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1. Introduction 

Engineering design process generally includes the 

phases of task clarification, conceptual design, embodiment 

design, and detail design. Especially, during the last two 

phases, the design optimization has a significant role for re-

search and development activities. The important challenge 

in the design optimization process is that there is usually no 

any analytical expression between design inputs (variables) 

and outputs (responses). This situation makes it more diffi-

cult to conduct the design optimization process when com-

pared to the situations including analytical expressions. To 

overcome the challenge, the response surface methodolo-

gies that relies on the implementation of an optimization 

technique along with a response surface or surrogate model 

representing the experimental or simulated input-output 

data has been emerged [1, 2]. These methodologies are also 

known to be surrogate model-based optimization methodol-

ogies. The surrogate-based design optimization method has 

received an extensive attention in the recent years due to its 

CPU cost efficiency, and its practical usage [3-6].  

To conduct the surrogate-based design optimiza-

tion method, it could be suggested to follow three main steps 

that are the data sampling using design of experiment, con-

structing a surrogate model based on the sampled data 

points, and realizing the design optimization based on the 

surrogate model by using a specific optimization technique. 

There are several researches on the surrogate-based design 

optimization method in the literature. In the most of the re-

search, the Latin hypercube sampling (LHS) to implement 

the Design of Experiment (DoE), and the Artificial Neural 

Network (ANN) and the Kriging model to build the surro-

gate model, are used. LHS, which relies on Monte Carlo 

Simulation (MCS), is more useful for complex design prob-

lems because of its less computational cost. Kriging model 

or method is known to be one of the most accurate tech-

niques for fitting a model. ANN, which is another accurate 

and popular technique for building a surrogate model, have 

been still used for modelling nonlinear problems. From 

these aspects mentioned above, Zong et al. [7] present a de-

sign optimization of a nuclear main steam safety valve based 

on an E-AHF ensemble surrogate model. In the work, an 

optimized LHS and Computational Fluid Dynamics (CFD) 

simulations are performed. As an optimization technique, 

the k-sigma method is used. From other similar works, 

Meng et al. [8] propose an enhanced Collaborative Optimi-

zation (CO) method using LHS and the Kriging model. Luo 

et al. [9] implement the multidisciplinary optimization of an 

underwater vehicle based on dynamic surrogate model. The 

dynamic surrogate model is based on the radial basis func-

tion and LHS. The simulated annealing algorithm is used 

as  as the optimization algorithm. Tang et al. [10] put for-

ward an optimization method based on a dynamic adaptive 

surrogate model, which is applied to the drag reduction of 

the transonic supercritical airfoil and wing. For surrogate 

model and optimization method, Kriging model and evolu-

tionary algorithms are used respectively. Lee et. al [11] in-

troduce an experimental surrogate-based design optimiza-

tion of wing geometry by utilizing Efficient Global Optimi-

zation (EGO) algorithm. Qiao et al. [12] propose a new sur-

rogate model sequential refinement and optimization frame-

work for design and optimization of dynamic systems. In 

this proposal, Kriging model is taken as a basis model. LHS 

is used for sampling. Nonlinear Programming (NLP) is used 

as optimization method. As a different work from the works 

mentioned above, Hu et al. [13] implement design optimi-

zation of air foil in ground effect based on free-form defor-

mation utilizing ANN and Genetic Algorithm (GA). Herein, 

the ANN is used to build the surrogate model representing 

relationships between the design inputs and outputs. Also, 

the best design solution is validated with the result of the 

CFD simulation. As another different work, Lye et al. [14] 

put forward an algorithm for Partial Differential Equations 

(PDE) constrained optimization by combining the gradient 

based optimization algorithms and deep neural network. 

From this literature review, it can be possible to see 

that implementing the Kriging model and ANN along with 

the sampling methods such as MCS or LHS for design opti-

mization is proven to be efficient and effective for design 

problems. In this work, a systematic method to conduct the 

surrogate-based design optimization is proposed by utilizing 

ANN and MCS. To show its applicability, the design opti-

mization of a wafer dough blade that is an important com-

ponent in the food industry is carried out.  

The rest of this work is presented as follows: In 

Section 2, the deterministic design optimization is ex-

plained. In Section 3, the flowchart of design optimization 

is described in a systematic manner. In Section 4, a case 

study is conducted to show the applicability of the system-

atic way for design optimization. In Section 5, the results of 

the case study are evaluated, and a discussion about the ef-

fectiveness of the proposed systematic optimization ap-

proach is presented.  

2. Definition of deterministic design optimization 

Design optimization can be usually classified as 

two groups: deterministic and stochastic design optimiza-
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tion. Stochastic design optimization has been used for de-

sign problems including random design variables or param-

eters. Due to its practical and effective usage, herein the de-

terministic design optimization is taken as a base method. In 

this work, all of design variables are assumed to be deter-

ministic. The definition of a deterministic design optimiza-

tion can be given as follow: 
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3. The design optimization method followed 

In this section, the design optimization method fol-

lowed is explained in four steps by following the flowchart 

given in Fig. 1.  
 

      

Fig. 1 The flowchart of the design optimization method fol-

lowed 

 

Step 1. First, a design problem is chosen. Second, 

the critical design variables or inputs of the design problem 

are determined by a designer or an engineer. Finally, the 

critical design responses or outputs corresponding to the de-

sign problem are identified to effectively govern the optimi-

zation process.  

Step 2. In this step, the process of designing of ex-

periment and finding the design responses by using FEM are 

realized. To that end, first, the ranges of design variables, 

such as the lower and upper values of the variables, are iden-

tified according to the constraints of the design problem. 

Second, the process of design of experiment is carried out 

by using the full factorial technique. Finally, the design re-

sponses corresponding to the design inputs are found by 

FEM simulations. Herein, SolidWorks Simulation is used 

for the finite element analysis of the design points.  

Step 3. This step includes searching an ANN-based 

optimum network representing the relationships between 

the design variables and responses. For that purpose, the in-

put-output design data is separated as train and test data, and 

thereafter several ANN networks are tested according to the 

criteria of R2 (coefficient of determination). As a result, the 

ANN network having the highest R2 value for both train and 

test data is chosen as an optimum ANN model.  

Step 4. In the final step, an optimum design is 

found by following this way: first, the implementation of a 

large number of MCS realizations to generate of a large 

number of design input values; second, finding of the design 

responses corresponding to the design inputs through the 

optimum ANN model; and third, the optimum design is 

searched depending on an objective function defined. To 

validate the optimum design found based on the ANN 

model, the optimum design is analyzed via the FEM module 

of SolidWorks Simulation, and the two design responses are 

compared. If the relative difference between two responses 

is so high, then the number of MCS realizations is increased, 

or a new optimum ANN model is searched. All of these 

steps are repeated until the desired criteria are satisfied.  

4. A case study 

To explicitly show applicability of the proposed 

design optimization method, design optimization of a wafer 

dough blade was implemented. The design variables DV, 

fixed dimensions F, and their initial values are presented in 

Fig. 2. In this example, six design variables are considered 

as critical variables, which are also known to be design in-

puts. Other dimensions are assumed to be fixed. Herein, the 

mass of the design, maximum Von Mises stress on the de-

sign, and the surface area of one blade are determined to be 

the design responses or outputs. The main aim in the opti-

mization process is to minimize the mass and stress for both 

cost efficiency and better strength, and to maximize the sur-

face area for better mixing performance. 

 

Fig. 2 The design variables and their initial values of one 

blade (F: Fixed dimension, DV: Design variable) 

 

The design variables and responses to be used in 

the design optimization process are presented in Table 1. 

To realize design of experiment prior to the finite 

element analysis, the ranges of the design variables are iden-

tified as given in the Table 2, and accordingly the full facto-

rial technique is applied. At the result of the process of de-

sign of experiment, totally, a set of 324 design points includ-

ing design variable values is obtained.  

With the regard to the finite element analysis of the 

design, the boundary and loading conditions are established 

Initial design 

Selecting design variables and design responses 

or outputs 

Designing of experiments including the variables 

and finding responses by using FEM 

Finding an ANN-based optimum network based 

on the data consisting the variables and responses  

Finding optimum design depending on the given 

objectives by utilizing ANN and MCS  

Satisfies  

the objectives? 

Optimum design 

Yes 

No 
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as presented in Fig. 3. A pressure of 0.015 MPa stemming 

from dough pressure occurred inside the vessel is applied to 

the four surfaces of the blade. The shaft center hole is fixed 

when the pressure is applied to the surfaces of the blade. 

Under the boundary and loading conditions, the finite ele-

ment analysis of all of the design points is conducted via 

SolidWorks Simulation. Based on the conditions, the design 

response corresponding to each design point are found one 

by one. 

Table 1 

The design variables and responses to be used in the design 

optimization process 

Variables/responses Symbol 

Distance, mm DV1 

Distance, mm DV2 

Distance, mm DV3 

Distance, mm DV4 

Thickness, mm DV5 

Diameter, mm DV6 

Mass, g DR1 

Stress, MPa DR2 

Surface area, mm2 DR3 

Table 2 

The initial values and ranges of the design variables 

Variable, mm Initial value Range 

DV1 110 90  DV1  130 

DV2 65 55  DV2  75 

DV3 70 70  DV3  90 

DV4 40 30  DV4  40 

DV5 3 3  DV5  6 

DV6 11 7  DV6  12 

 
Fig. 3 The boundary and loading conditions for the finite el-

ement analysis of the design 

To find the best promising ANN model, the set of 

324 design points is separated as train and test data with the 

ratios of 70% and 30%, respectively. 97 of 324 the data set 

is used to test the ANN model, and the rest of the data set is 

used to train the ANN model. 

The best promising ANN model is based on the al-

gorithm of feed forward back propagation. The best ANN 

model found has three hidden layers, having 18, 24 and 16 

neurons, respectively. In Fig. 4, the architecture of the best 

ANN model found in this work is presented. Moreover, the 

minimum R2 value achieved during finding the optimum 

ANN model is 0.9656 for the testing of the stress data, 

which can be accepted to be a reasonably sufficient R2 value 

for conducting the design optimization process. R2 values 

obtained for both the train and test data of the three design 

responses are denoted in Fig. 5. In this Figure, it can be 

clearly seen that there is a strong correlation between the 

observed data from FEM simulation and the predicted data 

by ANN model. 

 

Fig. 4Architecture of the best ANN model found 

 

To find the optimum design, first, an objective 

function is defined as follows: 
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In this definition, the design responses (DR1, DR2 

and DR3) are assumed to have importance percentages of 

65%, 30% and 5%, respectively. Accordingly, it is aimed to 

maximize the objective function. After the objective func-

tion and constraints are constructed, MCS with 2,000,000 

realizations are conducted. Thereafter, the optimum values 

of the design variables corresponding to the maximum ob-

jective function achieved are found. However, it is required 

to compare the design responses found based on the ANN-

MCS model, and those obtained from SolidWorks Simula-

tion in order to ensure that the best design is accurate.  

In Table 3, the comparison of the design response 

results predicted by ANN-MCS and the results analyzed by 

SolidWorks Simulation is given.  As seen in the Table 3, 

there is a good agreement between the response results of 

the ANN-MCS method and those of the FEM-Simulation so 

that the ANN-MCS model is sufficiently accurate to predict 

the true responses. 

To clearly see the exact improvements on the ini-

tial design, it is required to compare the values of design 

responses of both initial design and optimum design. The 

comparison is presented in Table 4. From this Table, it can 

be concluded that a significant decrease in the maximum 

stress (nearly 66%) is obtained whereas there is a reasonable  

difference in both the mass and surface area. 

Fixed Support 

Pressure: 0.015 MPa 
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                                  a                                                            b                                                              c 

       

                                 d                                                              e                                                               f 

Fig. 5 R2 values obtained for both the train and test data of three design responses: mass (a, b); stress (c, d) and surface area 

(e, f), respectively  

 

a 

 

b 

Fig. 6 Solid models of the blade: for initial design (a) and 

for optimum design (b) 

Table 3 

Validation of the followed method of design optimization 

Design re-

sponse 

Optimum design, 

ANN-MCS 

Optimum design, 

FEM 

Accu-

racy,% 

DR1, g 2527.2 2553 -0.01 

DR2, MPa 52.4 49.6 0.06 

DR3, mm2 14668.3 14502.5 0.01 

Table 4 

Comparison of the values of design responses of both ini-

tial design and optimum design 

Symbol Initial design Optimum design Difference,% 

DR1, g 2510.380 2553 +0.10  

DR2, MPa 144.7000 49.6 -0.66   

DR3, mm2 14839.47 14502.5 -0.02   

 

The values of design inputs of both initial design 

and optimum design are presented in Table 5. From the Ta-

ble, it is possible to see the differences between the values 

of design inputs. The input values of optimum design should 

be rounded up to the nearest values for manufacturing cost. 

To show the visual difference between initial and 

optimum designs, the solid models of the initial and opti-

mum designs are illustrated in Fig. 6. From these solid mod-

els, the optimum design has more strength than the initial 

design because the welding length of the optimum design is 

larger than that of the initial design. 

Table 5 

The values of inputs of initial and optimum design 

Symbol Initial design Optimum design 

DV1 110 93.2495 

DV2 65 73.0456 

DV3 70 77.1656 

DV4 40 31.3457 

DV5 3 4.0232 

DV6 11 11.9794 

 

5. Conclusions 

In this work, the design optimization of a wafer 

dough blade was realized by following a method combining 

ANN and MCS, which has four steps. For that purpose, the 

best ANN model having R2 values greater than 0.96 for both 

the testing and training process of the model was found. 

Based on the ANN model, MCS with 2,000,000 realizations 

were conducted by assigning design inputs values depend-

ing on their specified ranges, and by getting design re-

sponses corresponding to the inputs. After the MCS process, 

the variable values of the optimum design were found sub-

ject to the aim-specific objective function. Also, to ensure 

accurate values of the best design found via ANN-MCS 

method, the responses found based on the ANN-MCS 

model, and the responses obtained from SolidWorks Simu-

lation were compared. From this comparison, it can be said 

that there is a good agreement between the response results 

of the ANN-MCS method and those of the FEM-Simulation. 

When the results of the initial and optimum designs were 

compared, there was a significant decrease in the maximum 

stress (nearly 66%) whereas there was a reasonable low dif-

ference in both the mass and surface area. With the followed 

method within this paper, it can be possible to take into ac-

count the experimental data instead of analytical data in a 
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design problem. Moreover, the followed method provides 

engineers with a practical and systematic way to find the 

optimum design during engineering design process. In the 

future, it can be possible to improve the method followed, 

especially in large-scale design problems, by using Latin 

Hypercube Sampling to decrease the period of design opti-

mization process.  
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M. Mayda, M. Bitkin 

DESIGN OPTIMIZATION OF A WAFER DOUGH 

BLADE USING ARTIFICAL NEURAL NETWORK 

AND MONTE-CARLO SIMULATION 

S u m m a r y 

In this work, a systematic method to conduct the 

surrogate-based design optimization is proposed by utilizing 

Artificial Neural Network and Monte Carlo Simulation. To 

show its applicability, the design optimization of a wafer 

dough blade that is an important component in the food in-

dustry is carried out. In the optimization problem, design 

variables or inputs are totally six variables including dis-

tances, diameter and thickness, and design responses or out-

puts are the blade mass, the maximum stress occurred on it, 

and its surface area. When the results of the initial and opti-

mum designs are compared, there is a significant decrease 

in the maximum stress (nearly 66%) whereas there was a 

reasonable low difference in both the mass and surface area. 

Thanks to the proposed method, it can be possible to take 

into account the experimental data instead of analytical data 

in a design problem. Moreover, the followed method pro-

vides engineers with a practical and systematic way to find 

the optimum solution for even nonlinear problems needs to 

be solved during engineering design process. 

Keywords: design optimization, wafer dough blade, 

Monte-Carlo simulation, artificial neural network. 
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