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1. Introduction 

The finite element (FE) model method is widely 

used in the field of structural engineering and is an im-

portant part of computer-aided design. The application of 

the FE method for analysis can reduce the time and eco-

nomic cost, and also provide a theoretical guarantee for the 

feasibility of the design scheme. However, due to the ideal-

ized treatments of the structure in the process of the FE mod-

elling, there is a certain deviation between the FE model and 

the actual structure. If the deviation exceeds the allowable 

range, the credibility of the constructed FE model will be 

questioned and the analytical results will lose its value. The 

FE model updating theory is developed consequently to cal-

ibrate the FE model. The updated FE model has practical 

significance for structural health monitoring [1] and condi-

tion evaluation [2]. 

The basic idea of model updating methods is to 

make the FE model produce a theoretical response that is as 

consistent as possible with the test data by adjusting the se-

lected uncertain structural parameters [3-4]. The updated 

parameters are not limited to the material properties of each 

element, but can also include the geometric parameters of 

the structure, boundary conditions, etc. Model updating 

methods are divided into direct methods and iterative meth-

ods. The focus of the direct methods is to update the matrix 

of the dynamic system [5] so that the predicted numerical 

results match the experimental results. However, the up-

dated theoretical model lost its original physical meaning. 

On the other hand, the iterative methods update structural 

physical parameters and have been widely used. Model up-

dating based on the iterative method can be regarded as an 

optimization problem [6], and its steps include the selection 

of updated parameters, the construction of objective func-

tions, and the selection of optimization algorithms.  

In the iterative methods, the physical parameters of 

the model are successively updated by the sensitivity meth-

ods. The effectiveness of the sensitivity-based FE model up-

dating methods has been verified in various applications. 

For example, the model updating of the three-beam compo-

site structure [7], the cantilever bar of a boring bar [8], the 

FE model of Shanghai Tower [9], the three-dimensional 

nonlinear structure [10], etc. However, the sensitivity-based 

FE model updating methods usually need to establish sensi-

tivity matrixes to update parameters, which is not suitable 

for large structures due to the high cost of computation. To 

improve computational efficiency and reduce the cost of 

computation, meta-model methods have been developed. 

The meta-model methods obtain relatively simple proxy 

models by fitting the sample data of the FE model, such as 

the optimal polynomial response surface model [11], the 

Polynomial-chaotic Kriging (PCK) [12], the vectorial surro-

gate modeling (VSM) approach [13], the Gaussian process 

(GP) regression [14], the adaptive metamodel [15], etc. 

However, the accuracy of meta-model methods is relatively 

low and highly related to the determination of sample space. 

Improper sample selection will lead to inadequate generali-

zation ability of meta-model and unreliable updating results. 

As an optimization problem, the efficiency and results of 

model updating also depend on the ability of the optimiza-

tion algorithm to deal with complex FE models. Many opti-

mization algorithms have been developed and improved, 

such as the sequential quadratic programming (SQP) algo-

rithm [16], the improved particle swarm optimization 

(IPSO) algorithm [17], the evolutionary algorithm [18], the 

derivative-free optimization algorithm [19], the direct up-

dating algorithm [20], the improved meta-heuristic algo-

rithm [21], etc. In addition, the FE model updating methods 

based on statistics and probability have been gradually ap-

plied in different applications. For example, the failure 

probability is used to predict the remaining service life [22], 

the Bayesian data fusion method is applied to find the exact 

location of damage [23], the semi-supervised learning 

method of transferred Bayesian learning (TBL) is used to 

the building structure [24], the Markov chain Monte Carlo 

parallel technique is applied to an office building [25], etc. 

However, the FE model updating methods based on statis-

tics and probability need to solve the complex integration 

and determine the distribution of all variables, so the com-

putation cost is high.  

The focus of this paper is to improve the existing 

model updating method to improve its computational effi-

ciency and accuracy. Selecting proper parameters is of great 

importance to the model updating process. Updating too 

many parameters not only increases the cost of computation 

but also causes ill-posed problems which will lead to the 

failure of the updating process. To improve the efficiency of 

model updating, a natural frequency damage index (NFDI) 

based on the Bayesian theory is introduced to select the up-

dated parameters. The NFDI is easy to establish and can 

quickly identify the damaged location of the structure and 

the updated parameters can be determined according to the 

identified damage location consequently. On the other hand, 

an objective function of strain assurance criterion (SAC) 

type is proposed to improve the accuracy of model updating. 

The weight coefficients determined based on the sensitivity 

analysis are employed for the proposed objective function. 
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The accuracy of the proposed objective function is com-

pared with that of the ordinary least square method.  

The rest of this paper is described as follows. Sec-

tion 2 introduces the model updating method and describes 

the key steps in detail. Section 3 analyzes a beam model and 

the efficiency of the improved method for selecting updated 

parameters is verified. Section 4 verifies the updated accu-

racy of the improved objective function with a pressure con-

tainer model. The conclusions are drawn in section 5. 

2. The model updating method 

This paper employed iterative method to update FE 

model, and the updating process is shown in Fig. 1. The 

steps are given as follows: 

1. Establish the FE model according to the actual 

structure. 

2. Select the appropriate updated parameters and 

set their range. 

3. Construct the objective function. 

4. Select the appropriate optimization algorithm. 

5. Perform convergence judgment and output opti-

mization results.  

 

Fig. 1 The model updating method 

2.1. Selecting updated parameters based on NFDI identifi-

cation 

The selection of updated parameters largely deter-

mines the result of the model updating. Updating too many 

parameters will not only increase the cost of computation 

but also lead to non-convergence errors and other problems. 

Different from the empirical method or sensitivity method 

[26], the NFDI is configured based on Bayesian theory to 

select the updated parameters to improve the efficiency of 

model updating. 

The natural frequency of a structure is related to its 

stiffness and mass distribution. Cracks will lead to the re-

duction of structural stiffness and natural frequency. The 

characteristic curves of natural frequency variation and 

damage location are obtained based on Bayesian theory. 

Then, according to the measured frequency data, the NFDI 

is constructed to identify the damage location [27]. The pro-

cess of establishing the damage position function and the 

NFDI is as follows:  

1. Define the characteristic curve of natural fre-

quency variation and damage location. Firstly, the natural 

frequency values of undamaged and damaged model are ob-

tained by simulation. Then the natural relative frequency 

change (RNFC) j  is calculated as follows: 
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where: j  represents the jth RNFC; i  represents the 

damage location; j  represents the jth natural frequency of 

the undamaged model, and 
d

j  represents the jth natural 

frequency of the damaged model. By standardizing j  to 

the interval of [0, 1], the normalized RNFC j  can be ob-

tained as follows: 
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where: ( )( )j imax    and ( )( )j imin    represent the 

maximum and minimum values of RNFC at all damage lo-

cations under jth order, respectively. The characteristic 

curve ( )jg   is defined as the RNFC curve:  

( ) ( ) ,j j ig   =   (3) 

where:   represents all damage locations.  

2. Calculate the measured RNFC after normaliza-

tion. The natural frequency values of undamaged and dam-

aged structure are obtained by test, and the jth measured 

RNFC mj  can be calculated as follows: 
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where: mj  represents the jth measured natural frequency of 

the undamaged structure, and 
d

mj  represents the jth meas-

ured natural frequency of the damaged structure. By stand-

ardizing mj  to the interval of [0, 1], the measured RNFC 

after normalization can be obtained as follows: 
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where: ( )mjmax   and ( )mjmin   represent the maxi-

mum and minimum values of the measured RNFC under all 

orders respectively.  

3. Define the jth damage position function (DPF): 
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( )1 ,j j mjDPF g  = − −  (6) 

where: ( )jg   is the RNFC curve, which is selected ac-

cording to the characteristics of the problem under study.  

4. Data fusion of multi-order DPF function. As an 

effective data fusion method, Bayesian data fusion has been 

successfully applied in the field of structural damage diag-

nosis. Assuming that there are M information sources as 

1 2, , , MS S S , there are N events as 1 2, , , NA A A  to be 

identified. The prior probability of iA  event is denoted as 

( )iP A , and the conditional probability of event iA  is de-

noted as ( )1 2, , , M iP S S S A . According to the Bayes for-

mula, Bayesian fusion can be expressed as: 
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when the decisions from each information source are inde-

pendent, Eq. (7) can be further denoted as:  
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In this study, the information source jS  was rep-

resented by the jth natural frequency, and the event iA  is 

represented by the occurrence of damage at ith element. The 

prior probability of iA  event is set as ( ) 1iP A N= . The 

conditional probability of the event iA  is: 

( ) , ,j i i jP S A DPF=  (9) 

where: ,i jDPF  is the value of jDPF  curve at the ith posi-

tion. According to Eq. (8), the Bayesian fusion result is: 
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where: ( )1 2, , ,i MP A S S S  stands for Bayesian probabil-

ity, denoted iP . 

5. Improvement of Bayesian probability. Accord-

ing to the symmetry characteristics of the model, the follow-

ing improvements are made on Bayesian probability: 

1
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where: iQ  represents the improved Bayesian probability of  

the ith position, and 1N iP + −  represents the Bayesian fusion

result in a symmetric position with iP . 

6. Standardization:  
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where: ( )Q  represents the mean value of Q and ( )Q  

represents the standard deviation of Q. 

7. Define the NFDI:  
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The location of the maximum NFDI value has the 

highest possibility of damage. Therefore, the damaged loca-

tion is determined by the maximum value of NFDI. After 

the damaged location is identified, the parameters of the lo-

cation can be updated to improve the selection of updated 

parameters for the following model updating process. 

2.2. The improved objective function 

The objective function quantifies the difference be-

tween the actual structure and the FE model, which is usu-

ally defined as the residual difference between the experi-

mental data of the actual structure and the computational 

features of the FE model. The model updating is to make the 

objective function reach the optimal value within a certain 

range. In the updating of the FE model, the objective func-

tion has a great influence on the updating result. In this pa-

per, the strain residuals are used to configure the objective 

function. The optimization problem is:  

( ) ;   ,min F x x S    (14) 

where: F is the objective function; x is the vector containing 

updated parameters, and S represents the feasible solution 

set in the decision space.  

The most widely used objective function is config-

ured based on generally OLS type [28], as shown in 

Eq. (15):  
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where: x is the parameter that needs to be updated; k is the 

number of iterations; n is the number of measuring points; 

( ),m i x  is the measured feature data of the sensor, and 

( ),

k

a i x  is the simulated feature data of the FE. In this pa-

per, a new objective function type named SAC is configured 

as Eq. (16):  
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 (16) 

where: iw  is the weight of the ith measurement point.  
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The weight iw  is of great importance to the opti-

mization process. It is determined as follows: 

1. Calculate the sensitivity values. The structure is 

divided into several parts, and then each part is divided into 

d sub-parts. In this paper, the sensitivity refers to the deriv-

ative of the strain residual with respect to the updated pa-

rameter. For each part, the sensitivity value of each sub-part 

is calculated and d sensitivity values are obtained for each 

part.  

2. Calculate the sensitivity coefficient of each part. 

The sensitivity coefficient is determined according to the 

sensitivity values of each part, and the statistical analysis re-

sults of the sensitivity values of each part show exponential 

regularity. Therefore, the sensitivity fitting function of the 

jth part is as follows:  

( ) 2
1 ,

a y

jF y a e
− 

=   (17) 

where: 1a  and 2a  are the coefficients obtained by fitting, 

and y is the number of the sub-parts from 1 to d. The above 

fitting function can be further changed to: 

( )
1

,

y

jF y b e 



−

=   (18) 

where: b is the sensitivity coefficient;   is the exponential 

coefficient; 21 ;a = 1 .b a =   By integrating the above 

formula, the result can be obtained as d tends to infinity:  

( )
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= =  =   (19) 

Therefore, the sensitivity coefficient of this part 

can be represented by b.  

3. Calculate the weight. After the sensitivity coef-

ficients are calculated, the weight of the jth part calculation 

formula is as follows:  

,
j

j

j

b
w

b
=


 (20) 

where: jb  represents the sensitivity fitting coefficient of the 

jth part. When the data ix  of the ith measurement point be-

longs to the jth part, the weight of the objective function is 

calculated as follows: 

.i jw w=  (21) 

3. Verification with beam model for NFDI identification 

In this section, a beam model is analyzed and the 

accuracy of the NFDI identification based on Bayesian the-

ory is verified. The updated parameters can be determined 

based on the identified result to improve the efficiency and 

accuracy of model updating.  

3.1. Numerical example for NFDI identification 

Ansys Workbench software was used to establish 

the numerical model, and the beam structure was shown in 

Fig. 2. Its length is 1000 mm, width is 30 mm, thickness is 

3 mm, elastic modulus is 2.0×1011 Pa, Poisson's ratio is 0.3, 

and density is 7850 kg/m3. 

 

Fig. 2 The FE model of the beam 

First, the normalized RNFC curves are calculated. 

The boundary conditions are cantilever beams. The simu-

lated damage conditions were set with 15 mm deep and 4 

mm wide cracks at 10 mm intervals. There were 100 dam-

aged locations. After modal analysis of the model, 8 mode 

shape frequencies (1st, 2nd, 4th, 5th, 6th, 9th, 10th, 11th nat-

ural frequencies) were selected for analysis. After the natu-

ral frequency values of the undamaged and damaged beams 

are obtained through simulation, the normalized RNFC 

curves are calculated according to Eqs. (1) and (2). The re-

sult is shown in Fig. 3. It can be seen from the figure that 

the RNFC caused by the damage is a function of the damage 

position i . 

 

a 

 

b 

 

c 

 

d 

Fig. 3 The normalized curves of RNFC 
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Then, the measured RNFC values under different 

working conditions were calculated. The damage conditions 

are set to crack at 100 mm and 700 mm respectively. The 

natural frequencies of the undamaged and damaged beams 

are shown in Table 1. It can be seen that the natural frequen-

cies decrease after damage occurs. The measured RNFC 

values after normalization of all orders are calculated ac-

cording to Eq. (5), and the results are also listed in Table 1. 

Finally, the NFDI values are calculated. The calcu-

lation results according to Eqs. (6) to (13) are shown in 

Fig. 4. The maximum value of NFDI corresponds to the 

damage location, and it can be seen from the figure that the 

recognition result is good. 

Table 1 

The measured frequencies and normalized RNFC values 

Damage situation 
Natural frequency, Hz 

1st 2nd 4th 5th 6th 9th 10th 11th 

No damage 2.45  15.36  43.01  84.29  139.37  208.25  290.97  387.56  

100, mm 
2.39  15.23  42.94  84.31  139.13  207.15  288.46  383.67  

1.00  0.37  0.08  0.00  0.08  0.23  0.37  0.43  

700, mm 
2.45  15.23  42.32  83.85  139.15  205.84  288.59  381.27  

0.00  0.55  0.98  0.35  0.14  0.73  0.53  1.00  

 

a b 

Fig. 4 The NFDI results under two damage conditions 

3.2. Test for NFDI identification 

The steel beam model was selected for test verifi-

cation, and its size and material properties were the same as 

above. One end of the beam is fixed at 100 mm, and a 

900 mm model is selected for analysis. The schematic dia-

gram of the model and the actual structure are shown in 

Fig. 5, where the circle represents the position of the sensor. 

Acceleration sensors are used to obtain dynamic data, and 

the sensor information is shown in Table 2.  

 
a 

 

b 

Fig. 5 The schematic diagram and structure of the model 

Firstly, the normalized RNFC curve was calculated 

by modal analysis. As in Section 3.1, the boundary condi-

tions of the model are cantilever beams. The sensors are 

placed on the surface of the beam and treated as mass points 

during the simulation process. The simulated damage con-

ditions were set with 15 mm deep and 4 mm wide cracks at 

100 mm intervals. The model has 8 damaged locations. 

Considering the direction and accuracy of the sig-

nal obtained by the sensors, the frequencies of the transverse 

mode shape below 500 Hz are selected. Therefore, the 1st, 

2nd, 4th, 5th, 6th, 9th, 10th, and 11th natural frequencies are 

selected for analysis. Then, the natural frequencies of the 

undamaged and damaged beams are obtained through sim-

ulation, and the normalized RNFC curves are established ac-

cording to Eqs. (1) and (2). The results are shown in Fig. 6. 

Table 2 

The acceleration sensor information 

Number Position, mm Range, V Sensitivity, mv/G Weight, g 

1 450.0 10 96.39 43.1 

2 225.0 10 98.52 42.8 

3 150.0 10 97.53 43.0 

 

Then, the natural frequencies of undamaged and 

damaged beams are obtained by tests. According to the cut-

ting method, cut actual cracks of 15 mm deep and 4 mm 

wide at 100 mm and 700 mm respectively. The damaged 

beam is shown in Fig. 7. 

The test adopts a dynamic signal analysis instru-

ment. The analysis spectral line is 12800, the sampling 

points are 32768, the analysis frequency width is 500 Hz, 

the sampling frequency is 1280 Hz, and the sampling time 

of each frame is 25.6 s. The force hammer is used to stimu-

late the unit load, and the spectrum function obtained is 
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shown in Fig. 8. The horizontal axis corresponding to the 

peak value is the natural frequency. To reduce the error, the 

measured frequency is obtained by three identical tests in 

each condition, and then the average value is taken as the 

measu-

rement data. The measured results of various conditions are 

shown in Table 3. The measured RNFC values after normal-

ization of all orders are calculated according to Eq. (5), and 

the results are also listed in Table 3.  

 

Fig. 6 The normalized curves of RNFC 

Table 3 

The measured frequencies and normalized RNFC values under the test 

Damage situation 
Natural frequency, Hz 

1st 2nd 4th 5th 6th 9th 10th 11th 

No damage 2.93  17.07 47.23  88.32 156.17  228.48  336.25  434.88  

100, mm 
2.89  17.11 47.42 88.24  155.63  226.76  333.98  433.36  

1.00 0.11 0.00 0.29 0.43 0.67 0.62 0.44 

700, mm 
3.01  17.25  46.88 86.62 156.50  227.42  335.47  429.34  

0.00 0.35 0.74 1.00 0.53 0.68 0.63 0.86 

 

 

Fig. 7 The crack in the actual structure 

 

Fig. 8 The spectrum functions 

Finally, the NFDI values are calculated according 

to Eqs. (6) to (13), and the results are shown in Fig. 9. The 

location of the maximum value in the figure is the identified 

damage location. The first condition identification effect is 

accurate, identifying the damage at the 100 mm position. In 

the second condition, there is an interference value, but the 

damage at 700 mm is still identifiable. Because the 700 mm 

position is close to the free end, the sensitivity is not large 

enough after damage. In other words, damage near the free 

end of the structure has less effect on the overall structure, 

resulting in less natural frequency variation and more sus-

ceptible to interference. In addition, the interference value 

may be generated due to insufficient frequency orders or 

noise in the test. In practice, all singular locations can be 

further detected as potential damages to avoid omissions. 

 

a) True (100 mm) 

 

b) True (700 mm) 

Fig. 9 The NFDI results of damage positions at 100 mm and 

700 mm 
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fication. The model is updated using the Integrated Software 

Platform of Engineering and Scientific Computing 

(SiPESC), which loads and invokes plug-ins to complete the 

calculation process. The beam model in section 3.2 is im-
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is divided into 9 parts, with one parameter set for each part, 

as shown in Fig. 10. The damage condition is set as the elas-

tic modulus of the 1st part is reduced from 2.0×1011 Pa to 

1.8×1011 Pa, and the elastic modulus of the 2nd to 9th part is 

maintained at 2.0×1011 Pa. With structural strain data as re-

siduals, the SQP optimization algorithm is used to update 

the model. The console outputs the iterative process and the 

optimal solution.  

 
Fig. 10 The partitioned beam model

 

In the absence of NFDI identification, all 9 param-

eters should be selected for model updating. The results are 

shown in Fig. 11. It can be seen that the effect is not ideal 

and there is local convergence. 

The NFDI values are calculated based on Bayesian 

theory to determine the damage location, and only the pa-

rameters at the damage location (assuming the 1st part is 

identified) should be selected for model updating. The result 

is shown in Fig. 12. It can be seen that the correction result 

is accurate and the iteration is rapid.  

 

Fig. 11 The iteration results without NFDI identification 

 

Fig. 12 The iteration result with NFDI identification 

 

4. Verification of pressure container for the improved 

objective function 

 

In this section, a pressure container is taken as an 

example to verified that the improved objective function 

will produce more accurate updated results. The sensitivity 

analysis of the model is performed, and the sensitivity coef-

ficient is calculated to determine the weight. Then the up-

dating effect of the SAC and OLS type objective function is 

compared. 

The FE model of the pressure container is shown 

in Fig. 13 and the material parameters are shown in Table 4. 

The model consists of shell elements and beam elements, 

with a total of 202,051 elements, 185,452 nodes, and 

1101,842 degrees of freedom. The load is the outward pres-

sure exerted on the inside of the container. All degrees of 

freedom at the bottom of the container are restricted. 

Table 4 

The material parameters 

Portion Elastic modulus, ×1011Pa Poisson ratio Density, kg/m3 

Base 2.09 0.3 7850 

Inside 2.00 0.3 7850 

Shell 2.09 0.3 7850 

 

Fig. 13 The FE model of the pressure container 

 

Firstly, the sensitivity coefficients are calculated 

and the weights are obtained. This section only updates the 

model of the shell portion. The updated shell is divided into 

5 parts. Each part is divided into 9 sub-parts, and the sensi-

tivity value of each sub-part is calculated. Then the sensitiv-

ity coefficients are calculated according to Eqs. (17) to (19). 

The fitting coefficients are shown in Table 5, and the fitting 

curves are shown in Fig. 14. It can be concluded that the 

front sensitivity coefficient is the largest. Then the weights 

of the objective function are calculated according to Eqs. (1) 

and (2), which are also given in Table 5. 

Table 5 

The fitting coefficient of each part 

ID 
Coefficient 

b 

Coefficient 

μ 

Correlation  

index 

Weight 

 w 

1 (Left) 0.428 4.546 0.962 0.129 

2 (Right) 0.432 2.840 0.973 0.130 

3 (Front) 1.363 0.458 0.997 0.410 

4 (Back) 0.670 0.287 1.000 0.201 

5 (Top) 0.434 2.734 0.962 0.130 

 

Then the effect of the improved objective function 

is verified, and the objective functions of the SAC type and 

the OLS type are compared. The elastic modulus for part 1-

0,5

1,5

2,5

3,5

4,5

5,5

6,5

7,5

8,5

9,5

1 11 21 31 41 51 61 71

U
p

d
at

ed
 p

ar
am

et
er

, 
×

1
0

1
1
P

a

The number of iterations

E1 E2
E3 E4
E5 E6
E7 E8
E9 E1(True)

1,0

1,2

1,4

1,6

1,8

2,0

2,2

1 5 9 13 17 21 25 29

U
p

d
at

ed
 p

ar
am

et
er

, 

×
1

0
1
1
P

a

The number of iterations

E1 E1(True)



 402 

5 is used as the updated parameters. The SQP algorithm is 

also used to update the model. The updated parameters and 

results of the model are shown in Table 6, and the absolute 

values of errors are shown in Fig. 15. The results show that 

the errors of the OLS type objective function are within 5%, 

while the errors of the SAC type are within 2%. The model 

updating result of the SAC type is better, which verifies the 

updated accuracy of the improved objective function. 

  

Fig. 14 The fitting curves of one part Fig. 15 The result errors of different objective functions 

Table 6 

The updated parameters and results of model updating 

Method Updated parameters Initial value, ×1011Pa Updated value, ×1011Pa Actual value, ×1011Pa Error, % 

OLS 

E1 2.00000 2.00463 2.09000 -4.08 

E2 2.00000 2.00008 2.09000 -4.30 

E3 2.00000 2.09072 2.09000 0.03 

E4 2.00000 2.00169 2.09000 -4.23 

E5 2.00000 2.07886 2.09000 -0.53 

SAC 

E1 2.00000 2.08112 2.09000 -0.43 

E2 2.00000 2.08494 2.09000 -0.24 

E3 2.00000 2.09011 2.09000 0.01 

E4 2.00000 2.04881 2.09000 -1.97 

E5 2.00000 2.08702 2.09000 -0.14 

 

5. Conclusions 

The methods to improve the efficiency and accu-

racy of FE model updating have been proposed in this paper. 

The selection of updated parameters has been improved 

based on the Bayesian theory, and a more reasonable objec-

tive function is proposed based on the strain assurance cri-

terion with weight terms determined according to the sensi-

tivity coefficient. Through numerical examples and test ver-

ification, the following conclusions can be drawn:  

1. The NFDI based on Bayesian theory can accu-

rately identify the damage location. 

2. The proposed model updating method combined 

with Bayesian theory can improve the selection of updated 

parameters.  

3. The proposed sensitivity coefficient can quantify 

the sensitivity of the model and be used to set the weights in 

the objective function.  

4. For the objective function of model updating, the 

proposed SAC type is more accurate than the OLS type. 
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M. Zhai, Y. Xie 

MODEL UPDATING BASED ON BAYESIAN THEORY 

AND IMPROVED OBJECTIVE FUNCTION 

S u m m a r y 

Model updating is the process of calibrating model 

parameters to improve the accuracy of numerical prediction. 

To improve the accuracy and efficiency of model updating, 

this paper proposes a model updating method based on 

Bayesian theory and improved objective function. A natural 

frequency damage index is proposed based on the Bayesian 

theory, which is calculated according to the established 

damage position function and the measured frequency data. 

The distribution of the index can determine the damage lo-

cation and the number of updated parameters for model up-

dating. An objective function with weight terms is proposed 

based on strain assurance criterion to describes the differ-

ence between the finite element model and the actual struc-

ture, and the weight term of the objective function is deter-

mined by the sensitivity coefficient. Examples show that the 

improved model updating method is more accurate and ef-

ficient.   

Keywords: model updating, Bayesian theory, sensitivity 

coefficient, strain assurance criterion. 
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