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1. Introduction 

In engineering structures, the existence of cracks 

will reduce strength and life, causing serious safety acci-

dents and economic losses. In recent years, with the rapid 

development of computational science, computational me-

chanics is widely used in crack analysis, including finite el-

ement method (FEM) [1-3], meshless methods (MMs) [4-

6], boundary element method (BEM) [7-10], XFEM [11-

13], etc. However, the traditional finite element method re-

lies too much on the mesh, which leads to the complexity of 

the pre-processing of crack growth. As the crack grows, the 

mesh of each propagation needs to be re-divided, which in-

creases the additional calculation cost. In addition, because 

the conventional finite element can not reflect the nature of 

the crack tip, a large number of the mesh needs to be divided 

to obtain displacement and stress fields with higher accu-

racy. MMs can completely or partially eliminate the mesh, 

without mesh division and reconstruction [14-15]. How-

ever, MMs are difficult to deal with the convergence of dis-

crete functions and require a large amount of computation 

[16], with low computational efficiency, whose conver-

gence, consistency, and error analysis lack a solid theoreti-

cal basis and mathematical proof. The BEM will encounter 

problems of singular integral and nearly singular integrals 

[17-19]. When encountering nonlinear terms, it needs to 

deal with the corresponding area integral. The XFEM is 

based on the extended shape functions to capture the discon-

tinuities in the region, including cracks, holes, inclusions, 

material interfaces, etc. [20-21]. The description of the dis-

continuity is completely independent of the computational 

mesh, and the discontinuity at the crack tip is captured by 

introducing a strengthening function. The level set method 

is used to characterize the crack, which has a great ad-

vantage in dealing with the crack problem. For the introduc-

tion of the level set method, Bordas [22] et al. combined the 

XFEM with the level set method to solve the fracture prob-

lem of complex three-dimensional engineering structures. 

At the same time, the capture of crack characteristics does 

not rely on the extended finite element mesh. When simu-

lating crack growth, it avoids remeshing and improves the 

calculation efficiency while maintaining the calculation ac-

curacy. Moës, Nicolas and Belytschko [23] et al. further im-

proved the XFEM, using step function and crack tip func-

tions to strengthen the element. Budyn, Zi, Moës [24] et al. 

studied the multi crack problem of brittle materials using the 

XFEM. Wells [25], Belytschko [26], Asferg, Poulsen, and 

other scholars [27] applied the cohesive crack model to the 

elastoplastic fracture problem of extended finite elements. 

However, for the actual complex fracture structure, the cal-

culation accuracy of XFEM is difficult to meet [28], and the 

simulation results have little referential importance for these 

problems. It is well known that the importance of practical 

application depends on the stress intensity factor [29]. 

Therefore, the mesh adaptive technology is introduced to re-

fine the mesh near the crack tip area through error analysis, 

which can effectively improve the calculation accuracy. 

The mesh adaptive technology [30-32] is based on 

error estimation to reconstruct the mesh in areas with exces-

sive errors to obtain more accurate solutions until they meet 

the calculation requirements. The advantage of the adaptive 

method is that it can evaluate the quality of the current mesh, 

densify the local mesh, and control the increase of structural 

degrees of freedom to improve the calculation accuracy 

[34]. Yulong Shao [33] et al. proposed a thinning criterion 

about the history of the maximum residual strain energy. 

Based on the background mesh insertion node, it is proved 

that the results combined with the adaptive method are more 

accurate. De Oliveira Miranda [35] et al. studied the mesh 

refinement problem and related errors when using the FEM 

to calculate the SIFs. In the XFEM framework, Wang [36] 

realized the mesh refinement of the interface among the fea-

tures such as inclusions, holes through variable node ele-

ment method. Tabarraei [37] used polygonal mesh and 

quadtree mesh to calculate the crack growth problem by 

constructing the approximate space of polygonal elements. 

In this paper, we make mesh adaptive technology improve-

ments to the XFEM solution process, judge whether the cur-

rent results can meet the calculation requirements through 

error analysis, and reconstruct the mesh in the area with low 

calculation accuracy according to the analysis results. 

Firstly, according to the geometric characteristics of the 

structural model, the boundary conditions are divided into 

initial mesh for XFEM calculation. Analyze the error of the 

calculation results to determine whether the accuracy meets 

the set requirements. If the accuracy is not enough, refine 

the mesh and continue the calculation. If the accuracy meets 

the requirements, continue the next step of the calculation. 

Thus, the calculation accuracy can be improved without in-

creasing too much calculation burden. The combination of 

adaptive technology and XFEM can calculate the SIFs ac-

curately at the crack tip and predict the crack propagation. 
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Our goal is to improve the computational accuracy of 

XFEM for crack propagation problems. The accuracy of the 

calculation results is improved without increasing the calcu-

lation cost, and the practical significance is better satisfied 

by local encryption of the broken mesh. 

The structure of this paper is as follows. In Section 

2, numerical derivations of the level set function and XFEM 

are described in detail. In section 3, the calculation method 

of SIFs and the mathematical formula of crack propagation 

prediction by SIFs are given. In section 4, the formula of 

grid adaptive technique is introduced. In Section 5, the static 

SIF results of two cracked plates are compared to verify the 

calculation accuracy of the proposed method. The reliability 

of the proposed method for crack propagation prediction is 

verified by comparing the results with those without the 

adaptive method. The conclusion is given in section 6. 

 

Fig. 1. The crack is represented by the level set function 

2. Extended finite element method 

In general, the stress at the crack tip is increasing 

sharply, thus it is necessary to introduce the strengthening 

function to simulate the strong discontinuity of the crack 
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where (x) is the level set function of the crack plane.  

The horizontal set method is a numerical method 

that can determine the position of the interface and track the 

movement of the interface. The location of the crack surface 
0

c . is described in Fig. 1. 

During the calculation, the discontinuity always 

meets 

 ( )( ) 0x t ,t = . (2) 

All points meet this condition from a set (t). 
Generally, the signed distance function is used to 

construct the level set function of the crack surface. 
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For A discontinuity point with an end point, the 

crack surface terminates inside the solution domain. Assum-

ing that the moving velocity i of the crack end point xi is 

known, the level set function corresponding to this end point 

is defined as: 
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v
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The crack tip strengthening function Fl(x) of the  

element near the crack tip is usually a linear combination of 

Eq. (5). 
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where r and   are the parameters defined in polar coordi-

nates around the crack tip. 

The approximate displacement expression of the 

two-dimensional compound crack problem can be obtained 

as Eq. (6) 
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where the unit decomposition functions ( )iN x , ( )jN x , 

( )kN x  are the standard finite element form functions. iu  is 

node displacement. ja  is the additional degree of freedom 

of the element which is penetrated by the crack, and 
l

kb  is 

the additional degree of freedom of the element near the 

crack tip. They have no clear physical meanings. I is the 

node set of the solution domain. J is the set of reinforcing 

nodes through the element. K is the set of reinforcing nodes 

of the element near the crack tip. 

As the approximate expression of displacement is 

constructed, the discrete numerical equation is deduced ac-

cording to the principle of virtual work. The governing 

equation is established considering the equilibrium state of 

the cracked body under the boundary conditions and loads 
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The elastic boundary conditions are as follows 

 tn t  = , on t , (8) 

u u= , on u , (9) 

0fn  = , on f . (10) 

The above equations are expressed in tensor form 

as: 0bf + = , where  represents the differential oper-

ator,  is the stress tensor, f b is the volume force, t is the 
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boundary stress vector, u  is the boundary displacement 

vector, n is the inter-face normal vector. 

The finite element integral equation is obtained by 

introducing the arbitrary displacement ( , )T

x y  =  at the 

equilibrium position 

 0
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The weak form of the integral equation is obtained 

according to the principle of virtual work 
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The discrete numerical equation of the extended fi-

nite element is as follows 

hU K F= , (13) 

where U is the total node displacement, 

 1 2 3 4

ThU u,a,b ,b ,b ,b= . F is the overall load vector, and F 

is formed by the load vector 
ef  of each element. K is the 

global stiffness matrix, which is formed by the stiffness ma-

trix eK  of each element based on the number group of de-

grees of freedom in the total stiffness. 

The expressions of eK  and 
ef  are as follows 
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i i i i i i if f f f f f f=
, (15) 

where i and j are element node numbers for a four-node lin-

ear element, i, j = 1, 2, 3, 4. 

The extended finite element theory has been very 

mature, this paper will not do derivation, specific reference 

can be made to other scholars' literature.  

 

Fig.2. Flow chart of adaptive extension finite element 

3. Stress intensity factors calculation and crack propa-

gation prediction 

Interaction integral is a high precision SIF calcula-

tion method based on the J integral method. The expression 

of J integral is 

2

1

u
J Wdx d

x

 
 

= − 
 

 , (16) 

where  is the integral path,  = (1, 2) is the force per unit 

length of the integral path, its component i ij jn = , 

1 2( , )n n n=  is the unit normal vector along the integration 

path, and 1 2( , )u u u=  is the displacement vector. 

The strain energy density W is  

( )
1

1 2
2

ij ijW i, j , = = , (17) 

where ij , ij  are the stress and strain components on the 

integral path. 

By introducing the function 1 j , we can obtain 

1

1 1

0 2
j

j

j


=
= 

=
. (18) 

Substitute Eqs. (17) and (18) into (16) and intro-

duce Green's formula 
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where q is any smoothing function, which is 1 in the inner 

path and 0 in the outer path. 

For the composite crack J integral is no longer ap-

plicable, we use the interaction integral to calculate the 

stress intensity factor. The stress and strain of the auxiliary 

state are selected to satisfy the equilibrium equation and the 

surface force boundary conditions of the regional crack sur-

face. 
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where 
real

ij ,
real

ij ,
real

iu  are variables of the real stress-strain 

field, and 
aux

ij ,
aux

ij ,
aux

iu  are variables of the auxiliary 

stress-strain field. Define it as the sum of the two states 

real auxJ J J M= + + ,  (21) 

where M is the integral of the interaction between two states 
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when the path  approaches the crack tip, the interaction 

integral has the following relationship with the stress inten-

sity factors of the real deformation field and the additional 

deformation field 

( )
2 real aux real aux

*
M K K K K

E
   = + , (23) 

where *E  is the combination term of material constant E 

(Young's modulus) and  (Poisson's ratio) 
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If the auxiliary fields meet the requirements of 

1aux

IK = , 0auxK = , the real stress-strain field type I stress 

intensity factor 
realK  can be obtained directly through mu-

tual rental integral. Similarly, if 0auxK = , =1auxK  are sat-

isfied, the type II stress intensity factor 
realK  of the real 

stress-strain field can be obtained 
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  = =
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In the local coordinate system of the crack tip, the 

formula of crack growth Angle c is obtained by setting the 

shear stress as zero 

( ) ( )( )3 1 0c cK sin K cos  + − = . (26) 

This is given by the above formula 
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To prevent the crack from extending in the oppo-

site direction, c  must be ensured to be less than / 2 , 

then the above equation is only taken as a negative sign 

2 28
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  
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
 − +
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, (28) 

where the positive or negative of c  depends on the positive 

or negative of KII. KII is positive and c  is negative, if KII is 

negative, c  is positive. According to the obtained angle, 

the next propagation direction of the crack can be obtained, 

and the crack is set as a fixed propagation step. The crack 

tip position after the first propagation can be obtained, and 

the calculation is repeated until the crack propagation stops 

or the structure is destroyed. 

4. Adaptive mesh refinement 

Adaptive mesh refinement is an optimization 

method for domain mesh [38]. Using stress smoothing, us-

ing smooth stress instead of the exact solution, the improved 

result is obtained by the following equation 

*

iN = , (29) 

where i  is the stress of each node calculated by the local 

smoothing method and the average method. 
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

 ==


, (30) 

where i is the node number, n represents the number of units 

containing the node, and 
( )k

i  is the stress of node i calcu-

lated in the k unit containing the node. 

The error is defined in the form of strain energy. 

( ) ( )
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T
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where 
*  is the smooth stress vector, it is obtained by 

Eq. (29). ̂  is the approximate solution of the calculated 

stress. 

According to the given target error 
aim

e , calcu-

late the new mesh cell size. 

aim
e

e
h h

e





 
=  
  

, (32) 

where, eh  is the initial mesh cell size, and h is the modified 

mesh size. 
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The specific combination of mesh reconstruction 

technology and extended finite element is as follows. 

As shown in Fig. 2, firstly, the structural model 

was established according to the finite element software, 

and the nodes and elements of the mesh were extracted. Sec-

ondly, the SIFs were obtained by solving the integral equa-

tion through the XFEM. Then, based on the solution results 

of the XFEM and the mesh data of the model, the error was 

compared with the target error. When the calculation error 

is greater than the target error, the calculation accuracy is 

insufficient, thus the mesh needs to be re-divided and the 

above process needs to be repeated. If it is less than the aim 

error, it indicates that the accuracy meets the next expansion 

demand, and the SIFs can be used for path prediction. 

5. Simulation verification 

In this section, two models with cracks are studied 

to verify the reliability of the proposed method. The first 

case is a square plate with a horizontal crack. The second 

case is a square plate with an oblique crack. We compare the 

calculated results with the numerical results to verify the re-

liability of the proposed method. At the same time, the com-

parison between the adaptive extended finite element 

method and the extended finite element method in each cal-

culation example is compared. 

Case one. Single crack stretching  

In this case, a square plate with a horizontal crack 

is studied. The crack location of the square plate is shown in 

Fig. 3. The starting point of the crack is located in the center 

of the left boundary of the square plate, and the crack length 

is a. The upper boundary of the plate is uniformly subjected 

to a load of size . The geometric dimensions are as fol-

lows. 

1) , / 0.2, 0.3, 0.4, 0.5a W =  

2) / 0.4, 1, 2H W = . 

 

Fig. 3 Single straight crack plate 

The mesh was divided by quadrilateral elements, 

and the mesh sizes of crack propagation paths and other po-

sitions were as follows. 

The approximate global size is 1 3h = .The approx-

imate element size of the crack growth region is 2 1h = . 

K F a  = , (33) 

 

2 3 4

1 12 0 231 10 55 21 72 30 39
a a a a

F . . . . .
W W W W

     
= − + − +     

     
. (34) 

The plate width is fixed, and according to Eq. (33) 

and Eq. (34), /H W  is unique when /a W  is unchanged. 

The normalized SIF are shown in Table 1 

Table 1 

Normalized SIF for the single crack of square tensile plate 

 

/H W  

/a W  

0.2 0.3 0.4 0.5 

0.4 

1 

2 

Eq. (50) 

1.4429 

1.2807 

1.3220 

1.3709 

1.8064 

1.6589 

1.6207 

1.6602 

2.1567 

2.1123 

2.0479 

2.1039 

2.9210 

2.8457 

2.7197 

2.8269 

As shown in Table 1, the calculated results of the 

proposed method are very close to analytical solutions. At 

the same time, it is not difficult to find that the influence of 

/H W  is very necessary for the calculation of stress inten-

sity factor. Under the same ratio of /a W , little /H W  will 

lead to larger errors of SIFs, even when /a W = 0.2 and 

/H W = 0.4, the SIF is 8.38% larger than that when a=2. 

With the increase of /H W , the calculation error decreases. 

For example, when /a W = 0.5 and /H W = 2, the error is 

only 0.038%.In addition, it can be seen from Table 1 that 

when / 2H W＞ , the deviation between the calculated re-

sults and the analytical solution results is small, it can be 

considered that no matter what value a/W is, the influence 

of H/W on the SIF is negligible. 

To ensure the accuracy of calculation, the target er-

ror of edge crack is set to 3% in the error analysis. By com-

paring the crack growth path, the rationality and reliability 

of the proposed method are confirmed. The specific con-

straints on model parameters, meshing, and crack growth 

are as follows. 

i.Select the scale coefficient of square plate size as 

/ 1H W = ,  / 0.3a W = . The specific parameters are as 

follows. Plate W = 20 mm, plate length 2H = 40 mm, pre-

set crack length a = 6 mm, crack starting and ending point 

coordinates (0,20), (6,20). The parameters of the material 

are set as, Poisson's ratio 0.3 = , and Young's modulus 

E = 1000 MPa. Select plane strain state. Since the normal-

ized SIF was calculated in this paper, the applied load   

could not affect the result, the unit load  = 1 MPa is ap-

plied.  

ii.The crack is set to expand by 2 mm each time. This case is 

compared with the initial crack and its third propagation. 

The crack tip stress error of the prefabricated crack 

in the extended finite element method is 2.1668%, after the 

first step is 3.2013%, after the second step is 4.4654%, and 

after the third step is 5.8371%. The number of mesh nodes 

and units is 328 and 304. 

The first mesh reconstruction is as follows. The 

cell size was refined with 0.3, and the number of mesh nodes 

and elements was 480 and 458. The crack tip stress error of 

the first extension was calculated as 2.1269%, and that after 

the second extension was calculated as 3.0758%. 

The second mesh reconstruction is as follows. The 

cell size is refined to 0.1, and the number of mesh nodes and 

elements is 848 and 826. The crack tip stress error at the end 

of the second extension is 2.9449%. The third extension 

condition is satisfied. 
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Fig. 4 Comparison of direct crack path growth 

Fig. 4 shows the comparison between the extended 

finite element method and the adaptive extended finite ele-

ment method. In the comparison figures, the extended finite 

element method is on the top and the adaptive extended fi-

nite element method is on the bottom. The red area in the 

figures is the mesh area occupied by the radius of the crack 

tip strengthening radius r. Since the mesh needs to be recal-

culated and expanded each time after reconstruction, there 

will be insignificant errors in the process of illustration. Ac-

cording to the calculation accuracy, sub-errors can be ig-

nored. 

Case two. Single inclined crack plate stretching 

  

Fig. 5 Single inclined crack plate 

In this case, a square plate with an oblique crack is 

studied. The crack location of the square plate is shown in 

Fig. 5. The starting point of the crack is located on the left 

boundary of the square plate, 1.5 times wider from the bot-

tom edge and 1 times wider from the top. The crack length 

is a and the angle between the crack and the plate boundary 

is .  

Considering the following scenarios 

1) 0.3, 0.4, 0.5a / W = , 

2) o o45 , 67.5 = . 

The mesh elements were still quadrilateral, and the 

area of the oblique crack growth path was refined separately 

during the partition. The meshing strategy is the same as in 

Case one. An oblique crack is a compound crack propaga-

tion under tensile expansion. The normalized stress intensity 

factors of type I and II at 45° and 67.5° are given in Tables 

2 and 3. 

Comparisons of SIFs results at oblique cracks at 

67.5° and 45° with the SIFs Manuals [39] and Aliabadi [40] 

et al described in Figs. 6 and 7. As can be seen from the data 

and curves, the calculated results of the proposed method 

are very close to those of the proposed method. For the type 

I and type II SIFs of the cracks, the maximum error between 

the proposed results and the other two results is 8% and the 

minimum error compared with reference SIFs Manuals [39] 

and Aliabadi [40] et al is 0.9% and 0.4%, respectively. It 

shows that the method in this paper can calculate the stress 

intensity factor with high precision.  

Table 2 

The mode   normalized SIF of oblique crack 

Angle 
  

/a W  

0.3 0.4 0.5 

45° 0.839 0.949 1.382 

67.5° 1.447 1.755 2.302 

Table 3 

The type   normalized SIF of oblique crack 

Angle 
  

/a W  

0.3 0.4 0.5 

45° 0.448 0.528 0.587 

67.5° 0.357 0.434 0.543 

 

 

Fig. 6 Normalized SIF of mode I, II when the angle is 67.5° 

 

Fig. 7 Normalized SIF of mode I, II when the angle is 45° 

The specific constraints on the parameters, mesh-

ing, and crack growth of the oblique crack model are as fol-

lows. 

i.The specific parameters are as follows. Plate width 

W = 20 mm, plate length 2.5H = 50 mm, present crack 

length a = 6 mm, the coordinate of crack origin (0,30), and 
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angle between crack and plate boundary =45 . The ma-

terial parameters are the same as those of the single crack 

model. 

ii.The crack was set to expand by 2 mm each time. This case 

was compared with the initial crack and its third propaga-

tion. 

    

    

Fig. 8 Comparison of oblique crack path growth 

The crack tip stress error of the prefixed crack in 

the XFEM is 3.8981%, 6.0322% after the first step, and 

8.4715% after the second step. The number of mesh nodes 

and elements is 344 and 319. 

The first mesh reconstruction is follows. The cell 

size was refined to 0.3, and the number of mesh nodes and 

elements was 1253 and 1228. The crack tip stress error after 

the first extension was recalculated as 3.831%, and that after 

the second extension was 5.2098%. 

The second mesh reconstruction follows. The re-

finement strategy of the previous step was retained and the 

cell size was refined to 0.1, and the number of mesh nodes 

and elements was obtained as 2002 and 1977. The crack tip 

stress error at the end of the second extension was 4.709%. 

The third extension is now satisfied. 

It can be seen that before the adaptive algorithm is 

combined, the error at the crack tip does not meet the calcu-

lation requirements at the end of the first step, and with the 

crack growth error increasing significantly, the error at the 

end of the third expansion is more than double of the target 

error. Without the combination of adaptive crack path 

downward slightly inclined, after mesh refinement of the 

crack path, this will be adjusted in the next propagation of 

the path to a straight line. 

6. Conclusions 

In this paper, a crack analysis method based on 

XFEM and mesh adaptive reconstruction technique is pro-

posed. In this method, the advantages of extended finite el-

ements in crack analysis and the improvement of the calcu-

lation accuracy of adaptive finite elements are combined to 

achieve a more accurate crack growth prediction. By calcu-

lating the static stress intensity factors of straight crack and 

oblique crack, the accuracy of the proposed method for 

treating different crack types is verified. By comparing the 

results of the extended finite element and the adaptive ex-

tended finite element, it is shown that the adaptive method 

can improve the calculation accuracy and verify the accu-

racy of the proposed method in predicting the crack growth 

path. 
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G. Xie, C. Zhao, H. Li, J. Liu Y. Zhong, W. Du, J. Lv,  

C. Wu 

AN ADAPTIVE EXTENDED FINITE ELEMENT 

BASED CRACK PROPAGATION ANALYSIS 

METHOD 

S u m m a r y 

In this paper, a method of crack propagation anal-

ysis based on adaptive extension finite element is proposed. 

This method combines adaptive mesh reconstruction tech-

nology with the extended finite element method (XFEM). 

Firstly, the model of the engineering structure is discretized 

with the help of mesh generation software, and the initial 

mesh is divided. Secondly, the Construction of the XFEM 

model and the tip of the crack strengthening function are in-

troduced to describe the physical field properties of the 

crack tip. The integral equation is solved to obtain the crack 

tip parameters. Then, the adaptive mesh reconstruction tech-

nology is built to refine the mesh of the crack tip area 

through the error estimation of the crack tip. Finally, the 

SIFs at the crack tip were calculated using the interaction 

integral, and the path direction of crack growth was deter-

mined using the maximum circumferential tensile stress cri-

terion. Thus, the propagation path can be well traced. 

Keywords: adaptive mesh reconstruction, crack propaga-

tion, extended finite element method, stress intensity fac-

tors. 
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