension movements 

of the wheel [16]. While performing these analyzes, the goal 

is to finalize the design variables with a loop of process that 

is managed by aligning with all the vehicle subsystems af-

fected by suspension geometry. K&C validation of the pro-

totype vehicle is shared in terms of quasi-static vertical 

wheel travel and steering tests in this paper and the values 

from the K&C analysis are hidden for confidentiality pur-

poses. 

Vertical travel tests include parallel wheel travel 

and opposite wheel travel analysis with wheels activated 
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only on the Z-axis from the contact patch. Parallel wheel 

travel simulates when both wheels move up or down simul-

taneously (e. g., passing over a bump, both suspension 

wheels are articulated through full jounce and rebound val-

ues). The opposite wheel travel analysis mainly controls the 

same outputs by similarly activating the wheel vertically; 

however, while one wheel goes for a complete rebound, the 

other wheel goes to full jounce. This type of analysis is help-

ful to understand, especially the behavior of the suspension 

when making a maneuver. The related K&C characteristics 

for parallel and opposite wheel travel analysis are presented. 

One of the most fundamental K&C analyses is the wheel 

rate curve, as shown in Fig. 1. This curve shows the varia-

tion of the vertical force on the wheel concerning the wheel 

stroke. In the parallel wheel travel, the linear region shows 

the effect of springs. On the left and right sides of the graph, 

it can be seen in which stroke the rebound-stop and the 

bump-stop conditions are active. This analysis also enables 

to check the maximum wheel strokes, as in jounce and re-

bound conditions. It is also possible to evaluate the suspen-

sion hysteresis. In the opposite wheel travel, it is possible to 

check the anti-roll bar effect on the wheel rate curve as the 

component is subjected to a deflection in this test configu-

ration [17]. 

 

a 

 

b 

Fig. 1 Front wheel rate: a) parallel; b) opposite travel 

 

Another principal K&C analysis is toe angle 

change based on the wheel movement, as shown in Fig. 2. 

Due to handling requirements, an understeer response is de-

sired in the passenger vehicles. To achieve this, the front 

suspension must have a toe-out, and the rear suspension 

must have a toe-in angle while driving. Setting up the sus-

pension in this way will increase cornering stability. The toe 

angle aims to counteract the negative effects of wheel cam-

ber and ensure that the wheels roll smoothly and evenly 

while travelling in a straight path. Generally, the expected 

variation is below ±0.5° [18]. This is also called ride steer, 

and targets are defined for the ride steer variation consider-

ing specific strokes of wheel articulation on the vertical axis. 

A lower variation on toe angle improves the straight-line 

stability and tire wear.  

 

a 

 

b 

Fig. 2 Ride steer: a) parallel; b) opposite wheel travel 

Another parameter that can be evaluated with K&C 

analysis is the change in camber angle, as shown in Fig. 3. 

The camber change is aimed to be negative as the dominant 

wheel (usually the front axle) moves upwards (as the load is 

applied to the wheel). To increase the cornering ability, so-

lutions are sought to maximize the contact surface of the 

wheels with the road in suspensions. Generally, the static 

value and variation are in the range of 0°~1° [19]. This anal-

ysis is also called the ride camber. The variation in camber 

angle aims to have a smaller value to help reduce tire wear 

[20]. 

The displacement in the X-axis (as of increasing or 
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decreasing the wheelbase) in response to the vertical move-

ment of the wheels is an essential parameter for comfort per-

formance, especially for longitudinal comfort, as shown in 

Fig. 4. If the vehicle hits an object and the wheels move to-

ward escaping, this is a comfort-enhancing feature. With the 

same logic, if the vehicle is moving in the direction of the 

object as opposed to avoiding it, it can be considered a pre-

liminary analysis that reduces comfort. 

 

a 

 

b 

Fig. 3 Camber variation: a) parallel; b) opposite travel 

 

The change of wheel position on the Y-axis (lat-

eral, wheel track) concerning full jounce and rebound artic-

ulation is also a parameter checked within the wheel travel 

K&C testing, as shown in Fig. 5. Apart from a slight varia-

tion in rebound condition for the toe and camber angle 

change, the complete results are acceptable. It can be indi-

cated that the computational MBD model estimates are sat-

isfactorily correlated and reliable in simulating the vertical 

travel testing. 

The steering analysis covers the K&C characteris-

tics checked during the maximum steering wheel rotation in 

both left and right directions limited by the steering gear 

rack travel. One of the significant parameters in the steering 

is the steering ratio, which is the ratio between the steering 

wheel’s angular displacement to the angular displacement 

of the steered wheels. The camber variation is checked alike 

the vertical wheel travel tests. Lastly, it is also possible to 

check the wheel center location change concerning com-

plete steering wheel angle activation, and the related curves 

can be seen in Fig. 6. Wheel center locus has a critical im-

pact on straight-ahead driving stability. The simulation re-

sults show a good correlation with the bench data. 

 

a 

 

b 

Fig. 4 Wheelbase variation: a) parallel; b) opposite travel 

 

a 

Fig. 5 Wheel centre lateral change: a) parallel; b) opposite 

travel 
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b 

Fig. 5 Continuation 

 

a 

 

b 

Fig. 6 Steering outputs: a) front camber angle change;  

b) wheel centre locus change 

Synthesis is available to present the selected major 

K&C characteristics results according to bench results cor-

relation compared to MBD model, as shown in Table 1. The 

target values for the characteristics are defined by bench-

marking the competitor vehicles, prior experiences and the 

requested vehicle dynamics targets for this specific vehicle 

project. The values for each row have been normalized as 

the maximum target would be 100 % due to confidentiality. 

The wheel rate values are shown based on the physical 

bench result for opposite wheel travel accepted as 100% 

(anti-roll bar effect is the difference between opposite and 

parallel wheel rate). Briefly, the vertical kinematics are in 

target, and a good correlation is maintained with the bench 

testing for both quasi-static vertical travel and steering tests. 

As initial vehicle steering K&C targets have not 

been satisfied for the Ackerman error and the camber angle 

variation, a DOE and NN study is planned to optimize by 

predicting the hardpoints. 

3. Hardpoint optimization by RSM 

In this section of the paper, a design of experiment 

is conducted to find the key hardpoints that most affect the 

camber angle variation and Ackerman error performance in 

steering analysis. Once the key hardpoints are defined, an 

RSM study is conducted to optimize the hardpoints and im-

prove steering kinematics followed by NN and GA in the 

next chapter. In ADAMS/Car, two design objectives are cre-

ated for Ackerman error and camber angle variation and in 

ADAMS/Insight, the design matrix is created by selecting 

seven hardpoints that include twenty-one factors of the front 

suspension assembly. The selected hardpoints are the X, Y 

and Z coordinates of the lower control arm (front and rear 

linkage with subframe and outer linkage with the knuckle), 

McPherson strut lower knuckle connection, top mount, and 

outer and the inner steering gear tie-rod connections. 

DOE screening with a linear model and fractional 

factorial design type, 232 runs are completed. The screening 

objective is also realized with the Plackett-Burman design 

type linear model to check whether this approach can result 

with similar critical factors. As the Plackett-Burman re-

quires low number of trials, the time needed to accomplish 

the task is considerably less. The five most influential fac-

tors are selected for optimization based on the results, as 

shown in Table 2. The points are specifically, outer tie-rod 

(X and Y coordinates), knuckle linkage of the lower control 

arm (Y coordinate), inner tie-rod (X coordinate) and top 

mount (X coordinate). 

According to results realized with 24 runs with 

Plackett-Burman, it is seen that the key parameters having 

more than 10 % effect on two design objectives are the same 

five hardpoints defined in the fractional factorial study. This 

shows that Plackett-Burman can be a feasible selection for 

sensitivity analysis on McPherson K&C suspension tests. 

Goodness-of-fit is expressed as positive for both screening 

objectives utilizing coefficient of determination, R2 (R-

Squared) and R2adj (Adjusted R-Squared), as the values are 

close to 1, as shown in Table 3. It is requested an R2adj 

value of more than 0.85 for similar K&C activity [21]. 

Ackerman error and the camber angle variation is 

first optimized with the DOE response surface objective 

method to achieve values below the maximum. The five fac-

tors used are the hardpoints defined by the DOE screening 

method. Since there is a tight zone in design environment 

point of view for the vehicle, the values available for each 

factor (hardpoint coordinates) are within the +/- 5 mm 

range. The response surface approach combines statistical 

experimental designs with empirical model construction us-

ing regression for optimization. DOE's primary concept is 

to diversify all relevant parameters concurrently throughout 

a series of prepared trials and integrate the findings using a 

mathematical model [22]. 
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Table 1 

Vehicle kinematics & compliance vertical travel and steering tests performance table 

Analysis K&C Characteristic Min. target Max. target K&C bench MBD 

Parallel wheel travel 

Ride steer variation at +10 mm bump 35 % 100 % 53 % 63 % 

Ride steer variation at +40 mm bump 24 % 100 % 40 % 43 % 

Ride camber variation at +40 mm bump 43 % 100 % 46 % 50 % 

Caster angle 73 % 100 % 87 % 96 % 

Parallel wheel rate at ground - - 43 % 42 % 

Opposite wheel travel 

Opposite wheel rate at ground - - 100 % 104 % 

Anti-roll bar effect - - 57 % 62 % 

Ride steer variation at +10 mm bump 35 % 100 % 37 % 43 % 

Ride steer variation at +40 mm bump 24 % 100 % 26 % 27 % 

Ride camber variation at +40 mm bump 43 % 100 % 69 % 51 % 

Steering 

Steering ratio 81 % 100 % 92 % 93 % 

Caster trail 83 % 100 % 83 % 86 % 

Kingpin inclination 80 % 100 % 84 % 85 % 

Ackerman error 56 % 100 % 119 % 126 % 

Kingpin offset 83 % 100 % 95 % 98 % 

Camber angle variation 65 % 100 % 120 % 12 8% 

Table 2 

Sensitivity analysis 

 
Fractional factorial 

% Effect 

Plackett-Burman 

% Effect 

Ackerman error   

tie-rod outer, Y 36.7 32.73 

lca outer, Y 30.34 25.28 

tie-rod inner, X 10.5 11.48 

Camber angle   

tie-rod outer, X 20.9 18.79 

lca outer, Y 15.46 12.93 

top mount, X 14.47 14.06 

tie-rod outer, Y 13.69 10.78 

Table 3 

Goodness-of-fit results for screening analysis 

 
Fractional factorial Plackett-Burman 

R2 R2adj R2 R2adj 

Ackerman error 0.999 0.9883 0.9926 0.9771 

Camber angle 0.9983 0.9801 0.9865 0.9581 

 

The DOE design matrix is created using three dif-

ferent methods. Quadratic central composite faced (CCF), 

quadratic Box-Behnken, and linear interactions full facto-

rial models conduct the optimization study. Using a full fac-

torial design in quadratic is very costly because of the high 

number of simulations; hence the CCF and Box-Behnken 

are checked if these models can show promising results. The 

optimized hardpoints are found by defining the cost function 

as the squared sums of targeted K&C characteristics. After 

the definition of optimized (by regression) hardpoints, the 

coordinates are further inserted into the MBD model by ad-

justing the relevant hardpoints, and with the virtual test rig, 

the K&C testing is again realized. The results from the MBD 

simulation test rig are considered as the as the final results 

indicating each method's performance as shown in Table 4. 

CCF design type with quadratic model only re-

quired 31 runs to accomplish the task. Compared to the 

baseline front suspension geometry, 14.4% improvement on 

Ackerman error and 25.7% improvement on camber varia-

tion is achieved. However, Ackerman error remained over 

the target. In contrast, the Box-Behnken design type with a 

quadratic model required 46 runs to finalize the objective. 

Compared to the baseline front suspension geometry, 

23.84% improvement on Ackerman error and 24.45% im-

provement on camber variation is achieved. Both quadratic 

models show lower errors, hence exporting similar results 

as the MBD software. The results are further compared with 

linear interactions full factorial study that has run 32 times. 

Full factorial has presented comparable improvement with 

fewer runs proposed by Box-Behnken despite a worse pre-

diction performance. For both the Ackerman error and the 

camber angle variation, the values are normalized to 1 as a 

maximum allowable target for each specific characteristic 

enabling confidentiality of the data. The baseline suspension 

has the Ackerman error of 1.26 and camber angle variation 

of 1.28 as can be seen in Table 1. 

Table 4 

Optimization results of RSM 

 CCF 
Box-

Behnken 

Linear full 

factorial 

Ackerman error 

Predict 1.074 0.958 0.975 

Test-rig 1.081 0.962 0.987 

Error 0,68 % 0.39 % 1.15 % 

Improve 14,4 % 23.84 % 21.84 % 

Camber angle var-

iation 

Predict 0.956 0.97 0.96 

Test-rig 0.951 0.967 0.952 

Error -0.53 % -0.27 % -0.82 % 

Improve 25.7 % 24.45 % 25.61 % 

4. Neural network approach for hardpoint optimization 

A neural network is a mathematical model of how 

the brain works neurologically. It mathematically models 

the web of linked nerve cells to imitate the brain's learning 

process. A neural network is a data-driven model of inter-

connected items called neurons included in layers, and ade-

quate input and output data are necessary for neural network 

modelling. An input and output layer with the hidden 

layer(s) make up a conventional neural network [23]. The 

network can calculate complicated correlations between the 

input and output variables thanks to the neurons in the hid-

den layer having configurable weights. Adjusting weights is 

realized by the process called “training”, and it is similar to 

calculating the regression coefficients in the response sur-

face matrix. A supervised learning technique with cross-val-

idation is used for this purpose [24]. The weights are chosen 

at random at first, and then an iterative process is used to 
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discover the weights that minimize the variances between 

the real and the network outputs. 

The feed-forward neural network is the most pop-

ular neural network architecture. A feed-forward network is 

one in which information or signals are only sent in one di-

rection, from input to output. Any nonlinear continuous 

function may be approximated precisely using a three-lay-

ered feed-forward neural network with a back-propagation 

method [25]. The backpropagation algorithm is the most of-

ten utilized. The backpropagation learning algorithm em-

ploys a gradient search strategy to reduce the network's 

mean square error [26]. In this training procedure, the error 

between the output neurons' results and the actual outputs is 

calculated and transmitted back through the network. The 

algorithm modifies the weights in each successive layer to 

decrease inaccuracy. This process is continued until the dif-

ference between the actual and calculated outputs meets a 

pre-determined error specification. In this study, the neural 

network model included two output neurons as Ackerman 

error and the camber angle change, and five input neurons 

as outer tie-rod (X and Y coordinates), knuckle linkage of 

the lower control arm (Y coordinate), inner tie-rod (X coor-

dinate) and top mount (X coordinate). 

The strength of ANN over RSM comes from the 

fact that it can learn from prior data, does not need the defi-

nition of a suitable fitting function in advance, and has uni-

versal approximation capacity, which means it can approxi-

mate practically any non-linear functions [27]. For optimi-

zation, neural network models could be treated as objective 

functions. However, optimizing a neural network model us-

ing traditional approaches such as gradient-based methods 

is challenging due to the difficulty of calculating the model's 

derivatives. Genetic algorithms, founded on the concepts of 

evolution through the natural selection approach, have 

shown to be an effective search and optimization tool for 

problems with non-continuous or non-differentiable objec-

tive functions. Using a population, the genetic algorithm ex-

amines all the solution space. At first, a population is created 

at random. An objective function is used to assess each in-

dividual’s fitness. The neural network models are used as 

the objective function in this manner [28]. Following the 

conclusion of the fitness evaluation, genetic algorithm pro-

cedures such as mutation and crossover are conducted on 

individuals chosen based on their fitness to generate the next 

generation. This method is repeated until an optimal solu-

tion is discovered. Implementation of genetic algorithms as 

a problem-solving and optimization tool is possible and 

MATLAB R2021a has been used to implement the NN 

models and genetic algorithms presented in this study. 

Defining the network's topology is the initial stage 

in developing a neural network modelling technique. Be-

cause the topology of a neural network is mainly specific to 

the problem, there is no concrete set of rules for the design 

parameters. As a result, choosing design parameters for a 

neural network is frequently a combination of trial and error. 

The neural network configuration developed in this work 

has a 5-14-2 structure: five input neurons, fourteen neurons 

in one hidden layer and two output neurons, as shown in 

Fig. 7.  

For each dataset, 70% of the data are used as train-

ing, 15% for the test and 15% for the validation. The training 

is realized with Bayesian regularization, and the perfor-

mance is evaluated in terms of mean squared error (MSE) 

and Pearson determination of coefficient R, as shown in Ta-

ble 5. 

  

Fig. 7 Schematic of the NN architecture utilized 

Table 5 

Performance of NN models 

Dataset CCF 
Box-

Behnken 

Linear full 

factorial 

Number of Experiment 31 46 32 

Training (MSE) 3.60e-17 4.60e-15 6.64e-15 

Testing (MSE) 0.001208 0.000707 0.000202 

Training (R) 1 1 1 

Testing (R) 0.99902 0.99645 0.99774 

All (R) 0.99985 0.99962 0.99986 

 

Cross-validation is a statistical technique to evalu-

ate networks by partitioning the data into subsets of speci-

fied ratios. In this research, a hold-out method for cross-val-

idation is used by partitioning the data into subsets, which 

are the data used for the test, validation and the other for the 

neural network model training [29]. This technique is pre-

ferred since the data set is almost rare and used for training, 

testing, and validation. It is seen that the accuracy of the net-

work is higher, there is no over-fitting, the network does not 

have a complex structure, and the data is also rare. The ANN 

model and predictions are saved in this study when the test's 

Pearson correlation co-efficient R is higher than 0.99 and 

gets better mean square error (MSE) values. The reason for 

choosing MSE besides the R-value is to prevent over-fitting 

and increase accuracy. The present neural network model 

offers an NN model with higher prediction ability. The ex-

perimental results related to RSM studies are taken and used 

as the input set for neural network models. NN calculated 

predictions are compared to the experimental data as shown 

in Figs. 8 and 9. As it can be seen from the related curves, 

the NN model perfectly fits the training data, and the pre-

dictions are quite close to the experimentations in the vali-

dation dataset. This demonstrates the neural networks' po-

tential as an empirical model. 

The surrogate-based optimization method plays an 

essential role in the optimization processes, especially when 

the optimization model is established based on computation-

ally expensive evaluations [30]. NN has the advantage to 

provide better predictions in case of uncertainties and noise 

in data sets [31]. It is also preferable to predict the outcomes 

in case of out of design space evaluations since NN can learn 

from previous cases,   and  it may  act efficiently  in  case of 
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                                  a                                                              b                                                                   c 

Fig. 8 NN model with Box-Behnken dataset performance: a) training; b) test; c) all data 

 

                                                   a                                                                                                 b  

Fig. 9 NN with Box-Behnken dataset performance: a) error histogram; b) learning curve 

predictions for new cases. It is possible to start the optimi-

zation after an acceptable neural network model has been 

developed. 

The ideal values of Ackerman error and camber an-

gle change for the case studied in this paper are found by 

optimizing the input space of the NN model constructed us-

ing a genetic algorithm. The NN responses effectively con-

verged to the optimal values below 1000 generations with a 

population of 500 and a crossover rate of 0.8. Based on the 

results plotted on the Pareto front curve in Fig. 10, the solu-

tion pair with the minimum sum of the squared Ackerman 

error and the camber angle variation has been considered as 

the optimization result as realized for response surface 

method. 

The optimization study with a NN model with full 

factorial dataset has improved the Ackerman error by 

28.27% and the camber angle variation by 26.83%, resulting 

in  better  improvement  than  all the  RSM methods.   This 

 

Fig. 10 Pareto front of NN model with GA trained on full 

factorial dataset 
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method also showed lower error than the RSM linear inter-

actions full factorial method. The study with the CCF da-

taset has improved the Ackerman error by 26.39% and the 

camber angle variation by 26.76%, resulting in better per-

formance than all the RSM methods in terms of improve-

ment and prediction error. The study with the BB dataset has 

improved the Ackerman error by 23.99% and the camber 

angle variation by 28.38% with similarly better improve-

ment performance than RSM methods as can be seen from 

the Table 6. The total cost is evaluated as in the DOE RSM 

section, obtained by the squared sum of Ackerman error and 

the camber angle variation values gathered from the virtual 

test rig. Consequently, all NN models have performed better 

than RSM methods using the same dataset for training. 

5. Conclusions 

The developed MBD simulation model correlates 

to physical K&C test bench data in this paper. The model 

shows satisfactory results for the suspension kinematics in 

overall K&C compact-sized passenger vehicle McPherson 

front suspension characteristics. The most effective geome-

try coordinates are found for Ackerman error and the cam-

ber angle change, that are out of target, within suspension 

steering kinematics by DOE screening. Further hardpoint 

optimization is done with the DOE RSM and NN on the se-

lected vital hardpoints. Different strategies for screening 

and optimization studies are evaluated. Defining Plackett-

Burman for screening and NN model trained using a DOE 

dataset with GA optimization is selected as the primary pro-

cess since neural network modelling shows promising re-

sults over the conventional regression methods. Compared 

to traditional RSM methods, NN models trained with the 

same design of experiment datasets could offer 14% more 

improvement on Ackerman error and 5,2 % more improve-

ment on the camber angle variation. 

Table 6 

Optimization results of NN with GA 

 
NN with 

CCF 

NN with 

Box-

Behnken 

NN with 

full 

factorial 

Ackerman 

error 

Predict 0.93 0.962 0.899 

Test-rig 0.929 0.96 0.906 

Error -0.13% -0.25% 0.74% 

Improve 26.39% 23.99% 28.27% 

Camber an-

gle varia-

tion 

Predict 0.938 0.919 0.932 

Test-rig 0.937 0.917 0.937 

Error -0.12% -0.22% 0.52% 

Improve 26.76% 28.38% 26.83% 

 

Since finding the optimum hardpoints is a com-

plex task with a limited design space available from the ve-

hicle, engineers must find the best outcomes out of the avail-

able design environment. The optimization with NN trained 

models shows improvement on Ackerman error and on cam-

ber angle change that is not achievable with the RSM meth-

ods within +/- 5 mm design space range for the critical hard-

points of the baseline front suspension. Consequently, it is 

shown that the hybrid NN-GA technique proposed in this 

paper is a promising alternative to the usual RSM approach 

for the modelling and optimization of K&C characteristics 

of vehicle suspensions. 
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G. Ağakişi, F. Öztürk 

KINEMATICS & COMPLIANCE VALIDATION OF A 

VEHICLE SUSPENSION AND STEERING 

KINEMATICS OPTIMIZATION USING NEURAL 

NETWORKS 

S u m m a r y  

Physical and virtual K&C analyses are performed 

to achieve the vehicle dynamics targets by finding the opti-

mum variables such as the position of hardpoints or stiff-

nesses of bushings. However, finding appropriate design 

variables that meet all the aims is challenging. This paper 

evaluates a hardpoint optimization approach to attain sus-

pension K&C characteristic objectives with the design of 

experiments, neural networks, and genetic algorithm, based 

on a reference compact-sized prototype vehicle. The MBD 

model correlation is provided to optimize the hardpoints to 

improve the vehicle's steering kinematics concerning 

Ackerman error and camber angle variation that are out of 

target in baseline suspension. The results showed that NN 

based optimization strategy to define the hardpoints has sig-

nificantly improved targeted characteristics compared to 

conventional response surface methods in the limited design 

space. 

Keywords: steering kinematics, neural networks, hardpoint 

optimization. 
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