
 51 

ISSN 1392−1207. MECHANIKA. 2023 Volume 29(1): 51−58 

Passivity-Based Adaptive Robust Super-Twisting Nonlinear Control for 

Electro-Hydraulic System with Uncertainties and Disturbances 

Haohao DU*, Chenghu JING**, Bingsheng YAN***, Chunbo LIU**** 
*School of Mechanical and Electronic Engineering, Henan University of Technology, Zhengzhou 450001, China  

**School of Mechanical and Electronic Engineering, Henan University of Technology, Zhengzhou 450001, China  

E-mail: chjinghit@yeah.net (Corresponding author) 

***School of Mechanical and Electronic Engineering, Henan University of Technology, Zhengzhou 450001, China  

****School of Mechanical and Electronic Engineering, Henan University of Technology, Zhengzhou 450001, China  
 

  http://dx.doi.org/10.5755/j02.mech.32405 

 

1. Introduction 

Electro-hydraulic load simulator (EHLS) is a kind 

of hardware-in-the-loop equipment an important equipment, 

which is employed to replicate the complex load character-

istics, so as to detect technical performance of the rocket 

servo mechanism [1-3]. Therefore, it is of great significance 

to develop the electrohydraulic load simulator with high 

precision and quick response in order to further improve the 

dynamic performance of rocket servo mechanism However, 

EHLS is subjected to motion disturbance from the tested ac-

tuator system [4-6]. Great attentions have been paid for im-

proving performance of EHLS under actuator’s motion dis-

turbance [7-10]. However, the problem of actuator’s motion 

disturbance has not been well solved. In the works [11, 12], 

a kind of electro-hydraulic load simulator was developed. It 

makes use of friction to reproduce torque such that the load 

simulator and the tested actuator system are decoupled. 

With the development of industry, the performance require-

ments of the novel EHLS are more and more high. Therefore, 

advanced control algorithms are shown to be a necessity for 

the novel EHLS. In [11], an adaptive state observer based 

adaptive backstepping-flatness control was proposed for 

torque tracking of the novel EHLS. In [12], an adaptive ex-

tended state observer-based flatness nonlinear control was 

developed for torque tracking of the novel EHLS. However, 

the uncertainties of system parameters are not considered in 

these works.  

The backstepping method is an effective approach 

to ensure stability and performance in a global sense for 

controller design of nonlinear systems. It is widely applied 

to electro-hydraulic servo systems [13-16]. Backstepping 

design process is complex and the computation is large. Pas-

sive theory that uses passivation to achieve the control ob-

jective is also an effective method to ensure stability and 

performance in a global sense for controller design of non-

linear systems [17]. Compared with backstepping approach, 

passive-based controller is more simple and intuitive [18]. 

This technique has been successfully applied to a nonlinear 

electro-hydraulic systems and was shown to be very effec-

tive [19,20]. 

Certainty equivalence adaptive law was always in-

troduced to backstepping controllers through Lyapunov 

functions to account for parametric uncertainties [21-23]. 

But, the certainty equivalence adaptive approaches only es-

timate constant or slow time-varying parameters and dis-

turbances. Sliding mode control (SMC) is one of the most 

promising robust control techniques to reject time-varying 

disturbances and uncertainties [24,25]. To handle parame-

ter uncertainties and disturbances, adaptive backstepping 

sliding mode controller [26] were proposed for electro-hy-

draulic systems. But chattering is caused by sliding mode 

controller, which can degrade the closed-loop system per-

formance [27, 28]. Higher order SMC has been emerged that 

alleviates chattering. Super twisting algorithm (STA) has 

been proved to be effective HOSM approach for relative de-

gree one system [29, 30]. However, it only applies to rela-

tive degree one system for alleviating chattering. 

Motivated by the above discussions, a passive-

based adaptive robust super-twisting nonlinear controller is 

proposed by combining passive approach, adaptive law and 

super-twisting control to improve the torque tracking of the 

novel EHLS. The proposed control strategy was designed 

by recursive design approach. Passivity theory and Lya-

punov function guarantee the stability of this electro-hy-

draulic control system. In the process of controller design, 

the adaptive algorithm and super-twisting control are re-

spectively designed in the two subsystem to solve the corre-

sponding uncertainties and disturbances.   

2. Dynamic models and problem formulation 

In general, the load torque for actuator testing can 

be generated by the deformation of elastic connecting shaft, 

which is determined by the position between the load actu-

ator and tested actuator. So the tested actuator’ motion is the 

key problem to achieve good loading torque tracking for 

conventional EHLS. Friction torque may be generated 

through relative rotation of two objects in contact with each 

other. And friction torque may be used to simulate load 

torque. The novel EHLS shown in Fig. 1 is developed. The 

basic components in the electro-hydraulic friction load sim-

ulator are hydraulic cylinders, hydraulic power, servo valve, 

friction plates, torque sensor, hydraulic swing motor and 

electric motor.  

The friction disk A2 and B2 can rotate along with 

the shaft and move along the shaft. The electric motor needs 

to keep rotating all the time when the actuator is tested. To 

obtain bidirectional motion, the gear set is used to generate 

rotation in different directions.  So the friction disk A1 and 

B1 are respectively rotating by gear set transmission. To 

generate friction, Friction disk A1 and A2, Friction disk B1 

and B2 must keep rotating relatively all the time. The bidi-

rectional friction torque that results from rotary friction 

pairs acts on the shaft of tested actuator to simulate load. 

The pressure on the friction plate can be adjusted by valve-
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controlled hydraulic cylinders, so as to regulate loading 

torque. Then the actual loading torque from torque sensor is 

fed back to controller to achieve the torque servo control. 

The control goal is to make the friction torque track any 

specified reference torque as closely as possible by adjust-

ing the output pressure of hydraulic cylinder. 

 

Fig. 1 Schematic diagram of the electro-hydraulic loading system 

In the novel EHLS, friction torque is used to simu-

late aerodynamic load acting on the actuator system of air-

craft. The friction torque is generated by rotary friction 

pairs. Using the theory of calculus, friction torque on the 

contact surface can be expressed as: 
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denotes equivalent friction radius, m; 

R1 is the internal radius of frictional contact area, m; R2 is 

the external radius of frictional contact area, m; μ is the fric-

tion coefficient; F is the force acting on a pair of friction 

pairs, N. 

Pressing force of friction pairs is given by: 

 

,F Ky=  (2) 

 

where: K is the load stiffness, N/m; y is the piston position 

of the hydraulic cylinder, m. 

 
Fig. 2 Oil circuit of valve-controlled hydraulic 

The valve-controlled hydraulic cylinder shown in 

Fig. 2 is crucial element in this system. In Fig. 2 Ap is the 

effective pressure area of the piston, m2; Ps is oil supply 

pressure, Pa; P0  0 is return oil pressure, Pa; P1 is pressure 

of left chamber, Pa; P2 is pressure of right chamber, Pa; Q1 

is flow rate of left chamber, m3/s; Q2 is flow rate of right 

chamber, m3/s; mc is the equivalent mass of load, kg; Bc is 

the viscous damping coefficient of the pistons, N/(m/s); xν 

is the spool position of the servo-valve, m; 1, 2, 3 and 4 re-

spectively represent the ID of the orifices composed of valve 

core and valve body The basic set of equations describing 

the dynamics of a valve-controlled hydraulic motor contains 

the following equations. 

The control flow equation of the hydraulic valve 

for the load flow rate is written as 

1
( sign( ) )L d v s v LQ C wx P x P


= − , (3) 

where: QL is load flow rate, m3/s; Cd is discharge coefficient 

of servo valve; w represents valve spool area gradient, m; ρ  

is the fluid density, kg/m3; PL is load pressure, Pa. 

By applying the continuity law to each chamber of 

the hydraulic cylinder, the load flow rate continuity equation 

is given by: 

 

c ,
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L p t L L
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where: Cct=Cip +Cep/2 is the total leakage coefficient, 

m5/(Nm); Cip is the internal leakage coefficient, m5/(Nm); 

Cep is the external leakage coefficient, m5/(Nm); y is the pis-

ton position of the hydraulic cylinder, m; Vt is the total 

equivalent control volume, m3; βe is the effective volume 

elasticity modulus of the hydraulic fluid, N/m2. 

The friction disks are driven by the hydraulic cyl-

inder to press down with each other. By applying Newton’s 

second law, the load dynamics is described by: 

 

,p L c c dA P m y B y Ky f= + + +  (5) 
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where: fd is the friction.  

In general, the dynamic response of the electrical 

components in the system is much larger than the dynamic 

response of the mechanical or hydraulic components. The 

relationship between spool displacement of servo valve and 

input voltage is approximately linear: 

 

= ,v vx k u  (6) 

 
where: u is the input current of the torque motor, V; ku is the 
gain, m/V.  

Combining Eqs. (1)-(6) and choose state variable 

as 1 2 3, , Lx T x T x P= = =  the state-space form of the electro-

hydraulic friction loading system mentioned above can be 

described as: 
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where: xf  represents the unmodeled dynamics, 
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. The system is subjected 

to parametric uncertainties due to the variations of mc, K, Bc, 

μ, f, βe, Vt, Ct and ρ. So these defined parameters are uncer-

tain and slowly-varying. Define ( )0 2 3,f x x and ( )0 3 ,g x u  are 

nominal values of ( )2 3,f x x  and ( )3 ,g x u , respectively. The 

parameter deviations and unmodeled dynamics fx are 

lumped to matched disturbance term ( )2 2 3,f x x =  +

( )3 , xg x u u f+ + . According to the above definitions, the 

system (7) is rewritten as:  
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1 2

2 1 1 2 2 3 3 1

3 0 2 3 0 3 2

,
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x x

x x x x

x f x x g u x u
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 (8) 

 
Assumption Δ1 and Δ2 are unknown but bounded. 

1 1 , 
1 0,  2 2 , 

2 ,  ρ1, ρ2, γ are posi-

tive. 

In order to implement the controller design, we re-

gard each formula in system (8) as a subsystem. So this sys-

tem consists of three subsystems.  

3. Controller design 

Define 1 2 3

d d d dx x x x =    as the desired state 

vector. So, the state tracking errors are written as: 

 

     =1,2,3.d

i i ie x x i= −  (9) 

 
Differentiate each tracking error to create the track-

ing error dynamics as follows: 

 

( ) ( )

1 1 1 2 1

2 2 2 1 1 2 2 3 3 1 2

3 3 3 0 2 3 0 3 2 3, ,

d d

d d

d d

e x x x x

e x x x x x x

e x x f x x g u x u x

  

= − = −

= − = − − + +  −

= − = + +  −

. (10) 

 
The quadratic Lyapunov functions for three sub-

systems are chosen as: 

 

21
      =1,2,3.

2
i iV e i=  (11) 

 

Given an arbitrary desired torque 1

dx , the virtual 

control inputs 2

dx , 3

dx  and the actual control input u are de-

signed as: 
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Substituting Eq. (12) into Eq. (10), a chain of inter-

connected tracking error dynamics can be derived: 

 

1 1 1 2

2 2 2 20 3

3 3 3

e k e e

e k e g e

e k e

= − +

= − +

= −

. (13) 

 

Based on the Eq. (13), its time derivative along Eq. 

(11) is given as: 

 
2

1 1 1 1 2

2

2 2 2 20 2 3

2

3 3 3

V k e e e
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= −
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The first two equations of Eq. (13) is rewritten by: 

 
2

2 1 1 1 1

2

20 3 2 2 2 2

input output

outputinput

e e V k e

g e e V k e

= +

= +
. (15) 

 
Then Eq. (14) shows that the relationship between 

ei and ei+1 is strictly output passive [34] and 

   i 1,2i i ie k e= −   is zero-state observable. Therefore, 

each subsystem is bounded input bounded output (BIBO) 

stable. Serial interconnections of BIBO stable system are 

also BIBO stable. Further, the 3th tracking error dynamics 

becomes: 

 

3 3 3 .e k e= −  (16) 
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We apply Barbalat’s Lemma (Khalil, 1996) to con-

clude that e3 converges exponentially to zero at the conver-

gence rate k3. Then e1 and e2 converges to zero. 

Based on the passive characteristics of the system, 

the theoretical controller is obtained. But parametric uncer-

tainties, disturbances and unmodeled dynamics may deteri-

orate the performance of passive controller. In this paper, 

parameter adaptive method is adopted in the second subsys-

tem to solve the problem of parameter uncertainty.  

Define parameter error ˆ
i i i  = − , a Lyapunov 

function for the second subsystem is considered: 

 
3

2 2 2

2 2 1

1
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Its time derivative along Eq. (11) is given as: 
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(18) 

 

The adaptive law is designed as: 

 

1 1 1 2 2 2 2 2
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So the virtual control input in the second subsys-

tem is written as: 
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3
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The parameters are unknown and slow time-vary-

ing so that
i is approximately equal to zero. So ˆ i i  − is 

reasonable. Substituting Eq. (18) into Eq. (17), one obtains:  

 
2

2 2 2 3 2 3
ˆ .V k e e e = − −  (21) 

 

Super-twisting sliding mode control is used in the 

second subsystem to eliminate disturbances and unmodeled 

dynamics. Define a sliding manifold of the following form: 

 

3 3 3 .s e k e dt= +   (22) 

 

The following actual control law is proposed as: 
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g u x

 
 

= − + − − − 
 

  (23)

From Eq. (21), one obtains: 
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Substituting actual control law (23) into Eq. (24), 

one obtains: 
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Eq. (25) is rewritten as: 
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Choose the Lyapunov function for the third subsys-

tem: 
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Choose the vector ( )
1

2 sgn ,
T

s s  =
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 and the 

Lyapunov function
3V   can be rewritten as: 

 

3 ,TV P  = , (28) 
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Its time derivative along the vector  as follows: 
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s
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where: 1
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=  
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1

2
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The transformed perturbation
1 1

2 2
2s s =   . 

As a consequence, ( ) 2 2, 0s    = − +  . The deriva-

tive of the candidate Lyapunov function along the states of 

the system (26) is given as the following actual control law 

is proposed as: 
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(30)

The robust stability analysis can be performed 

through the LMI. Suppose that there exist a symmetric and 

positive definite matrix P = PT > 0 and ε > 0 so that the 

following algebraic LMI equation is satisfied, then

3 1
2

1 TV P
s

   − . 

2

0.
1

T T

T

A P PA P C C PB

B P
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 (31) 

 

In this case all vectors of system (26) converge to 

the origin in finite time for all perturbations satisfying

( ), 0    .  

According to the classical circle criterium [9], the 

algebraic LMI (30) will be satisfied if and only if the 

Nyquist diagram of the transfer function G(s) = C(sI-A)-1B 

is contained in the circle centered in the origin and with ra-

dius β, that is, if: 
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note that, 
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According to the derivative ( )
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second derivative ( )
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G(s), it can be deduced that: 
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There are two possibilities of selecting the gains λ1 > 

0, λ2 > 0 so that the STA will converge to the origin in finite 

time, despite of a perturbation bounded by β: 1) Select λ2 

such that λ2 >β and then select
2

1 24  ; 2) Select λ1 > 0 and 

λ2 > 0 such that both inequalities
2 2 2

1 2 1

3

16
   

 
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 
 and 

2

1 24   are satisfied. 

By choosing one of two possibilities on the gains, 

in this paper we can then deduce conditions on gains λ1 and 

λ2 as follows: 

 

2

2

1 24
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 




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Eq. (30) is written as: 

 

3 31 1
2 2

1
.TV P V

s s


   − = −  (36) 

 
Moreover, this Lyapunov function is positive defi-

nite and the standard quadratic forms. Recall the standard 

inequality for quadratic forms: 

 

   
2 2

32 2
,min maxP V P      (37) 

 

note that, 
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1
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32
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2
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.
V

s
P


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Eq. (36) is rewritten in this form: 

 

3 3 ,V V  −  (39) 

 

where: τ = ελ  
1

2 .min P  

Eq. (39) shows that 3V  is a strong Lyapunov func-

tion and that the trajectories [s, σ] converge to the zero in 

finite time. So e3 = 0 and 3 0e =  is reached in finite time. 

According to the passive property of the system, it can be 

obtained that e1 and e2 also converge to the zero in finite 

time. 

4. Simulation and discussion 

To investigate the performance of the proposed 

method, simulations are implemented. The sampling inter-

val was set as 0.001 s. 

In order to verify the performance of the proposed 

controller, two other controllers were chosen for a contrast. 

Controller simulation parameters in this paper are chosen as 

following: 

1) PBARSNC: A passive-based adaptive robust su-

per-twisting nonlinear controller is proposed in this paper 

and described above. The control gains are given as follows:  

k1 = 650, k2 = 12000, k3 = 10000, α1 = 200, α2 = 0.1, α3 = 
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= 1×10-6, r = 1×105, λ1 = 4×105, λ2 = 1×103. 

2) PBC: The passive-based controller was de-

scribed in this paper. Different from the proposed controller, 

this passive-based controller has no parameter adaptive and 

robust compensation control. The control gains are the same 

as the parameters of the proposed controller. 

3) PID: This is the traditional proportional—inte-

gral–derivative controller. And its gains tuned carefully via 

an error-and-try method are kp = 1.8, ki = 3.2 and kd = 0.0011, 

which denote the proportional gain, integral gain and deriv-

ative gain, respectively. 

To compare the performance of these three control-

lers, we employ sinusoidal torque command x1 = 

= 30sin(2π×10t) to test these three controllers. In reality, all 

the parameters in system (7) can be cannot be accurately de-

rived. So adaptive law and robust super-twisting are used in 

the proposed controller. The initial value of adaptive param-

eters is set to θ10 = 0, θ20 = 0 and θ30 = 21.4. Fig. 3 shows the 

tracking performance of three different controllers. Fig. 3, a 

gives the torque tracking of a cycle. To facilitate the contrast, 

Fig. 3, b gives the torque tracking error within 0-0.5 seconds. 

It can be seen in Fig. 3 that the tracking errors of the pro-

posed PBARSNC, PBC and PID are in the range -1.7 N·m 

to 0.6 N·m, -0.4 N·m to -0.1 N·m and -2 N·m to -2 N·m 

respectively. In 0-0.1 s, tracking error of the proposed con-

troller is relatively large due to the adaptive parameters con-

vergence process. 

 

a) Torque tracking 

 

b) Tracking error of PID 

Fig. 3 Tracking performance of the different controllers 
 

Fig. 4 presents corresponding parameter conver-

gence process. In steady state, the peak error is smallest in 

the three controllers, 0.01 N·m. Due to the friction and ex-

ternal load, tracking error of PBC have a negative offset. 

Compared with the others, PID controller have phase lag 

problem. PBARSNC and PBC can employ the system 

model to achieve accurate model-based, amending the phase 

lag problem and gets better stability. 

Furthermore, the matched disturbance and low 

time-varying parameters variations are introduced to verify 

the robustness capability of the proposed controller against 

parametric uncertainties, disturbances and unmodeled dy-

namics. The mathematical model based on Simulink is set 

up where system parameters and disturbance are easy to be 

changed. In this system, the parameters βe, μ, fd is typical 

low time-varying parameters. Those parameters are set to  

βe = 3.5×108sin(5t) +7×108, μ = 0.2+0.02sin(2t), fd = 

= 200+100sin(5t). The responding tracking performance of 

three different controllers in this case are shown in Fig. 5. 

Fig. 5 shows that the proposed controller is able to achieve 

the best performance in the presence of parametric uncer-

tainties and parameters variations.  

 

 

Fig. 4 Adaptive parameters convergence process 

 

Fig. 5 Tracking error with parameters variations 

 

Besides parameters variations, the matched dis-

turbance ud = sin(85t) and ud = sin(135t) are introduced into 

system, respectively. The responding tracking error of three 

different controllers in the presence of parametric uncertain-

ties, disturbances and unmodeled dynamics are shown in 

Fig. 6.  

 

a) ( )sin 85du t=  

 

b) ( )2sin 135du t=  

Fig. 6 Tracking error with input disturbances 
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Fig. 6, a shows that the maximum tracking errors 

of the proposed PBARSNC, PBC and PID are stable at 

0.15 N·m, 1.2 N·m and 2.2 N·m, respectively. It can be seen 

in Fig. 6, b that the maximum tracking errors of the proposed 

PBARSNC, PBC and PID are stable at 0.3 N·m, 1.8 N·m 

and 3 N·m, respectively. Evidently, the performance of the 

three controllers becomes worse as the disturbance becomes 

violent. Compared to the other two controllers, the proposed 

controller has stronger robustness against parametric uncer-

tainties, parameters variations and input disturbances. So it 

is able to achieve a better tracking performance in the pres-

ence of various types of disturbances. 

5. Conclusions 

In this paper, a passive-based adaptive robust su-

per-twisting nonlinear controller (PBARSNC) has been pro-

posed for the novel EHLS to reject disturbances and uncer-

tainties. Passive property of the electro-hydraulic system 

has been adopted to design this controller. In order to 

achieve high accuracy torque tracking control for the novel 

EHLS, different types of disturbances have been considered 

in the design process. Considering parameter uncertainties 

and constant or slowly varying disturbances, adaptive law is 

adopted in the passivity-based controller. Furthermore, su-

per-twisting second-order slide mode control is used to re-

ject uncertainties and matched disturbances.  The proposed 

control law has an exponentially convergence transient per-

formance. Moreover, the simulation results show that the 

proposed passive-based adaptive robust super-twisting non-

linear control method greatly compensates the effects of 

matched disturbances, uncertainties and external disturb-

ances and improves the system tracking accuracy and ro-

bustness, in comparison with traditional PID control and 

passive-based control. In the future work, the proposed con-

trol law will be applied to the practical electro-hydraulic 

system to verify the high-accuracy tracking performance. 
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H. Du, C. Jing, B. Yan, C. Liu 

 

PASSIVITY-BASED ADAPTIVE ROBUST SUPER-

TWISTING NONLINEAR CONTROL FOR ELECTRO-

HYDRAULIC SYSTEM WITH UNCERTAINTIES AND 

DISTURBANCES 

S u m m a r y 

In this paper, a passive-based adaptive robust su-

per-twisting nonlinear controller (PBARSNC) is proposed 

for high accuracy torque tracking control of the novel elec-

tro-hydraulic loading system with disturbances and uncer-

tainties. The construction of the stability of this electro-hy-

draulic control system is given using passivity theory that 

results in a passivity-based controller (PBC). Considering 

parameter uncertainties and constant or slowly varying dis-

turbances, adaptive law is adopted in the passivity-based 

controller. Furthermore, super-twisting second-order sliding 

mode control is used to reject model uncertainties and 

matched disturbances. Passivity theory, adaptive method 

and super-twisting algorithm are synthesized via the recur-

sive design method.  The proposed passive-based adaptive 

robust super-twisting nonlinear control can guarantee the 

torque tracking performance in the presence of various un-

certainties, which is very important for high-accuracy track-

ing control of hydraulic servo systems. Extensive simula-

tions are carried out to verify the high-accuracy tracking 

performance of the proposed control strategy.  

Keywords：passivity, electro-hydraulic system, super-

twisting, sliding mode control, adaptive control. 
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