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1. Introduction

Multi-structural elements (MSE) are made of two
or more different materials to withstand the external loads
as a solid body. Due to the similarity to composite materi-
als they are often called macro-composites.

Most of MSE’s contain better properties than the
materials contained in them, for example steel or compos-
ite reinforced concrete has higher strength and stiffness [1-
5]. MSEs compared with homogeneous structures often
have a different nature of fracture, resistance to environ-
mental effects, different stress distribution, etc. Therefore,
they are increasingly used not only in construction but also
in the water and gas distribution and automotive industry
[6-10]. One of the simpler and more often used in engi-
neering practice MSE’s is the multilayer bar (MB). There
is a wide variety of possible MBs geometries: cylindrical,
rectangular bars, pipes, etc. [1, 4, 5].

In combining different materials, it is not only
possible to change on the desired direction the strength and
stiffness of the MB, but also the costs, surface mechanical
and chemical properties, production workability, and so
on. For example, polymer, metal or composite layers often
protect the MBs from harmful environmental effects [2-4].

When MB’s are subjected to tension or compres-
sion, this causes uneven stress distribution and their stiff-
ness is different from the composing materials. This phe-
nomenon has long been known and thoroughly studied
[11-13]. From the materials mechanical characteristics and
bar geometry stresses, effective Young's modulus and
strength are calculated. However, most of the techniques
are not assessing the Poisson ratios (PR) effect, or simply
assume that PR’s of the layers are equal.

The most frequently used materials MB’s have
different PRs. Due to these differences, contact pressure
(-es) between layers occur in the cylindrical MB’s [14-15]
which changes the stress state and the values of axial stress
[14-15], stiffness and strength. If the MBs are designed and
calculations made according to the methodology [11] or its
equivalent, so in case of different PR’s this leads to meth-
odological errors.

Poisson's ratio effect on MB’s has not yet been
thoroughly studied and examined. Paper [15] offers the
methodology for the multilayer two-phase rectangular bar
stiffness estimation with the account of Poisson effect. The
proposed methods in papers [14-15] allow determining the
contact pressure and axial stress in case of the two-layer
cylindrical bars. However, it remains undetermined to what
extent the strength and stiffness of multilayer cylindrical
bars are impacted by the Poisson effect.

The aim of this work is to calculate stresses on
cylindrical MB’s and with regard to Poisson effect, to ex-
amine its influence on stress, stiffness and errors produced
in case of neglecting this effect.

2. Methodology
2.1. Bar construction

In this paper we are going to analyze cylindrical
MB’s, the possible constructions of which are shown in
Fig. 3. Material volumetric fractions of 3-layer and 4-layer
structures are the same as in 2-layer one. In general, the n-
layer structure may be composed of n different materials
(phases). In further consideration we are going to examine
the two-phase MB’s with the number of layers between
2<n<4.
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Fig. 1 Cross-section of cylindrical MB’s constructions,
solid (a) and hollow (b)

2.2. N-layer bars
When PR’s are the same and there is no contact

pressure, the stress state is axial. Then the stresses and ef-
fective Young's modulus according to [1] are
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where o', axial stress, the i-th layer, F' and A4 are axial
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load and the general cross-sectional area of the structure,
E'Y and E, are Young's modulus of the bar (effective)

and in the i-th layer (material), v, = 4,47 is the relative



cross-sectional area” of the i-th layer.

When PR’s are different, there are 2n-1 unknowns
in the cylindrical bar consisting of n-layers: n axial stresses
and »-1 contact pressures. All unknowns are obtained
when 2n-1 equations are formed and solved. The first
group of equations is obtained from the condition that all
the layers in axial direction deform evenly, i.e. the defor-
mations are equal
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The second group of equations are derived from
the assumption that the layers are bonded, i.e. their hoop
strains in the contact are equal, so

E0i(Pis1) = €01 (Pisn) “4)

where £,,(p;;,,)1s i-th layers strain in hoop direction at
radius p,,,, (radius of contact between layers 7 and i+1).

The last equation is written from static equilib-
rium
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Having used Hooke's Law, the deformation equa-
tions (3) - (4) are rewritten in terms of stresses. In this way,
we obtain n axial stresses and #-1 equations for the contact
pressure. Knowing the stress components, the equivalent
stresses (according to von Mises) are found.

MB’s stiffness is characterized by the effective

elastic modulus ( E¥ ). Since the stress state is spatial
E.

F
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where o, and o, are hoop and radial stress in i-th layer,

respectively.
It is easy to prove that the stress components are

directly proportional to the ratio F /4, so E¥ is independ-
ent on it, so it is on radius p, because in that same

layero,; +o,; = Const .
It obvious that E¥ can be found if the stresses of
at least in one layer are known. As the stress depends on

other layers of stiffness, £ is a generalized characteristic
depending on all the MB’s and its layers.

2.3. Two-layer bar
The two-layer bar is the simplest case of a multi-

layer bar. By applying the equations (4) - (6) for the two-
layer bar we obtain the following system of equations:
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" It shows proportion of the layer cross-sectional area, with
respect to the area of bar cross-section (A).
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where p,. is contact pressure, v, is PR of material in i-th
layer, &,,,; is ratio of Young‘s modulus in i+1 and i layers,

r - the internal radius of the bar.
By solving the system of Eqs. (7) - (9), the ex-
pressions of contact pressure p, and axial stresses o, ; in

the layers can be obtained [13], [14].

From the expression of contact pressure according
to Lame equation radial and hoop stresses of the layers are
found. The derivation of the equations (10)-(12) is omitted,
because of lack of space, and their analysis and results are
presented in the section ‘Results and Discussion’.

2.4. Three- and four-layer bars

Multi-layer bar can be made from more than two
layers. If the bar cross-sectional dimensions are constant,
number of the layers increases while their thickness de-
creases. The increase in the number of layers makes stress
expressions more complex, regardless of the number of
phases. On the other hand, in this case MB gets more simi-
lar to a single composite material than to a structural ele-
ment. Therefore, the analysis here is narrowed down to
four-layered structures.

The analytical expressions of contact pressure be-
tween the layers in four-layer case are obtained by solving
the system of equations (13) - (19)
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where p,; and p, ; are contact pressure between the layers

i and j respectively, as well as their contact radius.
The contact radius is found from the formula

Ad
piz,Hl =r +_ZW./ (20)
T j=1

For the three-layer bar, the analytical expressions
of contact pressure between the layers are derived from the
system of equation (13)-(19) having removed equations
(15), (18) and restructured equations (14), (17), (19). In
both cases the stress components are obtained the same
way as for the two-layer bar.

2.5. Methodological errors

When the stress state is spatial, one of strength
theories has to be applied. We will be using the theory of
maximum energy of distortion (von Mises). According to
the given methodology, having the stress components o,

C,;, O,;, stress intensities o, (von Mises) can be calcu-

lated. Stress intensity evaluates strength of the layers tak-
ing the Poisson‘s effect into consideration. The methodo-
logical error of [11] is quantitatively found by comparing
the axial stresses and stress intensity by the formula
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where o', axial stresses, of the layers acording to simpli-

fied methodology [11].

The errors of effective Young‘s modulus, due to
the efect of Poisson‘s, is finded by formula similar to (21),
using the values given by expressions (2) and (6).

Due to Poisson‘s effect, the errors of effective
Young‘s modulus are found by the formula similar to for-
mula (21), putting in the values from expressions (2) and

(6).
3. Results and discussion
3.1. Influence on stresses
Firstly, we are going to examine the impact of
Poisson's ratios of constituent materials and Young‘s

modulus on the strength two-layer bar. This influence will
be quantitative if measured by methodical errors according

to Eq. (21). As an object for study we chose three main
two-layer constructions: Metal-Polymer (MP), Metal-
Ceramic (MC) and Ceramic-Polymer (CP). In each two-
layer bar the material can be arranged in two ways (e.g. M-
P and P-M).

The stress errors in constructions MP and PM are
shown in Fig. 2, wherev,, =0.3, v,, =0.4. The continu-
ous lines represent the stiff plastics (e.g. PVC) and soft
metal (e.g. aluminium) compositions. The dashed line
represents the soft plastic (e.g. PE) and stiff metal (e.g.
steel) compositions. When E,, =70..200GPa and

E, =1..4GPa the actual error curves lie between the

solid and dashed lines. As shown in Fig. 2, the stress errors
of the two-layer M-P bar do not exceed 7.0%.
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Fig. 2 Stress error dependences on the ratio of cross-
sectional areas, when: I, 2-E=70GPa, Ep=
=4 GPa; 3,4 - E;;= 200 GPa, Ep= 1 GPa; 1,3 stands
for internal, and 2,4 for external layers, a — M-P,
b-P-M

In the M-P bar (Fig. 2, a), the error is less than
1.0%, regardless of the Young‘s modulus. While the errors
of P-M bar (Fig. 2, b) increase in one layer, they decrease
in the other one. The errors in the polymer layer almost
always exceed the metallic ones. The error of metallic
layer becomes noticeable only when the layer is thin
(v, <10%). The more different Young‘s modulus, the

lower are the errors in the metals and higher in the poly-
mers. When the bar is hollow, the errors are similar, except
for the case when the hole diameter is small. Due the stress
concentration, the stress error of the polymer layer may
reach up to 11%. The errors of the metallic layer, due to
this reason, practically are not affected.

The errors of stress in the M-P construction can-
not be taken into account and it is considered that in such
cases the methodology [1] present rather accurate results.



Regarding P-M constructions the methodology [1] and
similar to them should be applied with caution, because the
actual stresses in the polymer layer may be very different
from the calculated ones.

Ceramic-Metal (C-M, M-C) compositions due to
their high strength and low cost are widely used in con-
struction. The variations of the stress errors are shown in
Fig. 3. In case of the MC construction the errors of the
metallic layer reach up to 3.5% (Fig. 3, a), and around 2%
in the CM construction (see Fig. 3, b). The maximum error
(about 6%) is obtained in the ceramic layer, with the CM
arrangement of solid bar construction, as ceramics is less
rigid than metal, and its volumetric ratio is low. In case of
the hollow construction the maximum values of the errors
are smaller but similar.
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Fig. 3 Stress error dependences on ratio of cross-sectional
areas, when: I,2-E,, =70GPa, E-=100 GPa;
3,4 - Ey= 200 GPa, E-= 50 GPa; 1,3 stands for in-
ternal, and 2,4 for external layers, a—M-C,
b-C-M

Thus, in most cases the errors of the ceramic-
metal structures are about 1-3%. The layer arrangement
does not affect the stress in the cardinal way, contrary to
the polymer-metal structure (compare Fig. 3 and Fig. 2).
When high precision is not required, in the most cases
these errors can be ignored and considered that the stress
state is uni-axial, as methodology [1] claims.

The Ceramic-Polymer composition is less widely
used (Fig. 4). The errors in such bars have similar charac-
ter as in the polymer-metal bars, except that their values
are much higher (Fig. 2). High stress errors (up to 14.0%)
occurred at the polymer layer in the P-C bar. If the bar is
hollow, the error is highly dependent on the radius r. The
smaller the radius the higher the error (may be up 46.5%).
The Error decreases with increasing radius and becomes
lower than those at solid bars.

Larger errors in the C-P composition are obtained
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in a polymer layer (up to 3.0%), but only in case of its sig-
nificant volumetric ratio. Thus, in case of the C-P construc-
tion the stress errors can be considered as negligible, how-
ever, this cannot be stated of the of the PC case. The stress
state of the following bar is in mismatch with those pre-
sented by the methodology [1]. This is because of higher
difference of Poisson's ratios, as the error variation of P-C
and P-M bars is similar in their nature, only their values
are different (compare Fig. 2 and Fig. 4).
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Fig. 4 Stress error dependences on ratio of cross-sectional
areas, when: [, 2-E-=100GPa, Ep=1 GPa;
3, 4-E-=50 GPa, Ep=4 GPa; 1,3 stands for inter-
nal, and 2,4 for external layers, a— C-P, b — P-C

It should be noted that the results have been ob-
tained on the assumption that the deformations are elastic
and any fracture or flow processes are absent. The value of
the stresses can also change due to the layer delimitation
(lost adhesion between the layers).

3.2. Influence on stiffness

One of important characteristics of the multi-layer
bar (MB) is stiffness or effective Young's modulus. Its
value, as seen in the formula (6), depends on stress state of
the layers. When the stress state is axial, the modulus E
[1] calculated using the formula (2), will be different from
the effective modulus E% calculated by (6). This causes
the stiffness error in a multi-layer bars.

It has been obtained that the error of stiffness de-
pends on geometry of the bar. When the Poisson's ra-
tiosv, =0.5, v, =0.2, in a hollow bar, the error of stiff-
ness is about 1- 4% (Fig. 5, b). In case of a solid bar, the
error is much higher (up to 8%, see Fig. 5, a). In both
cases, the error depends on the ratiosy/, , &, .

A really significant effect on the values of stiff-
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Table 1
Stress errors of solid multilayer bars
. Stress error, %

Geometry Properties n P-M P-M-P P-M-P-M
T . 1
Dy =26.0 Ej=200.0 GP : : :

3 mm, M a 3 - 0.29 4.66
wp=0.8, =02 vp=0.4, vy =03 4 - - 0.30
C-M C-M-C C-M-C-M
T
Dy =26.0 mm, E)=200.0 GPa 3 - 151 351
we=0.1, w3 =0.9 ve=02,vy=03 4 - - 0.18
P-C P-C-P P-C-P-C
D= 0.0 mm, Ep=1.0GPa . Dt o P
wp=02,yc=0.38 vp=0.4,vc=0.2 4 - - 0.28
Table 2
Stress errors of hollow multilayer bars
. Values of stress errors, %
Geometry Properties n P-M P-M-P P-M-P-M
D; =21.0 mm, Ep=1.0GPa ; 8-3‘5‘ gg; 8-?2
Dy =34.0 mm, E=200.0 GPa 3 : 038 217
Yp= 0.8, Y= 0.2 Vp = 04, V= 0.3 4 - - 0.23
C-M C-M-C C-M-C-M
R o s
Dy =34.0 mm, E=200.0 GPa 3 N 1.96 3.43
I//CZO.I,I//MZO.g VC=O.2, VM=0.3 4 - - 0.12
P-C P-C-P P-C-P-C
D;=21.0 mm, Ep=1.0GPa ; 8'SZ 8'8411 8'%
Yp= 0.2, Yec= 0.8 Vp = 04, Ve = 0.2 4 - - 0.18

* Dy, Di mark the inner and outer diameter of the bar respectively, n represents numbers of the layers.
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Fig. 5 Stiffness errors dependence on ratios of cross-sectional areas and Young’s modulus, when: / -&,, = 0.01,

2-6,,=0.1,3-¢,, =1,4-&,, =10, 5-&,, =100

ness errors are created by Poisson‘s ratio. When v, =0.4,
v, =0.3, the error of the solid bar reaches up to 0.5%,

while in the hollow one just 0.3% respectively. When the
differences of Poisson’s ratios are constant, the error of
stiffness will be higher if one layer has a ratio closer to 0.5,
i.e. when one of the materials is incompressible.

v, =0.5 v, =0.2, a—solid, b—hollow

The larger the difference between Poisson's ratios,
the higher is the contact pressure between the layers; and
the methodology [1], assuming that the contact pressure is
absent presents more and more inaccurate results. The fact
that solid bar presents higher errors may be explained by
the fact that a solid layer resists deformation more than a
hollow one. The hollow layer can deform in the direction



of the hole, while the solid one only by changing its vol-
ume.

From the data presented it is clear that the error of
stiffness does not only depend on the bar type, but also on
the values of relative cross-sectional area of the layers,
Young‘s modulus and Poisson's ratios (Fig.5). When

|v2 —v1| <0.3 and &,, <10, the errors are negligibly small

and formula (2) gives the exact value of effective Young‘s
modulus. Theoretically, the error of stiffness may reach
25%. Such errors are obtained when &, -, v, -0,

v, > 0.5 and y, > 1.

The maximum stress error of 36.4 % is obtained
in the inner layer of the solid bar, when v, = 0.1, v, = 0.5,

&, — . Extremely high errors are obtained in the hollow

bar at the inner layer if the inner radius is very small. Then,
according to the methodology [1], the stresses can differ
from the actual ones several times.

The maximum stress error of the outer layer is
21.3%. It is obtained when v, 0.5, v, =0.1, &, —>0.

The error in it has only an insignificant dependence on
whether the inner layer is hollow or solid.

As for the stiffness errors, the stress errors are
highly dependent on the difference of Poisson's ratios.

When |v2 —v1| <0.1 regardless of the values of Young's

modulus, bar geometry and the layer layout the stress error
will not exceed 7.2%. In these cases, the approximate
methodology [1] can be applied. When the difference is
higher, the errors of stress and stiffness may become more
significant. In such cases, we recommend to use the meth-
odology here presented instead of [11].

3.3. Multilayer bar

After the analysis of the two-layer bars it remains
to examine the multilayer bars ( i > 2). To determine val-
ues of the error equations (13) - (21) were used. For further
study we chose the cases where the highest errors in the
two-layer bar were obtained (see Fig. 2-4). The subject was
a multi-layer bar with 3 and 4 layers, composed of two
different materials (phases). The volumetric ratio of the
Phases in 2, 3 and 4-layer bars was equal. The results are
presented in Tables 1 and 2.

While analysing the impact of the layer number
on the stress errors it is clear that the increase in the num-
ber of the layers causes the increase of errors in inner lay-
ers, rather insignificantly though. It should be noted that
moving from the two-layer to the three- of four-layer bar,
the stress errors of the inner and outer layers of the same
material are significantly different (see table 1). In Tables
1 and 2 a trend is seen that the closer the layer is to the bar
surface the lower are the errors, and vice versa.

Moving from two-layers to the three or four lay-
ers in the hollow bars, the stress error may be increased
(Table 2). Results presented (Tables 1 and 2) clearly show
that the stress errors in the two-layer bar can be used for an
approximate estimation of the multilayer bar error. In other
words, instead of the complex 3-layer or 4-layer equations,
simpler 2-layer bar equations (6) - (12) can be used. In-
creasing the number of the layers has little impact on stif-
ness of the bar.

4. Conclusions

Due to Poisson's effect contact pressure appears in
the axially loaded multilayer bars. The bar strength,
stresses and stiffness are affected as a result. A mathemati-
cal model for this pressure, equivalent stresses and bar
stiffness calculation in the cylindrical multi-layer bar, with
estimation of the influence of Poisson's effect is proposed.
The equations derived were used to determine the stress
and stiffness errors that occur in case this effect is ne-
glected.

Stress and stiffness error variations for the two-
phase bars made of two, three or four layers have been
determined. It was obtained that when the difference of
Poisson's ratios is 0.1 or greater, then the strength and
stiffness errors may become significant. In such cases the
effect of Poisson's effect cannot be neglected.

Strength and stiffness errors also depend on
Young‘s modulus, cross-sectional areas (i.e. volumetric
ratios of the phases), geometry and the layers of the layout.
The errors of solid bars are usually greater than those of
the hollow ones. Stiffness errors are usually much lower
than the ones of the stress.

Large errors are obtained in polymer-metal solid
bar construction when the polymer lies inside the bar and
within polymer-ceramic structures. In metal-ceramic and
polymer-metal constructions, when the polymer is outside
the bar, and regardless of the layout of the layers, the stress
and stiffness errors are negligible.

After the examination of three and four layer two-
phase bars and comparison with the two-layer construction
it was obtained that an increased number of the layers usu-
ally has no significant effect on the errors. The errors of
multilayer bars may be both larger and smaller than the
two-layer ones. This depends on the layer thickness and
arrangement: the inner layers of the bar tend to increase in
errors, while in contrast, the outer layers tend to decrease.

The stiffness errors in the two- and multi-layer
bars are very similar. In our view, the stress and especially
stiffness of multi-layer bars can be rather accurately esti-
mated from a similar two-layer construction. In other
words, equations (6) - (12) may be used for the multi-layer
bar strength and stiffness evaluation. The relative advan-
tage of the two-layer model compared with the multi-layer
model is that it contains simpler expressions in analytical
formulas.

It is not only Poisson’s effect that can cause stress
and stiffness errors, but also the change in temperature,
creep of the material, etc. Thus, the total amount of errors
of the multi-layer bar may be higher than has been shown
here.
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PUASONO KOEFICIENTO [TAKA CILINDRINIU
STRYPU STIPRUMUI IR STANDUMUI

Reziumé

Tempiant (gniuzdant) daugiasluoksnius strypus,
dél skirtingy Puasono koeficiento verciy tarp sluoksniy
atsiranda kontaktinis slégis. Dél to sluoksniuose susidaro
erdvinis (tria8is) itempiy biivis. Darbe pasitlyta analitiné
metodika, igalinanti tiksliai apskaiéiuoti itempius, atsizvel-
giant { Puasono koeficienty itaka. Juos ignoruojant, atsi-
randa jtempiy ir standumo skaic¢iavimo paklaidos. Straips-
nyje nagrin¢jama, nuo ko priklauso ir kaip kinta dvisluoks-
niy ir daugiasluoksniy cilindriniy strypy itempiy ir stan-
dumo paklaidos.

N. Partaukas, J. BareiSis

POISSON’S RATIOS INFLUENCE TO CYLINDRICAL
BARS STRENGTH AND STIFNESS

Summary

In case Multilayer cylindrical bars are subjected
to tension or compression, due to Poisson effect, contact
pressure between the layers occurs. As a result, a spatial
stress state arises in the material. The analytical methodol-
ogy for accurate determination of stresses, assessing the
influence of this effect is proposed. In case this phenome-
non is neglected, this often leads to stress, strength and
stiffness methodological errors. The paper examines in
detail how big they are and how these errors change in
multilayer cylindrical bars. In addition to this, analytical
equations to obtain the stress in multilayer bars are pre-
sented, at the same time evaluating the influence of Pois-
son effect.

H. Hapraykac, 1. Bapeiimuc

BJIMAHUE KOOOOUIUEHTA ITYACCOHA HA
HHPOYHOCTD M KECTKOCTb HWIMHAPUYECKHX
CTEPXHEU

PesmomMme

[Ipu pacTsrkeHUU-C)KaTUU MHOTOCIIONMHBIX CTEPK-
Hell m3-3a pasHBIX 3HadeHHWH Kod(¢urmenrta I[lyaccona
CO3/1aeTCsl KOHTAaKTHOE JaBJECHHE Mexay ciosMu. M3-3a
3TOro B CIOSIX 00pasyeTcss 00beMHOe (TPEeXOCHOE) HaIpsi-
’KEHHOE COCTOsiHUE. B paboTe npeanoxeHa aHaIuTHYeCKast
METOJIMKA, TI03BOJISIFOLIAs TOYHO ONPENENUTh HANPSKEHHS
¢ yderoM BiusiHUS Kodduiuentos Ilyaccona. Urnopupo-
BaHME MOCJIEAHUX BEAET K MOTPEIIHOCTSAM pacueTa Mmpod-
HOCTH W JKE€CTKOCTH. AHAJIM3UPYETCS, OT YEero 3aBHCHUT H
KaK MEHSIOTCSI TIOTPELIHOCTH MPOYHOCTH U KECTKOCTH KaK
B JIBYXCJIOMHBIX, TAK ¥ B MHOTOCJIOHHBIX IMIMHAPHYECKUX
CTEPIKHSIX.
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