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1. Introduction 

Due to elastic pre-tightening deformation, the col-

lision between structures, mechanical assembly, and other 

factors that may make the system subject to Piecewise non-

linear constraint, piecewise nonlinear constraint generally 

exists in the mechanical system [1]. At the piecewise critical 

point, due to the sudden change of the constraint on the sys-

tem, the motion trajectory at the piecewise is unpredictable, 

resulting in complex nonlinear vibration behavior of the sys-

tem, which is not conducive to the stable operation of the 

system [2, 3]. 

In recent years, with the global attention to ad-

vanced science, the study of vibration characteristics of 

piecewise nonlinear systems has attracted widespread atten-

tion [4 – 6]. Liu considers the vibration instability caused by 

the assembly accuracy deviation of the roll nonlinear dy-

namic system with structural clearance in the hot rolling 

process. It is found that the instability of the system is a 

slowly changing process [7]. Yan considering that there may 

be clearance fit between the outer ring and the shell when 

the ball bearing works under complex conditions, the cage 

movement is seriously affected. A dynamic model of ball 

bearing with clearance fit is established to study the influ-

ence of clearance fit on cage movement. Some references 

are provided for the design and use of angular contact ball 

bearings [8]. Chen considering that the clearance seriously 

affects the motion accuracy and service life of the precision 

mechanism. The effects of clearance value, clearance shaft 

material and crank driving speed on the dynamic perfor-

mance of the mechanism were studied. Finally, the correct-

ness of the theoretical model is verified by experiment [9]. 

The Melnikov function of sub-harmonic orbit of piecewise 

system is studied in reference [10]. Shi considers a gap pe-

riodic forced vibration system composed of two-sided sym-

metric rigid constraints [11]. a establishes the dynamic 

model of the vibration impact system with non-fixed con-

straints. The results show that flutter is easy to occur in low 

frequency band, and viscous behavior occurs with the de-

crease of frequency ratio. Moreover, chattering is easy to oc-

cur with small clearance [12]. Amiri studied the dynamic 

behavior of the revolute joints of two planar mechanisms 

with gaps. By installing two vertical absorbers to control the 

clearance, the oscillation is significantly reduced. The re-

sults show that the designed vibrator has good robustness to 

different parameters [13]. Tehrani considers Jeffcott rotors 

with rigid blades supported by oil film journal bearings. 

Two different gaps are analyzed separately. Due to the crit-

ical behavior of the system at low clearance values, the dual 

coupling of absorbers is used. The results show that the sin-

gle coupling of the absorber can significantly reduce the vi-

bration of the system. On the other hand, due to the low 

clearance value and low single coupling efficiency, dual 

coupling can be used to reduce the unnecessary vibration of 

the system [14]. Literature [15] proposed a modelless chaos 

control method based on AHGSA. Based on the idea of 

modelless adaptive control method, this method used the in-

put/output data of the controlled system to estimate the 

pseudo-partial derivatives online, so as to establish a non-

parametric time-varying dynamic linearization model of the 

system, and then de-signed a chaos controller based on the 

nonparametric time-varying dynamic linearization model. 

The parameters of the controller are optimized by AHGSA 

algorithm so that the chaotic motion is controlled as the ex-

pected periodic motion. 

To sum up, although researchers have done a lot of 

research on the vibration mechanism of piecewise nonlinear 

systems and the control of system bifurcation behavior. 

However, the structure, material, wear, and other factors of 

the mechanical system will affect the piecewise nonlinear 

constraint of the system. The re-search on the influence of 

the change rate of piecewise nonlinear elastic force and the 

change of clearance on the stability of the system has not 

been further carried out. The research on bifurcation control 

of piecewise nonlinear system needs to be further improved. 

In this paper, we consider whether the change rate of piece-

wise nonlinear elastic force is inversely divided into two 

cases at the piecewise critical point, and study the influence 

of piecewise constraint on the stability of the system in two 

cases. and the influence of the number and clearance of dif-

ferent nonlinear constraints on the vibration characteristics 

of the system is analyzed. Finally, a sliding mode controller 

is designed to control the bifurcation behavior of the system. 

2. The establishment of the model 

2.1. Establishment of piecewise nonlinear constraint model 

Although researchers observe the vibration behav-

ior of the system from different angles, the piecewise non-

linear constrained system needs to be further studied. 
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Among them, the gear system is a typical piecewise nonlin-

ear collision system, which has very complex non-smooth 

dynamic characteristics. it is well known that the gear sys-

tem is the main transmission device of all kinds of mechan-

ical equipment. the dynamic characteristics of gear system 

directly affect the working stability of mechanical equip-

ment.  

Assuming that the transmission shaft of the gear 

system is rigid and considering the torsional vibration of the 

support shaft, the vibration model of the single-degree-of-

freedom driving wheel shown in Fig. 1 is established. The 

moment of inertia of the driving wheel is equivalent to fast 

mass m. The equivalent linear stiffness coefficient and 

equivalent linear damping of the driving wheel and the sup-

porting plate are k1 and c, respectively. F is the external dis-

turbance force. x is the displacement of the mass block, and 

the right is defined as a positive direction.  

 

Fig. 1 Piecewise nonlinear constrained dynamic model 

Because of the clearance between the gear teeth, 

the gear will be subjected to Piecewise nonlinear elastic 

force in the case of reciprocating torsion. Specifically, when 

the gear does not start the tooth engagement, the equivalent 

nonlinear stiffness of the mass block is k2, and when the dis-

placement of the mass block is equal to e2, the nonlinear 

stiffness k3 will act on the mass block, that is, the gear begins 

to tooth. After a period of time, the gearing begins to sepa-

rate, and then the nonlinear stiffness of k4 will occur when 

the displacement of the mass is equal to –e1. Due to the dif-

ferent degree of wear on both sides of the gear and other 

factors, the size of e1 and e2 is different. Taking into account 

the general situation [16], the system is subject to Piecewise 

nonlinear elastic force as shown in the formula (1), and α is 

the cubic term coefficient: 
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2.2. Establishment and solution of system dynamics model 

Considering the piecewise nonlinear constraint, ac-

cording to the generalized dissipative Lagrange principle, 

the dynamic equilibrium equation of the system subjected to 

periodic external disturbance force can be established as 

shown in formula (2): 
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Dimensionless processing of the formula: 
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The average method is used to solve the dynamic 

equation. Let the solution of the system be * ( ),x a cos =  

which can be obtained by bringing it into the above equa-

tion. 
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The integral is calculated and the results are as fol-

lows: 
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Through Eqs. (5) and (6), when 0a = and 0, =    is elim-

inated. Finally, the relationship between the amplitude of 

the system and the frequency of the external disturbance 

force is as follows: 
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3. Simulation research 

In the establishment of the system model and the 

solution of the analytical solution, the system dynamics 

equation is solved numerically by the Runge-Kutta method. 

The effects of piecewise nonlinear constraint parameters 

and gaps on the amplitude-frequency characteristics, time-

domain characteristics, bifurcation characteristics, and 

spectral characteristics of the system are studied. 

3.1. The influence of the change rate of Piecewise nonlinear 

elastic force on the system 

The sudden change of constraint in the system 

leads to complex and rich nonlinear phenomena such as bi-

furcation, chaos, and periodic coexistence in the dynamic 

response of the system. The dynamic behavior at the piece-

wise critical point will be more complex and more im-

portant. To study the influence of the piecewise constraint, 
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change rate on the system, it is divided into two cases ac-

cording to whether the direction of the piecewise critical 

change rate changes or not. In case I, under the constraint, 

the values of the parameters are: k5=0.6; k6=4.9; k7=0.02; 

k8=15; k9=0.58; k10=5. 

Under the constraint of case 2, the values of the pa-

rameters are as follow: k5=0.6; k6=4; k7=0.02; k8=1; k9=0.58; 

k10=4.5. Among them e1=4; e2=3; c=0.12; m=1; k1=1 can be 

seen in Fig. 2, both of these two kinds of constraint will have 

a sudden change at the piecewise critical point, but the di-

rection of the rate of change of the piecewise nonlinear elas-

tic force at the piecewise critical point will not change with 

the change of displacement, the elastic force of case II 

changes in the direction of the rate of change of the Piece-

wise nonlinear elastic force at the piecewise critical point 

with the change of displacement. 

 

Fig. 2 Piecewise nonlinear restraint 

Literature [17] also studied the dynamic character-

istics of the nonlinear system, and the system received 

piecewise elastic forces, as shown in Fig. 3. Considering 

that the piecewise elastic force is continuous, the elastic 

force does not change abruptly at the piecewise critical 

point. However, in the actual mechanical system, there is a 

possibility of abrupt change of the piecewise elastic force at 

the piecewise critical point. Therefore, the elastic force 

model in this paper can more accurately analyze the dy-

namic behavior of the piecewise system at the piecewise 

critical point. 

 

Fig. 3 The piece length elastic force of the system in refer- 

ence [17] 

To study the vibration of the system at the piece-

wise critical point under the influence of different con-

straint, the velocity curve of the simulation system is shown 

in Figs. 4 and 5. It is known that under the action of the con-

straint of case II vibration velocity of the mass vibration to 

the piecewise critical point fluctuates to a certain extent, 

which will aggravate the wear of the mechanical structure 

and reduce the reliability of the system. While the case I 

constraint acts, the system has almost no fluctuation in the 

vibration velocity of the system at the passing piecewise 

criticality, so it can be seen that the reverse change rate of 

Piecewise nonlinear elastic force will greatly reduce the sta-

bility of the system at the piecewise critical point, which is 

not conducive to the normal operation of the system, which 

makes the vibration behavior of the unstable piecewise non-

linear system abnormal. 

 
 

Fig. 4 Time domain curve under constraint case I 
 

 

Fig. 5 Time domain curve under constraint force in case II 

To better study the influence of Piecewise nonlin-

ear elastic force on the system under two cases, the simula-

tion study is carried out through its amplitude-frequency 

characteristic curve. It can be seen from Fig. 6 that under the 

action of the case II, there is a vibration amplitude jump phe-

nomenon in the amplitude-frequency characteristic curve at 

the sectional critical point, which may lead to the fluctuation 

of the vibration amplitude of the system in the actual work-

ing conditions, resulting in abnormal vibration behavior. 

Under the action of the case I constraint, the jump phenom-

enon of the amplitude-frequency characteristic curve disap-

pears at the piecewise critical point, and only a slight bend-

ing phenomenon will occur. Compared with the case II con-

straint, the system is more stable under the case I constraint. 

 

Fig. 6 Amplitude frequency curve under two constraint 

cases 

Fig. 7 shows the amplitude-frequency characteris-

tic curve of the system in literature [17]. At the critical point 

of the system piecewise, only slight bending occurs in the 

amplitude-frequency characteristic curve of the system, and 

no abrupt amplitude change occurs. Literature [17] did not 

take into account the law of the influence of the abrupt 

change of piecewise-elastic force on the system. Therefore, 

it is meaningful to consider  the effect of sudden  change of  
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Fig. 7 Amplitude frequency curve under two constraint 

cases 

elastic force and rate of change on vibration characteristics. 

Fig. 8 shows that under the action of the case II 

constraint, the rate of change of the constraint is suddenly 

reversed at the piecewise critical position, which leads to the 

splicing of different phase trajectories before and after the 

critical point of the piecewise point, which indicates that the 

vibration behavior of the system has changed drastically, se-

riously affecting the normal operation of the mechanical 

system. However, under the action of case I constraint, the 

phase diagram is relatively smooth in the piecewise critical 

position, which can reduce the occurrence of system acci-

dents. 

 
a 

 

b 

Fig. 8 Phase diagram under two constraint cases: a) case I; 

b) case II 

In order to study the influence of nonlinear coeffi-

cients in piecewise nonlinear constraints on the system, the 

cubic coefficients α of piecewise nonlinear constraints are 

0.2 and 2, respectively. As can be seen from Fig. 9, when 

piecewise nonlinear constraints increase, the amplitude-fre-

quency curve of the system will deflect to the right more 

obviously, and the natural frequency of the system will in-

crease. By controlling the cubic coefficient, the natural fre-

quency of the system can be far away from the external dis-

turbing force frequency and the occurrence of resonance can 

be reduced. With the increase of α, the frequency region of 

the external disturbance force increases at the critical point, 

which is not conducive to the stability of the system. 

 

Fig. 9 α influence on amplitude frequency curve 

Through the study, the change of the direction of 

the Piecewise nonlinear elastic force change rate will be not 

conducive to the stability of the system. In the actual work-

ing conditions, it is necessary to avoid this kind of constraint 

on the system as far as possible, so the piecewise nonlinear 

binding parameters are obtained as follows, which should be 

satisfied as much as possible in the actual working condi-

tions to improve the stability of the system. 

 

( ) ( )

( ) ( )

2 2

9 10 1 7 8 1

2 2

7 8 2 5 6 2

k k e k k e

k k e k k e

 +  +


+  +

. (8) 

3.2. The influence of the number of piecewise nonlinear 

constraints on the system 

In the actual working conditions, the amplitude of 

the external disturbance force of the system is uncertain, 

which leads to the dynamic fluctuation of the vibration am-

plitude, so that the constraint of the system varies with the 

magnitude of the vibration displacement. furthermore, the 

system shows different dynamic characteristics under dif-

ferent constraints. When the vibration amplitude is less than 

e1, the system is subject to only one nonlinear constraint, 

when the vibration amplitude is greater than e1 and less than 

e2, the system is subject to two-stage nonlinear constraints, 

and when the vibration amplitude is greater than e2, the sys-

tem is subject to three-stage nonlinear constraints. The vi-

bration characteristics of the system under three kinds of 

nonlinear constraints are analyzed by simulating vibration 

displacement, spectrum characteristics, and time-frequency 

characteristics.  

From the displacement curve of Fig. 10, we can see 

that with the increase in the number of piecewise cases of 

constraints on the system, the system gradually diverges 

from approximate regular motion to chaotic motion, which 

proves that the more constrained the system is, the more un-

stable its motion is. According to the spectrum characteristic 

curve, with the increase in the number of cases subject to 

nonlinear constraints, the frequency components of the sys-

tem become more and more complex. when subjected to 

three-stage nonlinear constraints, the frequency components 

of the system are disorganized and the influence of har-

monic frequency increases. Under this constraint, it is diffi-

cult for the system to maintain a stable operation state.  

According to the time-frequency curve of Fig. 11, 

when the system is subject to a period of binding constraints, 

its frequency component is relatively stable with the in-

crease of time, and with the increase of the number of non-

linear constraints, the change of the frequency component 

of the system will become more and more violent, which 
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greatly increases the vibration frequency range of the sys-

tem, resulting in the resonance behavior of the system more 

easily affected by external disturbance forces. Therefore, the 

increase in the number of nonlinear constraints will gradu-

ally destroy the stability of the system, and it should be pos-

sible to reduce the number of nonlinear constraints on the 

system. 

 

a 

  

b 

  

c 

Fig. 10 Influence of the number of piecewise constraint cases on vibration characteristics: a) a constraint case; b) two-stage 

constraint case; c) three-stage constraint case 

            

                                        a                                                      b                                                        c 

Fig. 11 Time frequency characteristics under three cases: a) a constraint case; b) two-stage constraint case; c) three-stage 

constraint case 

3.3. Effect of clearance on the vibration behavior of the sys-

tem 

Mechanical structure wear, assembly and material 

aging lead to the change of initial pretension deformation 

and other factors, which will make the gap size change stat-

ically. In addition, in the actual working conditions, due to 

the instability of the output force of the hydraulic system, 

the wear and relaxation of the mechanical structure and 

other reasons, all of them may lead to a dynamic change in 

the gap size of the piecewise constraint with time. To study 

the influence of clearance on the dynamic behavior of the 

system, the following simulation is carried out.  

You can see from Fig. 12, with the decrease of e1, the 
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frequency interval of the multi-solution external disturbance 

force increases, and the vibration behavior of the system be-

comes complex and uncertain. Therefore, in the general me-

chanical structure should try to avoid the existence of too 

small clearance. 

 

Fig. 12 e1 Impact on amplitude frequency characteristics 

 

a 
 

 
 

b 

Fig. 13 Bifurcation characteristics with external disturbing 

forces: a) bifurcation diagram; b) maximum Lya-

punov index 

Fig. 13 shows the bifurcation characteristics of the 

system as the external disturbance force increases when 

e1=4 and e2=3. It can be seen that the system moves period-

ically when the external disturbance force is very small. 

With the increase of the external disturbance force, the vi-

bration behavior of the system gradually diverges from pe-

riodic motion to chaotic motion, and the periodic motion 

and chaotic motion change alternately. When the system 

does periodic motion and period-doubling motion, the cor-

responding maximum Lyapunov exponent is less than or 

equal to 0, and when the system is in chaotic motion, the 

corresponding maximum Lyapunov exponent is less than 0. 

Combined with Fig. 14, we can see that when the external 

disturbance force is 131 N, the system moves periodically, 

the phase trajectory of the system is relatively simple, and 

the Poincare cross-section has only one point. When the am-

plitude of the external disturbance force is 133 N, the system 

does period-doubling motion, the phase trajectory of the 

system is more complex than the periodic motion, and the 

Poincare cross-section shows two points. When the ampli-

tude of the external disturbance force is 136 N, the system 

moves in chaos, the phase diagram trajectory of the system 

is complex, and the Poincare cross section shows many 

points. And with the increase of the amplitude of the exter-

nal disturbance force, the vibration range of the displace-

ment of the system in chaotic motion will also increase, so 

it can be seen that the excessive external disturbance force 

is not conducive to the stability of the system. 

  

a 

   

b 

   

c 

Fig. 14 Phase plane characteristics of the system under dif-

ferent amplitude of external disturbance force:  

a) F=131 N; b) F=133 N; c) F=136 N 

To study the influence of the dynamic gap on the 

bifurcation characteristics of the system with time, it is con-

sidered that the wave momentum of the gap is A*sin(w'*t). 

So, e1=4+A*sin(w'*t); e2=3+A*sin(w'*t), when A=1.5; 

w'=10, the bifurcation characteristics of the system vary 

with the external disturbance force are shown in Fig. 15. By 

comparison with Fig. 13, it can be seen that gap fluctuation 

will increase the frequency range of chaotic motion and the 

amplitude of displacement vibration will also increase.  It 

can be seen that the dynamic fluctuation of the clearance 

will make the vibration behavior of the system in a more 

complex and unpredictable state. 

In order to study the influence of gap fluctuation 

amplitude and frequency on the bifurcation characteristics 

of the system, the bifurcation characteristics of vibration 

displacement with the increase of fluctuation amplitude and 

frequency are simulated and analyzed, as shown in Figs. 16 

and 17. It can be found that with the increase of clearance 

fluctuation amplitude and frequency, the motion state of the 

system gradually changes from periodic motion to chaotic 

motion, the vibration displacement interval gradually in-

creases, and the stability of the system is gradually de-

stroyed. Therefore, the above results show that the static gap 

size and dynamic gap fluctuation of the system are closely 

related to the stability of the system.  The stability of the 

system will be seriously affected if the static clearance is too 

small and the fluctuation amplitude and frequency of the dy-

namic clearance are too large. 
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a 

 

b 

Fig. 15 Bifurcation characteristics with external disturbing 

forces: a) bifurcation diagram; b) maximum Lya-

punov index 

 

a 

 

b 

Fig. 16 Bifurcation characteristics with the variation of 

clearance fluctuation amplitude: a) bifurcation dia-

gram; b) maximum Lyapunov index 

  

a 

 

b 

Fig. 17 Bifurcation diagram with clearance fluctuation fre-

quency: a) bifurcation diagram; b) maximum Lya-

punov index 

4. Research on sliding mode bifurcation control 

Because the sliding mode variable structure control 

can choose the corresponding control rate according to the 

current state of the system, the control for the piecewise sys-

tem has great advantages [18]. However, because the con-

trol rate needs to be switched frequently, the sliding mode 

controller has the disadvantage of chattering. To make up 

for the deficiency of the controller, it is considered to re-

strain the chattering behavior of the system by adding d Dif-

ferential control. Therefore, the combination of sliding 

mode control and Differential control is used to restrain the 

chaotic motion behavior of the system. Fig. 18 is the princi-

ple block diagram of sliding mode variable structure control. 

U+(t)

U-(t)

Differential

Dynamic 
system

Output

Switching rule

 

Fig. 18 Control schematic diagram 

 

To facilitate the design of sliding mode controller, 

the piecewise nonlinear constraint is expressed by two func-

tions: 
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The dynamic equation of the system can be ex-

pressed as follows:  

 

1 ( ) ( , ),m K mx c x k x F F sin wt u x t= − − + + +  (9) 

 

where: u(x, t) is a sliding mode variable structure controller; 

τ is the controller gain coefficient; Fk=Fn/m.  

First, a linear sliding surface is designed: 
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( ) ( ) ( ),s t x t x t= + 0.   Selection index approach rate: 

( ( )) ( ),s sgn s t bs t= − − 0, 0.b    

The derivation of the above formula can be ob-

tained: ( ) ( ) ( ).s t x t x t= + The sliding mode control rate can 

be obtained by combining the above formula, and the con-

trol rate of the Differential control can be expressed as x−  

The control rate of the controller under the combined action 

of sliding mode control and differential control is: 
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4.1 Time domain and frequency domain characteristics of 

the system under differential sliding mode control 

 

The control effect of sliding mode control, differ-

ential control and differential sliding mode control is com-

pared by time domain and frequency domain characteristics， 

the relevant parameters of the controller are as follows: b=6; 

γ=6; δ=1000; τ=0.004; μ=30.  

When the change of clearance is a, observe Fig. 19. 

It can be found that the vibration displacement of the system 

at this time is chaotic, and the vibration amplitude is large, 

the frequency component of the vibration is also very com-

plex, and the probability of triggering resonance is high. 

Fig. 20 shows the displacement curve and spectrum diagram 

of the system vibration when the differential control is in-

troduced. It can be found that the differential controller has 

an inhibitory effect on the vibration amplitude of the system, 

but the frequency component of the system hardly changes.  

 

                       a                                             b 

Fig. 19 Vibration characteristics of the system when no con-

trol is introduced: a) vibration displacement;  

b) spectral diagram 

 

                      a                                               b 

Fig. 20 Vibration characteristics of the system under the ac-

tion of differential control: a) vibration displace-

ment; b) spectral diagram 

 

Fig. 21 shows the introduction of a sliding mode 

controller. The vibration displacement characteristics of the 

system tend to be in a state of periodic motion, and its fre-

quency components become more simple. However, the dis-

placement curve still presents chattering with ups and 

downs, which is not conducive to the stability of the system. 

In order to eliminate chattering phenomenon, differential 

control and sliding mode control are added to the system at 

the same time. As shown in Fig. 22, chattering phenomenon 

of vibration displacement of the system disappears and the 

system is in a state of periodic motion. Therefore, the sliding 

mode variable structure controller combined with the differ-

ential control can effectively suppress the vibration ampli-

tude of the system, reduce the frequency component of the 

system, and effectively improve the stability of the system. 

 

                      a                                              b 

Fig. 21 Vibration characteristics of the system under sliding 

mode control: a) vibration displacement; b) spectral 

diagram 

 

                       a                                              b 

Fig. 22 Vibration characteristics of the system under differ-

ential sliding mode control: a) vibration displace-

ment; b) spectral diagram 

4.2. Bifurcation characteristics of the system under control 

 

a 

 

b 

Fig. 23 Bifurcation characteristics with external disturbance 

force by introducing sliding mode controller: a) bi-

furcation diagram; b) maximum Lyapunov index 
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The effectiveness of the sliding mode controller is 

verified by the bifurcation characteristics, and the relevant 

parameters of the controller are as follows: b=6; γ=6; 

δ=1000; τ=0.002; μ=0.5. Compared with Figs. 15 and 23, it 

is found that after the introduction of the differential sliding 

mode controller, the chaotic state of the system is sup-

pressed with the increase of external disturbance force, and 

the chaotic motion state of the system will appear at about 

20 N, which shows that the controller can effectively im-

prove the stability of the system under external excitation. 

By increasing the influence coefficient of the con-

troller, as shown in Fig. 24, it can be found that the chaotic 

motion interval of the bifurcation characteristics of the sys-

tem under the change of external disturbance force is further 

reduced, and it is periodic motion before the external dis-

turbance force is 90 N. It can be seen that the controller can 

effectively control the chaotic motion of the system. 

 

a 

 

b 

Fig. 24 Bifurcation characteristics with external disturbance 

force by introducing sliding mode controller: a) bi-

furcation diagram; b) maximum Lyapunov index 

5. Conclusions 

In this paper, the mass block system under piece-

wise nonlinear constraints is considered, and the vibration 

dynamic model is established according to the generalized 

dissipative Lagrange principle. The analytical and numeri-

cal solutions of the system are obtained by the averaging 

method and the Runge-Kutta method.  

The influence of the change rate of piecewise non-

linear constraint on the motion state of the system at the 

piecewise critical point is analyzed using time domain char-

acteristics, phase plane characteristics and amplitude-fre-

quency characteristics, it is found that the reverse of the 

piecewise nonlinear constraint change rate will make the vi-

bration velocity of the system fluctuate sharply, the phase 

trajectory changes obviously, and the amplitude jump phe-

nomenon exists at the piecewise critical place, which is not 

conducive to the normal operation of the mechanical sys-

tem. Therefore, the reverse change rate of Piecewise nonlin-

ear elastic force is avoided as far as possible, and the rela-

tionship between piecewise nonlinear constraint parameters 

is obtained, which provides a theoretical basis for improving 

the stability of the system.  

The effect of the number of nonlinear constraints 

on the vibration characteristics of the system is studied.  It 

is found that with the increase of the number of piecewises, 

the frequency component of the system becomes more com-

plex, the displacement curve tends to be chaotic, and the 

time-frequency characteristics change more violently.  Be-

cause of its susceptibility to resonance, the system should be 

subject to a single constraint as far as possible.  The results 

show that the smaller the static clearance is, the larger the 

instability frequency interval is.  The dynamic change of the 

gap will increase the frequency range of chaotic motion, ex-

pand the range of vibration displacement, and aggravate the 

unpredictable chaotic state of the system.  With the increase 

of clearance fluctuation amplitude and frequency, the vibra-

tion behavior of mechanical system becomes complicated 

and unstable.  It can be found that the static gap size, dy-

namic gap fluctuation amplitude and frequency are nega-

tively correlated with the system stability. 

A differential sliding mode controller is used to 

control the vibration characteristics of the system, and the 

effects of differential control, sliding mode control and dif-

ferential sliding mode control on the vibration characteris-

tics of the system are compared and analyzed.  The results 

show that the introduction of differential sliding mode con-

troller can effectively suppress the chaotic motion of piece-

wise constrained systems with dynamic gaps. It provides a 

theoretical reference for vibration behavior control of piece-

wise constrained systems with dynamic gaps. 
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F. Liu, S. Xu, Z. Tang, Q. Ma 

NONLINEAR VIBRATION CHARACTERISTICS AND 

CONTROL OF A CLASS OF PIECEWISE 

CONSTRAINED SYSTEMS WITH DYNAMIC GAPS  

S u m m a r y 

Considering the mass block system under Piece-

wise nonlinear constraint, the vibration dynamic model of 

the system is established according to the generalized dissi-

pative Lagrange principle, and the average method is used 

to solve the amplitude-frequency response of the vibration 

system. The influence of system parameters on vibration 

characteristics is analyzed with amplitude-frequency char-

acteristics, phase plane characteristics, frequency character-

istics, bifurcation characteristics, and so on. The results 

show that: 1) the reverse of the rate of change of Piecewise 

nonlinear elastic force will destroy the stability of the sys-

tem and obtain the relationship of the constraint parameters 

that need to be satisfied when the system is stable at the 

piecewise critical point; 2) With the increase in the number 

of nonlinear constraints, the vibration displacement of the 

system tends to be chaotic, and the frequency composition 

becomes more complex and variable, prone to resonance be-

havior; 3) As the static gap decreases and the dynamic gap 

amplitude and frequency increase, the unstable frequency 

range of the system will increase, and the vibration behavior 

will become chaotic and difficult to predict; 4) The design 

of a differential sliding mode controller can effectively con-

trol the bifurcation behavior of the system. 
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