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1. Introduction 

Composite materials are a kind of materials com-

posed of two or more materials with different chemical and 

physical properties. It is widely used in industry, and has 

high strength, high modulus and high fatigue resistance [1]. 

Graphene, due to its superior properties such as large spe-

cific surface area, excellent mechanical properties, good 

conductivity and heat conduction as well as excellent flame 

retardancy etc., has become a very popular reinforcement 

material in recent years, widely used in aerospace, automo-

bile and shipbuilding industries [2 – 4]. Adding graphene to 

the resin matrix can greatly improve the strength, and re-

search on the properties of grapheme nanocomposites is still 

a recent topic. 

In structural analysis, materials are often regarded 

as homogeneous. However, on the microscale, this homoge-

neity is lost. This microheterogeneity affects the macro-

scopic performance to a large extent. In order to deeply un-

derstand the mechanical properties of composite materials 

and save experimental costs, the multiscale calculation 

method towards macro-microscale coupling is very effec-

tive [5,6]. In microscale analysis, the most direct method to 

predict the mechanical be-havior of nonlinear heterogene-

ous materials is numeri-cal method, such as finite element 

method (FEM) [7], which is applicable to complex micro 

structures and arbitrary complex constitutive relations [8, 9]. 

However, for large structural analysis, the huge amount of 

computational costs and storage requirements makes this 

method infeasible. In order to improve the computational ef-

ficiency, Dvorak et al. [10] proposed the so-called Trans-

form Field Analysis (TFA) method, which treats the inelas-

tic strain field approximately as a piecewise uniform field. 

However, in some cases, the accuracy is insufficient [11]. 

For this reason, Michel and Suquet [12] proposed the no uni-

form transformation field analysis (NTFA) method, taking 

into ac-count the nonuniform distribution of microscopic 

field quantities [13]. Later, Ju et al. extended the NTFA to 

describe softening effects and strength differences in [14, 

15]. Liu et al. [16, 17] proposed self-consistent cluster anal-

ysis (SCCA) to overcome some shortcomings of the NTFA. 

The method consists of two steps: firstly, the spatial domain 

is divided according to the clustering analysis of linear elas-

tic strain localization operators; then, an analysis process 

similarly to the TFA is applied to the subdomain. The recent 

works of [18, 19] combined reduced order models including 

the NTFA with clustering algorithm and proposed a new 

cluster-based reduced order model. 

The purpose of this paper is to integrate a cluster-

ing analysis into the NTFA method to solve the problems of 

low universality and high application threshold of this 

method, and then propose a new reduced order model, 

which will be used to predict the macroscopic properties of 

graphene nanocomposites. The paper is organized as fol-

lows. Firstly, the NTFA method is introduced briefly. Clus-

ter-based nonuniform transformation analysis (CNTFA) in 

[19] is then introduced, while the derivation and numerical 

implementation are revealed in detail. Finally, the method 

will be investigated by several numerical experiments, 

where the mechanical properties of graphene nanocompo-

sites are studied. 

2. Basic formulation of the two scale problem 

On the premise that the macroscopic characteristic 

length L is much larger than the microscopic one l, based on 

the scale separation assumption [20], a two-scale problem is 

shown in Fig. 1. 

 

Fig. 1 Illustration of a two scale (macro-micro) problem 

Equilibrium equations need to be satisfied on both 

macroscopic and microscopic scales. The strong form of the 

macroscopic balance equation reads: 

 ( )Div 0,  in ,= σ  (1a) 

 

, , on tΓ=σ n t  (1b) 

 
*  , .on uΓ=u u  (1c) 
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the strong form of the microscopic balance equation 

reads: 

 ( )Div 0 ,  in ,= σ  (2a) 

   ,=ε ε  (2b) 

where: u  is the macroscopic displacement vector; n  the 

unit outward normal vector; tΓ   the Neumann boundary; 

t  the tension on tΓ  ; uΓ   the Dirichlet boundary, respec-

tively. 

The macroscopic and microscopic strain and 

stress fields meet the following volume average theorem 

[21]: 

   ,=ε ε  (3a) 

 

.=σ σ  (3b) 

3. Nonuniform transformation field analysis 

The NTFA considers the nonuniform distribution 

of the microscopic fields. Its key idea is the approximate 

space-time decomposition of the microscopic plastic strain 

fields [22]: 

( ) ( ) ( )
1

, ,
Np i

ii
t t

=
ε x μ x  (4) 

 

where: N represent plastic modes; ( )i
μ x  are used to ap-

proximate the nonuniform distribution of plastic strain field 

( )p
ε x , whereas mode activity coefficients ( )i t  are used 

to characterize the temporal evolution of ( ),p tε x . 

Based on the superposition principle, the micro-

scopic problem Eqs. (2a), (2b) can be decomposed into an 

elastic problem: 

( )Div : 0 , in Ω,e =C ε  (5a) 

 ,e =ε ε  (5b) 

and N eigenstrain problems: 

( )( )*Div : 0 , in ,i i− = C ε μ  (6a) 

 

* 0 ,  1, 2, , ,i i N= = ε  (6b) 

where: *

i
ε  represents the total strain tensor. 

The solution of elasticity problem Eqs. (5a), (5b) 

can be written as: 

( ) ( ) ( ) ,t=ε x A x ε  (7a) 

( ) ( ) ,t=σ x C ε  (7b) 

where: ( ) ( )=C C x A x  is the equivalent elastic tensor, and  

( )A x  the strain localization operator in micromechanics 

[23], respectively. 

Through superposition of the solutions of elastic 

problems Eqs. (5a), (5b) and eigen strain problems Eqs. 

(6a), (6b), the localization criteria of microscopic strains and 

stresses are obtained as follows: 

( ) ( ) ( ) ( ) ( )*1
  ,

N i

ii
t t

=
= +ε x A x ε ε x  (8a) 

( ) ( ) ( ) ( )*1
  .

N i

ii
t t

=
= +σ x Cε σ x  (8b) 

In Eq. (8b), ( )i i i= −* *σ C ε μ  is the eigenstress ten-

sor. The macroscopic stress can be obtained by volume av-

eraging of Eq. (8b). 

The key problems of the NTFA remain: 1. identifi-

cation of plastic modes ( )i
μ x  (Section 4.2 for details);  

2. determination of the mode activity coefficient ( ).i t  Lit-

erature [13, 24] mainly showed a phenomenological model 

(coupled or decoupled) proposed through theoretical deriva-

tion. This method requires separate theoretical derivations 

for each different microscopic constitutive model, so it is 

not universal and has a high application threshold. The new 

method to be introduced in Section 4 will solve this problem 

well. 

 

4. Cluster-based nonuniform transformation field anal-

ysis (CNTFA) and numerical implementation 

4.1. Clustering of the RVE 

Clustering analysis is carried out for representative 

volume element (RVE), and all units are divided into I clus-

ters. Eq. (4) is simplified as: 

( ) ( ),

1
, ,

Mp I I

i ii
t t

=
 ε x μ  (9) 

the Eqs. (8a) and (8b) become: 

( ) ( ) *1
,

MI I I

i ii
t t

=
= +ε A ε  ε  (10a) 

( ) ( ) *1
.

MI I I I

i ii
t t

=
= +σ C A ε  σ  (10b) 

Each cluster is composed of a single material 

phase, where its internal stress and strain fields are approx-

imately considered to be uniform. The relationship between 

the stress and strain of each cluster follows the local consti-

tutive relationship of its material phase, as suggested in [25]. 

 

4.2. Mode identification 

The plastic mode 
I

iμ  should fully represent the 

nonuniform distribution of the plastic strain field of compo-

site materials, whereas its number should be as small as pos-

sible, so as to achieve the purpose of effective order reduc-

tion. Firstly, under different strain paths (such as tension and 

shear), the finite element pre-analysis of the RVE is carried 

out. Then, the average plastic strain within each cluster is 

calculated, thus obtaining Ns typical snapshots of the plastic 
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strain field 
, .p I

lε  Those snapshots are decomposed by the 

Karhunen–Loève algorithm to calculate the eigenvalues of 

the correlation matrix l  and eigenvector l . There holds 

the cut-off criterion: 

( ) ( )1 1
,sN M

l kl k
  

= =
   (11) 

where: the constant 0≤β≤1 represents the proportion of 

information contained in M eigenvectors among Ns eigen-

vectors [19]. In this paper, we choose β = 0.999. 

Finally, the plastic mode 
I

iμ  can be obtained by 

using the computed eigenvector k  and plastic strain field 

snapshot 
, .p I

lε  Formally we have: 

 ,

1
, 1 , .sNI l p I

i i ll
Mi

=
= μ ε  (12) 

4.3. Online computation 

The main task of the online computation is to cal-

culate the mode activity coefficient i  at the current time 

step (k+1). For a given macroscopic strain 1,k+ε  we first in-

itialize the mode activity coefficient increment as 

( )
0

1
0i k


+
= ,where j represents iterative steps. The iteration 

termination condition is res< tol. The residual res is defined 

as: 

( ) ( )

( )

2
1

1 1

2

1

,

j j

i ii k k

j

ii k

res
 



−

+ +

+

  − 
 

=
 
 




 (13) 

while tol is the tolerance. 

After time discretization, Eq. (10a) becomes: 

( ) ( ) ( ) ( )( )1

1 *1 11
: ,

j jMI I I

k i i ii k kk
 

−

+ = ++
= + + ε A ε ε  (14) 

where: ( )i k
  is the mode activity coefficient of the last time 

step. According to the local constitutive relation, the plastic 

strain increment ( ),

1

j
p I

k+
ε  can be obtained from Eq. (13). 

According to Eq. (9), the plastic strain increment can also 

be expressed as: 

( ) ( ),

11
1

.
Mj jp I I

i ikk
i


++

=

  ε μ  (15) 

As suggested in [19], the mode activity coefficient 

increment ( )
1

j

i k


+
  can be determined by solving the fol-

lowing least squares optimization problem: 

 ( )
( )

( )

2

,

11

21
,

1

 .
i

j Np I I

I i iI ikj

i k
j

p I

I k

w

argmin 




=+

+

+

 − 

 =



 



ε μ

ε

 (16) 

The analytical solution of the above problem is as 

follows: 

 ( ) ( )( )
1

,

1 1
1

: : .
M jj I I p I I

i I i i I iI Ik k
i

w w

−

+ +
=

    
 =     

   
  μ μ ε μ . (17) 

When the termination condition Eq. (13) is satis-

fied, the iteration is terminated. The mode activity coeffi-

cients, plastic strain and macro stress are updated as follows: 

( ) ( ) ( )
   

1 1
,

j

i i ik k k
  

+ +
= +   (18a) 

( ) ( ) ( ), ,

1 11
,

Mp I p I I

i ii kk k


= ++
= + ε ε μ  (18b) 

( ) ( )1 1
,

1 I I

k
I

V
V+ +

= k
σ σ  (18c) 

where: ( ),p I

k
ε  and 

IV  are the plastic strain of the last time 

step k and the volume of the cluster I, respectively. 

4.4. Numerical implementation 

The overall numerical implementation framework 

is shown in Fig.2.  

For the RVE modeling, we consider randomly dis-

tributed graphene nanosheets (GNSs) in a graphene nano-

composite. As shown in Fig. 3, we use ANSYS Parametric 

Design Language to write programs to automatically gener-

ate three-dimensional RVE models. The generated RVE 

model is then analysed in our self-programmed MATLAB 

codes. For simplicity, each GNS is modeled as a circular 

disk with a diameter of 200 nm and a thickness of 10 nm, 

while the RVE is considered as a cube with a side-length of 

1000 nm.  

For the graphene nanocomposites (the RVE model 

as shown in Fig. 4 and Fig. 7), the following nonlinear hard-

ening equation is used to characterize the isotropic harden-

ing of the matrix: 

( ) ( )( )1 ,R q Hq c exp bq= + − −  (19) 

where: H, c and b are material parameters and q is the equiv-

alent plastic strain. 
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Fig. 2 Flowchart of cluster non-uniform transformation field analysis for graphene nanocomposites 

 

In this paper, linear displacement boundary condi-

tions are used. Apply displacement constraints to all nodes 

on the RVE boundary through MATLAB programming. 

And the subsequent analysis is completed in MATLAB. 

1 2 3 ,     
T

n n
u u u u=     (20a) 
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xx
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=



 (20b) 

11 22 33 12 23 13       2 2 2
T

      =     (20c) 

In order to calculate the strain localization opera-

tor, six orthogonal bases [26] are introduced: 

( )

( )

( )

4

1 2

5

1 3

6

2 3

,   1, 2,3i

i i i

sym

sym

sym

=  =

= 

= 

= 

e e

e e

e e

e e

Σ

Σ

Σ

Σ

. (21) 

 

For three-dimensional problems. Next, we solve 6 

linear elastic problems: 

( ) ( )Div Div 0,   in ,i i

e e= = σ Cε  (22a) 

 

0 for  1, ,6,,  i i

e i= = ε Σ  (22b) 

where: 0  is a constant. The strain localization operator  

( )A x  is: 

( ) ( )
6

1
0

1
  .

ε

dN i

i

=

=
=  Σ

i

eA x ε x  (23) 

 

Fig. 3 Flowchart of RVE modeling for graphene nanocom-

posites  

For each cluster, I
A  can be obtained by volume 

averaging of A(x) in Eq. (23). 

The microscopic elastic strain field is completely 

determined by A(x). Hence, it can be used as an important 

index to investigate the distribution characteristics of the 

microscopic elastic strain fields. This paper uses k-means 

clustering algorithm to subdivide the RVE into different 

clusters, based on A values of different finite elements. Each 

cluster does not interfere with each other, and each cluster 

consists of a single material phase. As shown in Fig. 5, the 

RVE is divided into 10 clusters using the above algorithm 

for illustration. 
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Provided those plastic modes 
I

iμ are obtained 

through mode identification in Section 4.2, N linear ei-

genstress problems are solved: 

( )( )Div 0   in Ω,I I

i* i: ,− =C ε μ  (24a) 

 

* 0,  1,2, , ,I

i i N= =ε  (24b) 

 

( )* * ,I I I

i i i= −σ C ε μ  (24c) 

the eigen strain field 
,

*

i I
ε  required by Eq. (14) is calculated. 

Finally, the mode activity coefficient i  and the 

macro stress σ  at the current time step are determined 

through online analysis in Section 4. 3. 

5 Numerical examples 

5.1. Validation of the cluster-based nonuniform transfor-

mation field analysis 

 

Graphene nanocomposites are studied here. As 

shown in Fig. 4, the graphene nanosheets are distributed in 

an undirected manner, accounting for 1% of the total vol-

ume. Graphene is assumed to be linear elastic. The epoxy 

resin matrix is considered as an elastoplastic material, where 

the classical von Mises plasticity model is used. We use the 

material parameters given in Table 1 obtained from a cali-

bration with the experimental data in [27]. As shown in 

Fig. 5, the RVE model is divided into 10 clusters by k-means 

clustering algorithm. Five different plastic modes were 

identified by the Karhunen-Loève decomposition. For illus-

tration, Table 2 shows two of them. 

 

Fig. 4 RVE of graphene nanocomposite 

 

Fig. 5 RVE clustering of graphene nanocomposites re-

turned by the k-means algorithm 

Table 1  

Material properties of graphene nanocomposite 

Material 
Young’s 

modulus, 

GPa 

Poisson 

ratio 
Yield stress, 

MPa 
H, 

MPa 
B, - 

C, 

MPa 

Matrix 3 0.3 50 40 10 200 

GNSs 1050 0.186 - - - - 

 

Table 2  

Two plastic modes identified by the Karhunen-Loève decomposition 

 I 1 2 3 4 5 6 7 8 9 10 

1

I
μ  

1,11

I  0 -0.7597 -0.0695 -1.0957 -0.7090 -3.1487 -0.8504 -1.2599 -1.1818 -0.5450 

1,22

I  0 0.4358 0.0573 0.2316 0.4700 1.6113 0.4097 1.0115 0.6530 0.3016 

1,33

I  0 0.3239 0.0122 0.8641 0.2390 1.5374 0.4406 0.2485 0.5289 0.2435 

1,12

I  0 0.0028 0.0177 -0.0187 -0.0652 0.0006 0.0052 0.0116 0.1027 0.0492 

1,23

I  0 0.0105 -0.0069 -0.0093 0.0017 0.0428 -0.0100 -0.0395 0.2226 -0.0054 

1,13

I  0 0.0059 0.0016 0.0084 -0.0157 0.0237 0.0000 -0.0045 -0.0057 -0.0070 

 I 1 2 3 4 5 6 7 8 9 10 

2

I
μ  

2,11

I  0 -0.4955 -0.0548 0.6880 -0.0871 5.2688 -0.5369 0.7878 0.6443 -0.1322 

2,22

I  0 0.2866 0.0470 -0.0954 0.0567 -2.6888 0.2657 -0.5993 -0.3686 0.0695 

2,33

I  0 0.2089 0.0078 -0.5926 0.0304 -2.5801 0.2712 -0.1886 -0.2757 0.0627 

2,12

I  0 0.0083 0.0069 0.0053 0.0676 -0.0067 0.0019 0.0065 -0.2031 -0.1220 

2,23

I  0 0.0106 -0.0083 0.0182 -0.0112 -0.0747 -0.0003 0.0213 -0.1151 0.0333 

2,13

I  0 0.0059 -0.0006 -0.0321 0.0032 -0.0707 -0.0008 0.0280 -0.0451 0.0389 

Fig. 6 gives a comparison of the macroscopic 

stresses and the macroscopic strain power between the 

CNTFA and the FEM. The macro stress components com-

puted by both methods are completely identical in the elastic 

stage. Compared with the finite element computation, the 

CNTFA results show slight deviation in the plastic stage, 

whereas the acceleration rate is up to 4500. 



270 

 

a 

  

b 

  

c 

Fig. 6 Comparison of the macroscopic prediction be-tween 

the CNTFA and the FEM: a) Macroscopic stresses - 

Part I; b) Macroscopic stresses - Part II: c) Strain 

power 

 

5.1. Uniaxial tensile simulation of graphene nanocompo-

sites 

 

In this Section, the CNTFA method is used to study 

the uniaxial tensile response of the composites with differ-

ent graphene volume fraction. Figs. 4, 7, a and b show the 

RVE models with a graphene volume fraction of 1%, 1.5% 

and 0.5%, respectively. The material parameters are the 

same as those in Table 1. 

       

                           a                                      b 

Fig. 7 RVE model of graphene nanocomposites with dif-

ferent graphene contents: a) 1.5%; b) 0.5% 

To validate our models, we use the experimental 

data in [27] for reference. As shown in Fig. 8, for a graphene 

volume fraction of 0.5%, compared to the experimental 

data of a uniaxial test in [27], both the CNTFA and the 

FEM render quite accurate predictions.  
In the following, we use CNTFA models to predict 

the uniaxial tensile responses of graphene nanocomposites 

with different contents of GNSs. Fig. 9 shows the compara-

tive results of strain-stress curves of the composites with dif-

ferent GNSs volume fractions in different directions. In the 

elastic and plastic stages, the strength of the material in-

creases with increasing GNSs content. 

 

Fig. 8 Comparison of uniaxial stress-strain curves between 

CNTFA/FEM predictions and experimental data in 

[27] 

 

a 

Fig. 9 Macroscopic stress-strain curves of graphene nano-

composites with different GNSs volume fractions: a) 

Macroscopic stresses - Part I; b) Macroscopic 

stresses - Part II; c) Macroscopic stresses - Part III 
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b 

  

c 

Fig. 9 Continuation 

 

Fig. 10 shows the comparison of uniaxial tensile 

stress-strain curves in different directions with fixed gra-

phene content. The curves in three different directions are 

very close in the elastic stage, and there is obvious deviation 

in the plastic stage. This indicates the anisotropy of the con-

sidered graphene nanocomposite. Although a random distri-

bution of GNSs is considered, the limited number of GNSs 

in the RVE is not sufficient to recover an isotropic response. 

 

a 

Fig. 10 Macroscopic stress-strain curves of graphene nano-

composites with different graphene volume frac-

tions in different directions: a) Part I; b) Part II; c) 

Part III 

 

b 

 

c 

Fig. 10 Continuation 

6. Conclusion 

1. Combining the nonuniform transformation field 

analysis method with the k-means clustering algorithm, an 

improved reduced order model is proposed as suggested in 

[19]. The model improves on the defects of the original 

NTFA method, such as low universality and high applica-

tion threshold. Users can easily embed any microscopic con-

stitutive model into the reduced order framework of this pa-

per according to their own needs without having to derive 

the reduced order model separately. 

2. The CNTFA method can efficiently and reason-

ably predict the macroscopic mechanical response of com-

posites. Compared with the traditional finite element com-

putation, an acceleration rate of 103-104 has been reached. 

3. The influence of the evolution of the material 

mesoplastic field on the macro response is revealed using 

the CNTFA method. For simplicity, this paper only com-

pares and analyzes the composite materials with different 

graphene contents, which shows the effectiveness of this 

method. The method in this paper will be extended to the 

research of optimal material design and performance predic-

tion of novel nanocomposites. 
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CLUSTER-BASED NONUNIFORM TRANSFOR-

MATION FIELD ANALYSIS OF GRAPHENE NANO-

COMPOSITES 

S u m m a r y 

Graphene nanocomposites have attracted much at-

tention in materials science due to their superior mechanical 

properties. It is difficult for conventional multiscale meth-

ods to provide substantial assistance to the research of such 

materials due to their huge computational costs. Nonuni-

form transformation field analysis is a very effective re-

duced order homogenization method for elastoplastic mul-

tiscale analysis. However, the reduced order model derived 

from this method has the shortcoming of low universality 

and high application threshold. As suggested in [19],  an im-

proved reduced order model is proposed by combining the 

nonuniform transformation field analysis with the k-means 

clustering algorithm. One can embed the required micro-

scopic constitutive model into the reduced order homogeni-

zation framework without the need to derive a new reduced 

order model. Based on the cluster-based nonuniform trans-

formation field analysis, the influence of the microscopic 

plastic strain field evolution on the macroscopic response of 

the material under consideration is revealed, while the me-

chanical properties of graphene nanocomposites are pre-

dicted. The numerical results show that the new reduced or-

der model can accurately predict the macroscopic mechani-

cal properties of composite materials, and its acceleration 

rate compared to the traditional finite element computations 

reaches103-104. 
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formation field analysis.  
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