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1. Introduction 

 

It’s known that 90% of the energy consumed by 

the industry is derived from induction machines. Several 

faults are often responsible for unexpected failures. Study 

results indicate that bearing faults are responsible for a 

high percentage of failures in induction machines. This 

makes it highly recommended that small and medium 

voltage induction machines are continuously monitored for 

bearing faults [1, 2]. It is possible to gain rich information 

about the machine's health from vibration signals [3]. 

Many researchers employ appropriate techniques 

to extract fault information from the non-stationary and 

nonlinear vibration signals of rolling bearings. The empiri-

cal mode decomposition (EMD) is a time-frequency analy-

sis technique developed by Huang et al. [4]. The EMD 

does not rely on the basis function like the short-time Fou-

rier transform or wavelet transform. It decomposes signals 

into oscillatory components known as intrinsic mode func-

tions (IMFs). The EMD technique has been widely used to 

analyze bearing fault vibration signals. However, a signifi-

cant problem with EMD is mode mixing. To solve this 

problem, Wu and Huang. [5] proposed Ensemble Empiri-

cal Mode Decomposition (EEMD), an improved version of 

EMD. Compared to the EMD, it has been shown that IMFs 

produced by the EEMD can better highlight the character-

istics of the signal [6]. 

Background noise is a significant factor affecting 

the performance of EEMD, combining EEMD with other 

techniques is necessary for improving bearing fault diag-

nosis [7-9]. By using EEMD and Wavelet Packet Trans-

forms, Xie et al. [7] proposed a method for de-noising 

Bearing Vibration Signals. Based on EEMD and envelope 

spectrum analysis, Xu et al. [8] developed a method for 

diagnosing bearing faults. Li et al. [9] presented a bearing 

fault diagnosis based on EEMD and index of envelope 

spectrum sparse ratio.  

Considering the above, this paper proposes a fault 

diagnosis method combining EEMD and a denoising ap-

proach based on the three-sigma rule to purify the raw 

signal and to extract the defect information, respectively. 

Firstly, the bearing signal is decomposed by EEMD into 

IMF components, then the kurtosis of each component is 

calculated. After that, the components that have significant 

values are selected for reconstruction. To enhance fault 

detection, the reconstructed signal is de-noised using the 

three-sigma de-noising method. Finally, the processed 

signal is analyzed by envelope spectrum to determine the 

fault characteristic frequency.  

The other parts of this paper are as follows. Sec-

tion 2 is divided into three parts which give the representa-

tions of the theoretical backgrounds of EEMD, Kurtosis, 

and the Three-sigma de-noising method, respectively. 

Section 3 describes the proposed bearing fault diagnosis 

method. Section 4 presents the results of applying the pro-

posed method to experimental data. The conclusion of this 

paper is given in section 5.   

 

2. Basic principle 

 

2.1. EEMD algorithm  

 

The EEMD algorithm solves the problem of EMD 

by eliminating the mode mixing phenomenon. In addition, 

it provides more accurate fault information for rolling 

element bearings compared to EMD. The EEMD algorithm 

proceeds as follows [10]. 

Step 1. Add the white Gaussian noise to the origi-

nal signal with a mean of 0 and the standard deviation of 1 

and get:   

 

,i iX X w= +  (1) 

 

where: wi is the ith added white noise for i =1,2, . . ., I. 

where I indicate the number of realizations, and β means 

the amplitude of the ith added white noise. 

Step 2. To obtain the IMFij, it's necessary to de-

compose each Xi by EMD, where (j=1, . . ., N), N indicates 

the number of IMFs, and ri is the residue of the ith realiza-

tion. 

 

1
.

N
i ij ij

X IMF r
=

= +  (2) 

 

Step 3: Based to determine the ensemble means I 

IMFj of the I trials as shown in the following formula: 

 

1
,

I
j iji

IMF IMF
=

=  (3) 

 

where: IMFj is the ith IMF (IMF1, IMF2,…, IMFN) decom-

posed by EEMD. 
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2.2. Kurtosis 

 

Kurtosis is an indicator that measures the peak 

degree of a signal waveform. As the proportion of impact 

components increases, the kurtosis value also increases. In 

the absence of rolling defects, the kurtosis approaches a 

Gaussian distribution; however, if impulses occur, the 

kurtosis increases significantly. Kurtosis can be expressed 

as follows: 

4

21

( )1
,

N i

i

x
K

N



=

−
=   (4) 

where: μ denotes the signal's average; σ denotes its stand-

ard deviation; N is the number of samples; xi denotes the 

vibration's amplitude over time [11]. 

 

2.3. Three-sigma rule denoising method 

 

According to the three-sigma rule, 99.73% of data 

that follows a normal distribution lies within three standard 

deviations from a mean [12]. 

 3 3 99.73%.P X   − +   (5) 

The mean and standard deviation are represented 

by μ and σ, respectively. The normal distribution appears 

with:  

( ) 0,E X = =  (6) 

 

 
22 2 2( ) ( ) ( ) ( ) ,D X E X E X E X = − = =  (7) 

where: E(X) and D(X) are representations of the expecta-

tion and variance of X, respectively. 

As a result of Eq. (7), X has the following root 

mean square (RMS) value: 
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where: xi is the time-domain sampling data of X and n 

indicates the sampling number. 

Using Eq. (6) and Eq. (8), Eq. (9) can be written 

as: 

 

 

 

3 3
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P X X X
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= − + 
 

(9)
 

 

Based on the assumption that a fault-free rolling 

bearing follows a normal distribution [13], Eq. (9) shows 

that almost all the noise in the bearing vibration signal X is 

distributed within rmsX . Due to this, it is necessary to 

remove the components within rmsX . The denoising 

process consists of the following steps [14]: 

1. Zero-mean normalization is applied to X: 

( ) ,
X

Y t




−
=  (10) 

where: Y(t) is the normalized signal. 

2. Determine the root mean square value Yrms of 

Y(t). 

3. Replace the sampling data yi of Y(t) falling be-

tween ±3Yrms with zero while leaving iy outside of ±3Yrms 

unchanged. The process may be presented by: 

 

0 3
,

( )

i rms

i

Z if y Y

Z y t otherwise

 = 


=

 (11)  

 

where: X(t) is represented by Z(t) after removing the un-

necessary components. 

 

3. The proposed fault diagnosis of rolling bearing based 

on EEMD and the three-sigma rule denoising  

 

The bearing signal is decomposed into IMF com-

ponents by EEMD, and the kurtosis for each component is 

calculated. For reconstruction, the components with signif-

icant values are selected. Then, the three-sigma rule de-

noising is applied to the reconstructed signal to enhance 

fault detection. After the signal has been processed, it is 

analyzed using the envelope spectrum. Fig. 1 illustrates the 

flow chart of the bearing fault detection method. The de-

tailed description of the flow chart is as follows: 

Step 1. Decompose the fault vibration signal with 

defect into IMFs by EEMD.    

Step 2. Calculate the kurtosis of each IMF com-

ponent. 

Step 3. Select the appropriate IMFs based on the 

high values of kurtosis 

Step 4. Reconstruct the signal by the selected 

IMFs. 

Step 5. Perform the three-sigma denoising method 

on the reconstructed signal. It consists of a few steps: 

1) Normalize the reconstructed signal using Zero 

mean normalization.  

2) Calculate the root mean square value Yrms of 

the normalized signal.   

3) Replace the sampling data of the normalized 

signal with zero if it falls between ±3Yrms while keeping  

the sampling data outside of ±3Yrms unchanged.  

Step6. The processed signal is analyzed by enve-

lope spectrum. 

 

4. Experimental validation 

 

Data from Case Western Reserve University [15] 

was used to validate the proposed method's effectiveness in 

detecting bearing faults. Fig. 2 shows a dynamometer con-

sisting of a motor with a power output of two horsepower 

(left), a torque sensor/encoder in the center, a dynamome-

ter in the right, and control electronics. Due to electro-

discharge machining, we have three types of faults: outer 

race fault, inner race fault, and ball fault. Rotation speed 

ranged from 1730 to 1797 RPM. In this study, we used the 

time signals recorded for the inner race and outer race fault 

of the drive end bearing. 12000 samples were collected per 

second for this vibration signal. This experimental test was 

performed using a deep groove ball bearing 6205-2RS 

JEM SKF. The bearing parameters are listed in Table 1.  
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Table 1 

Parameters of the bearing 6205-2rs jem skf 

Inside diameter 25 mm 
Outside diameter 52 mm 

Intermediate diameter 39 mm 
Ball diameter 8 

Number of rollers 9 
Contact angle 0 rad 

 

When the bearing defect occurs in its early stages, 

it is localized: it consists of a crack or spall. The inner and 

outer rings of rolling elements generate shock impulses 

every time they hit a local fault. Repeated shock pulses 

cause vibrations at the frequency corresponding to the 

faulty component. BPFI (Ball Passing Frequency Inner

Race) and BPFO (Ball Passing Frequency Outer Race) are 

both fault characteristics frequencies, which refer to the 

inner race and outer race, respectively. The following are 

their mathematical equations [16]:   

 

1 ,
2

br
BPFI b

c

D cosF
F N

D

 
= + 

 
 (12) 

 

1 ,
2

br
BPFO b

c

D cosF
F N

D

 
= − 

 
 (13) 

 

where: Fr is the rotor shaft frequency; Nb is the number of 

rolling elements; Dc is the pitch diameter; Db is the ball 

diameter, and β is the ball contact angle.  

 

Fig. 1 Flowchart of the bearing fault diagnosis method 

 

 

Fig. 2 Experimental test rig from CWRW [15] 

 

4.1. The inner race fault analysis 

 

Here, the vibration signal emanating from the in-

ner race fault is analyzed using the method presented in the 

paper (Fig. 1). There is a shaft speed of 1750 rpm, a load 

of 2 hp, and a fault size of 0.007 inches. A fault character-

istic frequency of 157.9 Hz can be calculated for the inner 

race based on the parameters in Table 1 and Eq. (12). Ana-

lyzing 24000 data points, the measured original bearing 

signal with the inner race fault signal is plotted in Fig. 3, a. 

There is a noise effect that prevents the periodic impulses 

from being extracted. From the envelope spectrum in Fig. 

3b, the fault characteristic fi and the first harmonic can be 

determined. However, the other harmonics are obscured by 

noise interference. Thus, pre-processing is required to 

improve fault detection. 

 

4.1.1. Application of the proposed method  

 

To demonstrate the effectiveness of the proposed 

method, EEMD decomposition is applied to the measured 
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signal and the first five IMFs are plotted in Fig. 4. The 

kurtosis values of these IMFs are shown in Table 2. Clear-

ly, IMF 1, IMF 2, and IMF 3 have the highest values 

among all the decomposition results, so these IMFs are 

selected for signal reconstruction. To reduce noise in the 

reconstructed signal, the three-sigma rule de-noising tech-

nique (described in section 3) is applied. In the first step, 

the reconstructed signal is normalized by zero-mean nor-

malization. Following this, the root means square value of 

the normalized signal is calculated, and the components 

within ±3Yrms are removed. The result of de-noising is 

shown in Fig. 5a. It is observed that the noise level is re-

duced effectively, as well as periodic fault impulses are 

emphasized. From the envelope spectrum in Fig. 5b and 

compared with the envelope spectrum of the original signal 

in Fig. 3b, it is evident that we can extract the inner race 

fault characteristic frequency fi and more fault information 

(2fi, 3fi, 4fi, 5fi, 6fi and 7fi). The results demonstrate that the 

method presented in this paper can accurately diagnose the 

bearing with an inner race fault. 

 

a 

 

b 

Fig. 3 Original vibration signal with inner race defect: a) 

time domain waveform; b) envelope spectrum 

 

Fig. 4 Decomposed result of the original signal by EEMD 

 

a 

 

b 

Fig. 5 a) The resulting signal obtained by the proposed 

method; b) envelope spectrum 

Table 2 

Kurtosis values of each IMF 

IMF Kurtosis 

IMF1 8,51 

IMF2 5,84 

IMF3 6,42 

IMF4 5,30 

IMF5 4,97 

 

4.1.2. Comparison with EEMD 

 

Fig. 6a shows the reconstructed signal with effec-

tive IMFs, while Fig. 6b shows its envelope spectrum. By 

comparing Fig. 5a with Fig. 6a, it is clear that the method 

described in this paper suppresses noise and emphasizes 

fault impulses more effectively than the EEMD method. 

Comparing the envelope spectrums in Fig. 5b and Fig. 6b, 

this method can also provide more fault information (2fi, 

3fi, 4fi, 5fi, 6fi and 7fi) than the EEMD. The comparison 

results reveal that the proposed method is superior and 

more effective for improving fault detection.  

 

a 

 

b 

Fig. 6 a) The resulting signal obtained by EEMD; b) enve-

lope spectrum 

 

4.2. The outer race fault analysis 

 

In this case, the vibration signal emanating from 

the outer race fault is analyzed. There is a shaft speed of 

1797 rpm, a load of 0 hp, and a fault size of 0.021 inches. 
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A fault characteristic frequency of 107.01 Hz can be calcu-

lated for the outer race based on the parameters in Table 1 

and Eq. (13). Analyzing 24000 data points, the original 

bearing signal with the outer race fault signal is plotted in 

Fig. 7, a and its envelope spectrum is shown in Fig. 3, b. It 

can be seen that the fault characteristic frequency of the 

outer race and the first harmonic can be determined. How-

ever, noise interference obstructs the other harmonics. 

Therefore, pre-processing is required to improve fault 

detection. 

 

a 

 

b 

Fig. 7 Original vibration signal with outer race defect: a) 

time domain waveform; b) envelope spectrum 

 

4.2.1. Application of the proposed method  

 

To illustrate the advantages of the proposed ap-

proach for improving fault detection, EEMD decomposi-

tion is applied to the measured signal and the first five 

IMFs are plotted in Fig. 8.  

 

Fig. 8 Decomposed result of the original signal by EEMD 

 

Table 3 shows the kurtosis values of these IMFs. 

It is evident that IMF1 and IMF2 have significant values, 

so these IMFs are selected for signal reconstruction. To 

reduce noise in the reconstructed signal, the three-sigma 

rule de-noising technique is applied. First, the reconstruct-

ed signal is normalized by Zero-mean normalization. In the 

next step, the root means square value Yrms of the normal-

ized signal is calculated and the components within ±3Yrms 

are removed. Fig. 9, a show the signal after denoising, it 

can be seen that the noise level is effectively reduced, and 

the periodic fault impulses are emphasized. From the enve-

lope spectrum in Fig. 9, b and compared with the envelope 

spectrum of the original signal in Fig. 7, b, it is clear that 

we can extract the outer race fault characteristic frequency 

fo and more fault information (2fo, 3fo, 4fo, 5fo, 6fo and 7fo). 

Consequently, the results demonstrate that the bearing with 

the outer race fault can be accurately diagnosed by the 

proposed technique. 

Table 3 

Kurtosis values of each IMF 

IMF Kurtosis 

IMF1 17,70 

IMF2 25,19 

IMF3 10,60 

IMF4 8,84 

IMF5 10,06 

 

a 

 

b 

Fig. 9 a) The resulting signal obtained by the proposed 

method; b) envelope spectrum 

 

a 

 

b 

Fig. 10 a) The resulting signal obtained by EEMD;  

b) envelope spectrum 

 

4.2.2. Comparison with EEMD 

The reconstructed signal with effective IMFs is 
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shown in Fig. 10, a and its envelope spectrum is shown in 

Fig. 10, b. Comparing Fig. 9, a with Fig. 10, a, it is clear 

that the method presented in this paper eliminates the noise 

and emphasizes the fault impulses more effectively than 

the EEMD. Comparing the envelope spectrums in Fig. 9, b 

and Fig. 10, b, this method can also extract more fault 

information (2fo, 3fo, 4fo, 5fo, 6fo and 7fo). The comparison 

results reveal that the method proposed here is superior and 

more effective for improving fault detection. 

5. Conclusion 

In this paper, a rolling bearing fault diagnosis 

technique is proposed by combining EEMD with the three-

sigma rule de-noising technique. From the analysis of the 

experimental bearing fault vibration signal, we found that:  

1. Noise can be effectively reduced and the peri-

odic impulses can be successfully improved using the 

proposed method.  

2. The proposed method can effectively extract 

rich fault information from the envelope spectrum 

3. In comparison with the EEMD, the proposed 

method is more effective for improving fault detection.  
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EARLY BEARING FAULT DETECTION USING 

EEMD AND THREE-SIGMA RULE DENOISING 

METHOD 

 

S u m m a r y 

 

Rotating electrical machines have several physical 

phenomena. Vibration is one of the important phenomena 

in the operation of rotating electrical machines. In addition, 

the vibration signal is considered an important source to 

have good information on the state of rotating electrical 

machinery. But this signal is rich in noise, especially under 

the presence of the bearing fault. This paper proposes a 

bearing fault diagnosis method based on EEMD and a 

denoising method based on three-sigma rule. In the first 

step, the EEMD decomposed the vibration signal into 

several components called Intrinsic Mode Functions 

(IMFs). After the calculation of the kurtosis of each IMF 

component, the signal is reconstructed by choosing com-

ponents with higher values. To enhance periodic impulses, 

the three-sigma rule de-noising is applied to the recon-

structed signal. As a final step, the envelope spectrum is 

used to determine the fault characteristic frequency. As a 

result of testing the bearing with inner race fault and the 

bearing with outer race, it was verified that the proposed 

approach suppressed noise effectively and extracted rich 

fault information from the vibration signals of bearings 

compared to the EEMD.  

 

Keywords: Bearing Fault diagnosis, signal denoising, 

ensemble empirical mode decomposition, early fault detec-

tion. 

 

Received November 14, 2022 

Accepted August 2, 2023 

 

 

This article is an Open Access article distributed under the terms and conditions of the Creative Commons 

Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).  

 

http://creativecommons.org/licenses/by/4.0/

