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1. Introduction 
 

Multi-structural elements (MSE) are made of two 
or more different materials to withstand the external loads 
as a solid body. Due to the similarity to composite materi-
als they are often called macro-composites. 

Most of MSE’s contain better properties than the 
materials contained in them, for example steel or compos-
ite reinforced concrete has higher strength and stiffness [1-
5]. MSEs compared with homogeneous structures often 
have a different nature of fracture, resistance to environ-
mental effects, different stress distribution, etc. Therefore, 
they are increasingly used not only in construction but also 
in the water and gas distribution and automotive industry 
[6-10]. One of the simpler and more often used in engi-
neering practice MSE’s is the multilayer bar (MB). There 
is a wide variety of possible MBs geometries: cylindrical, 
rectangular bars, pipes, etc. [1, 4, 5]. 

In combining different materials, it is not only 
possible to change on the desired direction the strength and 
stiffness of the MB, but also the costs, surface mechanical 
and chemical properties, production workability, and so 
on. For example, polymer, metal or composite layers often 
protect the MBs from harmful environmental effects [2 - 4]. 

When MB’s are subjected to tension or compres-
sion, this causes uneven stress distribution and their stiff-
ness is different from the composing materials. This phe-
nomenon has long been known and thoroughly studied 
[11-13]. From the materials mechanical characteristics and 
bar geometry stresses, effective Young's modulus and 
strength are calculated. However, most of the techniques 
are not assessing the Poisson ratios (PR) effect, or simply 
assume that PR’s of the layers are equal. 

The most frequently used materials MB’s have 
different PRs. Due to these differences, contact pressure  
(-es) between layers occur in the cylindrical MB’s [14-15] 
which changes the stress state and the values of axial stress 
[14-15], stiffness and strength. If the MBs are designed and 
calculations made according to the methodology [11] or its 
equivalent, so in case of different PR’s this leads to meth-
odological errors. 

Poisson's ratio effect on MB’s has not yet been 
thoroughly studied and examined. Paper [15] offers the 
methodology for the multilayer two-phase rectangular bar 
stiffness estimation with the account of Poisson effect. The 
proposed methods in papers [14-15] allow determining the 
contact pressure and axial stress in case of the two-layer 
cylindrical bars. However, it remains undetermined to what 
extent the strength and stiffness of multilayer cylindrical 
bars are impacted by the Poisson effect.  

The aim of this work is to calculate stresses on 
cylindrical MB’s and with regard to Poisson effect, to ex-
amine its influence on stress, stiffness and errors produced 
in case of neglecting this effect. 

2. Methodology 

2.1. Bar construction 
 

In this paper we are going to analyze cylindrical 
MB’s, the possible constructions of which are shown in 
Fig. 3. Material volumetric fractions of 3-layer and 4-layer 
structures are the same as in 2-layer one. In general, the n-
layer structure may be composed of n different materials 
(phases). In further consideration we are going to examine 
the two-phase MB’s with the number of layers between  
2 ¨ n ¨ 4. 

 

 

 
 

Fig. 1 Cross-section of cylindrical MB’s constructions, 
solid (a) and hollow (b) 

2.2. N-layer bars 

When PR’s are the same and there is no contact 
pressure, the stress state is axial. Then the stresses and ef-
fective Young's modulus according to [1] are 
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where i,z'�  axial stress, the i-th layer, F  and A  are axial 
load and the general cross-sectional area of the structure,  

eff'E  and iE  are Young's modulus of the bar (effective) 

and in the i-th layer (material), 1�� AAii2 is the relative 
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cross-sectional area* of the i-th layer. 
When PR’s are different, there are 2n-1 unknowns 

in the cylindrical bar consisting of n-layers: n axial stresses 
and n-1 contact pressures. All unknowns are obtained 
when 2n-1 equations are formed and solved. The first 
group of equations is obtained from the condition that all 
the layers in axial direction deform evenly, i.e. the defor-
mations are equal 

, ,z i z j4 4�  (3) 

The second group of equations are derived from 
the assumption that the layers are bonded, i.e. their hoop 
strains in the contact are equal, so 

)()( 111 			 � i,ii,i,ii, 5454 66  (4) 

where )( 1	i,ii, 546 is i-th layers strain in hoop direction at 
radius 1	i,i5  (radius of contact between layers i and i+1). 

The last equation is written from static equilib-
rium 
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Having used Hooke's Law, the deformation equa-
tions (3) - (4) are rewritten in terms of stresses. In this way, 
we obtain n axial stresses and n-1 equations for the contact 
pressure. Knowing the stress components, the equivalent 
stresses (according to von Mises) are found.   

MB’s stiffness is characterized by the effective 
elastic modulus ( effE ). Since the stress state is spatial 
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where i,6� and i,r� are  hoop and radial stress in i-th layer, 
respectively.  

It is easy to prove that the stress components are 
directly proportional to the ratio F / A, so effE is independ-
ent on it, so it is on radius 5 , because in that same 
layer Consti,ri, �	��6 .   

It obvious that effE can be found if the stresses of 
at least in one layer are known. As the stress depends on 
other layers of stiffness, effE is a generalized characteristic 
depending on all the MB’s and its layers.  

 
2.3. Two-layer bar 
 

The two-layer bar is the simplest case of a multi-
layer bar. By applying the equations (4) - (6) for the two-
layer bar we obtain the following system of equations: 
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* It shows proportion of the layer cross-sectional area, with 
respect to the area of bar cross-section (A). 
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where cp  is contact pressure, i7  is PR of material in i-th 
layer, i,i 1	8  is ratio of Young‘s modulus in i+1 and i layers, 
r - the internal radius of the bar. 

By solving the system of Eqs. (7) - (9), the ex-
pressions of contact pressure cp  and axial stresses i,z�  in 
the layers can be obtained [13], [14]. 

From the expression of contact pressure according 
to Lame equation radial and hoop stresses of the layers are 
found. The derivation of the equations (10)-(12) is omitted, 
because of lack of space, and their analysis and results are 
presented in the section ‘Results and Discussion’. 

 
2.4. Three- and four-layer bars 

Multi-layer bar can be made from more than two 
layers. If the bar cross-sectional dimensions are constant, 
number of the layers increases while their thickness de-
creases. The increase in the number of layers makes stress 
expressions more complex, regardless of the number of 
phases. On the other hand, in this case MB gets more simi-
lar to a single composite material than to a structural ele-
ment. Therefore, the analysis here is narrowed down to 
four-layered structures. 

The analytical expressions of contact pressure be-
tween the layers in four-layer case are obtained by solving 
the system of equations (13) - (19) 
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where j,ip  and j,i5 are contact pressure between the layers 
i and j respectively, as well as their contact radius. 

The contact radius is found from the formula 
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For the three-layer bar, the analytical expressions 
of contact pressure between the layers are derived from the 
system of equation (13)-(19) having removed equations 
(15), (18) and restructured equations (14), (17), (19). In 
both cases the stress components are obtained the same 
way as for the two-layer bar. 

 
2.5. Methodological errors 

When the stress state is spatial, one of strength 
theories has to be applied. We will be using the theory of 
maximum energy of distortion (von Mises). According to 
the given methodology, having the stress components i,z� , 

i,6� , i,r� ,  stress intensities i,e� (von Mises) can be calcu-
lated. Stress intensity evaluates strength of the layers tak-
ing the Poisson‘s effect into consideration. The methodo-
logical error of [11] is quantitatively found by comparing 
the axial stresses and stress intensity by the formula 
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where i,z'� axial stresses, of the layers acording to simpli-
fied methodology [11]. 

The errors of effective Young‘s modulus, due to 
the efect of Poisson‘s, is finded by formula similar to (21), 
using the values given by expressions (2) and (6).  

Due to Poisson‘s effect, the errors of effective 
Young‘s modulus are found by the formula similar to for-
mula (21), putting in the values from expressions (2) and 
(6). 

 
3. Results and discussion 

 
3.1. Influence on stresses 

Firstly, we are going to examine the impact of 
Poisson's ratios of constituent materials and Young‘s 
modulus on the strength two-layer bar. This influence will 
be quantitative if measured by methodical errors according 

to Eq. (21). As an object for study we chose three main 
two-layer constructions: Metal-Polymer (MP), Metal-
Ceramic (MC) and Ceramic-Polymer (CP). In each two-
layer bar the material can be arranged in two ways (e.g. M-
P and P-M). 

The stress errors in constructions MP and PM are 
shown in Fig. 2, where 30.M �7 , 40.M �7 . The continu-
ous lines represent the stiff plastics (e.g. PVC) and soft 
metal (e.g. aluminium) compositions. The dashed line 
represents the soft plastic (e.g. PE) and stiff metal (e.g. 
steel) compositions. When 70...200GPaME � and 

1...4GPaME �  the actual error curves lie between the 
solid and dashed lines. As shown in Fig. 2, the stress errors 
of the two-layer M-P bar do not exceed 7.0%. 
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Fig. 2 Stress error dependences on the ratio of cross-

sectional areas, when: 1, 2 - EM = 70 GPa, EP =  
= 4 GPa; 3,4 - EM = 200 GPa, EP = 1 GPa; 1,3 stands 
for internal, and 2,4 for external layers, a – M-P,  
b – P-M 

In the M-P bar (Fig. 2, a), the error is less than 
1.0%, regardless of the Young‘s modulus. While the errors 
of  P-M bar (Fig. 2, b) increase in one layer, they decrease 
in the other one. The errors in the polymer layer almost 
always exceed the metallic ones. The error of metallic 
layer becomes noticeable only when the layer is thin 
( %102 92 ). The more different Young‘s modulus, the 
lower are the errors in the metals and higher in the poly-
mers. When the bar is hollow, the errors are similar, except 
for the case when the hole diameter is small. Due the stress 
concentration, the stress error of the polymer layer may 
reach up to 11%. The errors of the metallic layer, due to 
this reason, practically are not affected. 

The errors of stress in the M-P construction can-
not be taken into account and it is considered that in such 
cases the methodology [1] present rather accurate results. 
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Regarding P-M constructions the methodology [1] and 
similar to them should be applied with caution, because the 
actual stresses in the polymer layer may be very different 
from the calculated ones. 

Ceramic-Metal (C-M, M-C) compositions due to 
their high strength and low cost are widely used in con-
struction. The variations of the stress errors are shown in 
Fig. 3. In case of the MC construction the errors of the 
metallic layer reach up to 3.5% (Fig. 3, a), and around 2% 
in the CM construction (see Fig. 3, b). The maximum error 
(about 6%) is obtained in the ceramic layer, with the CM 
arrangement of solid bar construction, as ceramics is less 
rigid than metal, and its volumetric ratio is low. In case of 
the hollow construction the maximum values of the errors 
are smaller but similar. 
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Fig. 3 Stress error dependences on ratio of cross-sectional 
areas, when: 1, 2 - EM  = 70 GPa, EC = 100 GPa;  
3,4 - EM = 200 GPa, EC = 50 GPa; 1,3 stands for in-
ternal, and 2,4 for external layers, a – M-C,  
b – C-M 

Thus, in most cases the errors of the ceramic-
metal structures are about 1-3%. The layer arrangement 
does not affect the stress in the cardinal way, contrary to 
the polymer-metal structure (compare Fig. 3 and Fig. 2). 
When high precision is not required, in the most cases 
these errors can be ignored and considered that the stress 
state is uni-axial, as methodology [1] claims. 

The Ceramic-Polymer composition is less widely 
used (Fig. 4). The errors in such bars have similar charac-
ter as in the polymer-metal bars, except that their values 
are much higher (Fig. 2). High stress errors (up to 14.0%) 
occurred at the polymer layer in the P-C bar. If the bar is 
hollow, the error is highly dependent on the radius r. The 
smaller the radius the higher the error (may be up 46.5%). 
The Error decreases with increasing radius and becomes 
lower than those at solid bars. 

Larger errors in the C-P composition are obtained 

in a polymer layer (up to 3.0%), but only in case of its sig-
nificant volumetric ratio. Thus, in case of the C-P construc-
tion the stress errors can be considered as negligible, how-
ever, this cannot be stated of the of the PC case. The stress 
state of the following bar is in mismatch with those pre-
sented by the methodology [1]. This is because of higher 
difference of Poisson's ratios, as the error variation of P-C 
and P-M bars is similar in their nature, only their values 
are different (compare Fig. 2 and Fig. 4). 
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Fig. 4 Stress error dependences on ratio of cross-sectional 
areas, when: 1, 2 - EC = 100 GPa, EP = 1 GPa;  
3, 4 - EC = 50 GPa, EP = 4 GPa; 1,3 stands for inter-
nal, and 2,4 for external layers, a – C-P, b – P-C 

It should be noted that the results have been ob-
tained on the assumption that the deformations are elastic 
and any fracture or flow processes are absent. The value of 
the stresses can also change due to the layer delimitation 
(lost adhesion between the layers). 

 
3.2. Influence on stiffness 
 

One of important characteristics of the multi-layer 
bar (MB) is stiffness or effective Young's modulus. Its 
value, as seen in the formula (6), depends on stress state of 
the layers. When the stress state is axial, the modulus E‘

K 
[1] calculated using the formula (2), will be different from 
the effective modulus effE calculated by (6). This causes 
the stiffness error in a multi-layer bars. 

It has been obtained that the error of stiffness de-
pends on geometry of the bar. When the Poisson's ra-
tios 501 .�7 , 202 .�7 , in a hollow bar, the error of stiff-
ness is about 1- 4% (Fig. 5, b). In case of a solid bar, the 
error is much higher (up to 8%, see Fig. 5, a). In both 
cases, the error depends on the ratios 12 , 12 ,8 . 

A really significant effect on the values of stiff- 
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Table 1  
Stress errors of solid multilayer bars 

 
Stress error, % Geometry Properties n P-M P-M-P P-M-P-M 

1 6.31 6.61 6.89 
2 0.14 0.07 0.05 
3 - 0.29 4.66 

DI
* = 0.0 mm,  

DE
* = 26.0 mm, 

�P = 0.8, �M = 0.2 

EP = 1.0 GPa  
EM = 200.0 GPa  
�P = 0.4, �M = 0.3 4 - - 0.30 
 C-M C-M-C C-M-C-M 

1 5.42 5.54 5.66 
2 0.05 0.00 0.03 
3 - 1.51 3.51 

DI  = 0.0 mm,  
DE  = 26.0 mm, 
�C = 0.1, �M = 0.9 

EC  = 50.0 GPa 
 EM = 200.0 GPa 
�C = 0.2, �M = 0.3 4 - - 0.18 
 P-C P-C-P P-C-P-C 

1 13.54 13.61 14.08 
2 0.04 0.03 0.21 
3 - 0.57 7.56 

DI = 0.0 mm, 
DE = 26.0 mm, 
�P = 0.2, �C = 0.8 

EP = 1.0 GPa  
EC  = 100.0 GPa 
�P = 0.4, �C = 0.2 4 - - 0.28 

 
Table 2  

Stress errors of hollow multilayer bars 
 

Values of stress errors, % Geometry Properties n P-M P-M-P P-M-P-M 
1 0.44 0.62 0.60 
2 0.05 0.02 0.14 
3 - 0.38 2.17 

DI  = 21.0 mm,  
DE  = 34.0 mm, 
�P = 0.8, �M = 0.2 

EP = 1.0 GPa  
EM = 200.0 GPa  
�P = 0.4, �M = 0.3 4 - - 0.23 
 C-M C-M-C C-M-C-M 

1 3.64 3.55 3.58 
2 0.09 0.07 0.05 
3 - 1.96 3.43 

DI  = 21.0 mm,  
DE  = 34.0 mm, 
�C = 0.1, �M = 0.9 

EC  = 50.0 GPa 
EM = 200.0 GPa 
�C = 0.2, �M = 0.3 4 - - 0.12 
 P-C P-C-P P-C-P-C 

1 0.37 0.04 0.11 
2 0.01 0.01 0.16 
3 - 0.58 2.33 

DI = 21.0 mm, 
DE = 34.0 mm, 
�P = 0.2, �C = 0.8 

EP = 1.0 GPa  
EC  = 100.0 GPa 
�P = 0.4, �C = 0.2 4 - - 0.18 

* DI, DE mark the inner and outer diameter of the bar respectively, n represents numbers of the layers. 
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Fig. 5 Stiffness errors dependence on ratios of cross-sectional areas and Young’s modulus, when: 1 - ,., 01012 �8
2 - ,., 1012 �8 3 - ,, 112 �8 4 - ,, 1012 �8 5 - 10012 �,8 ,.501 �7 ,.202 �7 a – solid, b – hollow 

ness errors are created by Poisson‘s ratio. When 401 .�7 , 
302 .�7 , the error of the solid bar reaches up to 0.5%, 

while in the hollow one just 0.3% respectively. When the 
differences of Poisson’s ratios are constant, the error of 
stiffness will be higher if one layer has a ratio closer to 0.5, 
i.e. when one of the materials is incompressible. 

The larger the difference between Poisson's ratios, 
the higher is the contact pressure between the layers; and 
the methodology [1], assuming that the contact pressure is 
absent presents more and more inaccurate results. The fact 
that solid bar presents higher errors may be explained by 
the fact that a solid layer resists deformation more than a 
hollow one. The hollow layer can deform in the direction 
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of the hole, while the solid one only by changing its vol-
ume. 

From the data presented it is clear that the error of 
stiffness does not only depend on the bar type, but also on 
the values of relative cross-sectional area of the layers, 
Young‘s modulus and Poisson's ratios (Fig. 5). When 

3012 .9�77  and 1012 9,8 , the errors are negligibly small 
and formula (2) gives the exact value of effective Young‘s 
modulus. Theoretically, the error of stiffness may reach 
25%. Such errors are obtained when :;12,8 , 02 ;7 , 

1 0.57 ;  and 1 12 ; . 
The maximum stress error of 36.4 % is obtained 

in the inner layer of the solid bar, when 1 0.17 � , 2 0.57 � , 

2,18 ; : . Extremely high errors are obtained in the hollow 
bar at the inner layer if the inner radius is very small. Then, 
according to the methodology [1], the stresses can differ 
from the actual ones several times. 

The maximum stress error of the outer layer is 
21.3%. It is obtained when 1 0.57 � , 2 0.17 � , 2,1 08 ; . 
The error in it has only an insignificant dependence on 
whether the inner layer is hollow or solid. 

As for the stiffness errors, the stress errors are 
highly dependent on the difference of Poisson's ratios. 
When 2 1 0.17 7� 9  regardless of the values of Young‘s 
modulus, bar geometry and the layer layout the stress error 
will not exceed 7.2%. In these cases, the approximate 
methodology [1] can be applied. When the difference is 
higher, the errors of stress and stiffness may become more 
significant. In such cases, we recommend to use the meth-
odology here presented instead of [11]. 

 
3.3. Multilayer bar 
 

After the analysis of the two-layer bars it remains 
to examine the multilayer bars ( i > 2). To determine val-
ues of the error equations (13) - (21) were used. For further 
study we chose the cases where the highest errors in the 
two-layer bar were obtained (see Fig. 2-4). The subject was 
a multi-layer bar with 3 and 4 layers, composed of two 
different materials (phases). The volumetric ratio of the 
Phases in 2, 3 and 4-layer bars was equal. The results are 
presented in Tables 1 and 2. 

While analysing the impact of the layer number 
on the stress errors it is clear that the increase in the num-
ber of the layers causes the increase of errors in inner lay-
ers, rather insignificantly though. It should be noted that 
moving from the two-layer to the three- of four-layer bar, 
the stress errors of the inner and outer layers of the same 
material are significantly different (see table 1). In Tables 
1 and 2 a trend is seen that the closer the layer is to the bar 
surface the lower are the errors, and vice versa. 

Moving from two-layers to the three or four lay-
ers in the hollow bars, the stress error may be increased 
(Table 2). Results presented (Tables 1 and 2) clearly show 
that the stress errors in the two-layer bar can be used for an 
approximate estimation of the multilayer bar error. In other 
words, instead of the complex 3-layer or 4-layer equations, 
simpler 2-layer bar equations (6) - (12) can be used. In-
creasing the number of the layers has little impact on stif-
ness of the bar. 

 

4. Conclusions 
 
Due to Poisson's effect contact pressure appears in 

the axially loaded multilayer bars. The bar strength, 
stresses and stiffness are affected as a result. A mathemati-
cal model for this pressure, equivalent stresses and bar 
stiffness calculation in the cylindrical multi-layer bar, with 
estimation of the influence of Poisson's effect is proposed. 
The equations derived were used to determine the stress 
and stiffness errors that occur in case this effect is ne-
glected. 

Stress and stiffness error variations for the two-
phase bars made of two, three or four layers have been 
determined. It was obtained that when the difference of 
Poisson's ratios is 0.1 or greater, then the strength and 
stiffness errors may become significant. In such cases the 
effect of Poisson's effect cannot be neglected. 

Strength and stiffness errors also depend on 
Young‘s modulus, cross-sectional areas (i.e. volumetric 
ratios of the phases), geometry and the layers of the layout. 
The errors of solid bars are usually greater than those of 
the hollow ones. Stiffness errors are usually much lower 
than the ones of the stress. 

Large errors are obtained in polymer-metal solid 
bar construction when the polymer lies inside the bar and 
within polymer-ceramic structures. In metal-ceramic and 
polymer-metal constructions, when the polymer is outside 
the bar, and regardless of the layout of the layers, the stress 
and stiffness errors are negligible. 

After the examination of three and four layer two-
phase bars and comparison with the two-layer construction 
it was obtained that an increased number of the layers usu-
ally has no significant effect on the errors. The errors of 
multilayer bars may be both larger and smaller than the 
two-layer ones. This depends on the layer thickness and 
arrangement: the inner layers of the bar tend to increase in 
errors, while in contrast, the outer layers tend to decrease.  

The stiffness errors in the two- and multi-layer 
bars are very similar. In our view, the stress and especially 
stiffness of multi-layer bars can be rather accurately esti-
mated from a similar two-layer construction. In other 
words, equations (6) - (12) may be used for the multi-layer 
bar strength and stiffness evaluation. The relative advan-
tage of the two-layer model compared with the multi-layer 
model is that it contains simpler expressions in analytical 
formulas. 

It is not only Poisson’s effect that can cause stress 
and stiffness errors, but also the change in temperature, 
creep of the material, etc. Thus, the total amount of errors 
of the multi-layer bar may be higher than has been shown 
here. 
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N. Partaukas, J. Bareišis 

PUASONO KOEFICIENTO ªTAKA CILINDRINI� 
STRYP� STIPRUMUI IR STANDUMUI 

R e z i u m � 

Tempiant (gniuždant) daugiasluoksnius strypus, 
d�l skirting� Puasono koeficiento ver�i� tarp sluoksni� 
atsiranda kontaktinis sl�gis. D�l to sluoksniuose susidaro 
erdvinis (triašis) �tempi� b�vis. Darbe pasi�lyta analitin� 
metodika, �galinanti tiksliai apskai�iuoti �tempius, atsižvel-
giant � Puasono koeficient� �tak�. Juos ignoruojant, atsi-
randa �tempi� ir standumo skai�iavimo paklaidos. Straips-
nyje nagrin�jama, nuo ko priklauso ir kaip kinta dvisluoks-
ni� ir daugiasluoksni� cilindrini� stryp� �tempi� ir stan-
dumo paklaidos.  

N. Partaukas, J. Bareišis 

POISSON’S RATIOS INFLUENCE TO CYLINDRICAL 
BARS STRENGTH AND STIFNESS 

S u m m a r y 

In case Multilayer cylindrical bars are subjected 
to tension or compression, due to Poisson effect, contact 
pressure between the layers occurs. As a result, a spatial 
stress state arises in the material. The analytical methodol-
ogy for accurate determination of stresses, assessing the 
influence of this effect is proposed. In case this phenome-
non is neglected, this often leads to stress, strength and 
stiffness methodological errors. The paper examines in 
detail how big they are and how these errors change in 
multilayer cylindrical bars. In addition to this, analytical 
equations to obtain the stress in multilayer bars are pre-
sented, at the same time evaluating the influence of Pois-
son effect. 
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