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1. Introduction 

In modern industrial production, rotatory machin-

ery is developing towards large, continuous, highly inte-

grated, automated and high power. The complexity of the 

equipment, the degree of association between individual de-

vices is also increasing. Although modern machinery has 

greatly improved production efficiency, the maintenance 

costs have greatly increased, and the loss caused by equip-

ment failure has also skyrocketed [1,2]. Due to the high ro-

tating speed and tremendous momentum of the rotor, the 

centrifugal force may lead to the loose or flying apart of the 

rotor parts, which brings a great threat to the operation 

safety of the equipment. The fault usually causes damage to 

multi-stage stationary and non-stationary blades or impel-

lers. This type of fault could lead to high maintenance costs 

and significant economic loss. However, the capture of the 

early symptoms of rotor faults is relatively difficult and has 

become a worldwide challenge in the field of prognostics. 

In order to master the equipment operation status and avoid 

accidents, advanced condition monitoring and fault diagno-

sis technologies need to be researched and applied to detect 

early faults and avoid malignant accidents, and to funda-

mentally solve the problem of under-maintenance and over-

maintenance that often occurs in the current regular mainte-

nance for the rotatory machinery [3]. 

For the study of condition monitoring and fault di-

agnosis of rotor components of the large rotating machinery, 

the method of rotor component condition monitoring is 

studied from a methodological point of view to obtain the 

correct sensitive signal; the failure mechanism of rotor com-

ponents is studied to explore the new method of fault diag-

nosis feature information extraction to achieve accurate and 

sufficient fault feature information from the monitoring sig-

nal; with the support of the fault case library, the fault infor-

mation library and the diagnosis knowledge library, the in-

tegrated method of multi-physical quantity integrated fault 

diagnosis based on pattern recognition method is researched 

to achieve fault identification and decision making [4]. The 

development of rotor component fault diagnosis technology 

for rotating machinery is roughly divided into three stages. 

In the initial stage, the signals generated by the rotor opera-

tion are mainly monitored by the ap-plication of detection 

instruments, the sensors monitor the raw signals, and the 

display instruments show the time domain signal waveforms 

and spectrum conversion results, without other analysis 

functions. In the middle stage, the rotating machinery rotor 

parts diagnosis technology has been developed into detec-

tion instrumentation equipped with simple monitoring sig-

nal analysis devices; the instruments used are mainly spec-

trum analyzers, and manual judgment is required for the di-

agnostic decision due to poor automation. At present, fault 

diagnosis systems have been widely used in computer mon-

itoring and intelligent diagnosis systems, using modern de-

vices that can realize real-time monitoring and automatic 

judgment [5,6]. 

In this paper, based on the importance of the cur-

rent research on fault diagnosis methods for rotor compo-

nents of rotatory machinery, data sources and data forms are 

introduced in Chapter 2; Chapter 3 is the data processing 

procedure, in which Section 3.1 introduces the data pre-pro-

cessing method based on mechanism analysis, Section 3.2 

introduces the CEEMD method and presents the results on 

feature extraction; Chapter 4 presents the analysis and dis-

cussion of the results. 

2. Introduction of vibration data of rotating  

machinery 

The dataset in this paper is from the prognosis da-

taset of the rotor parts fly-off from the Industrial Big Data 

Challenge 2019 (http://www.industrial-bigdata.com).  

There are five units' data in the provided dataset, 

including two failed units (M1 and M2) which are within six 

months prior to the occurrence of the rotor component dis-

lodgement failure, and the other three units (M3, M4 and 

M5) which have not experienced such failures at least one 

year after the data were obtained. Among them, the data of 

each unit contains five stages, a, b, c, d and e, indicating 

different times near to the occurrence of the fault, as shown 

in Table 1. In alphabetical order, "a" indicates that the data 

is collected near the time of the fault, and "e" indicates that  
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Table 1 

Vibration displacement data 

Unit Near to fault     Fault development      Far from fault 

M1 M1a M1b M1c M1d M1e 

M2 M2a M2b M2c M2d M2e 

M3 M3a M3b M3c M3d M3e 

M4 M4a M4b M4c M4d M4e 

M5 M5a M5b M5c M5d M5e 

 

the data were collected far from the fault occurred. The data 

in each stage contains radial, axial and custom directions, 

and hundreds of data are collected in each direction, and 

1024 vibration displacement values and corresponding fre-

quency and speed information are obtained in each acquisi-

tion. 

3. Procedure of data processing 

3.1. Data pre-processing based on mechanism analysis 

In the processing industry, mechanical equipments 

are always in operation, and are influenced by external fac-

tors, so the direct processing and fault diagnosis of vibration 

displacement sensor data have certain errors. Through the 

mechanism analysis, the dimensionless index characteristics 

are selected as the more suitable parameters to describe the 

operation of mechanical equipments [7]. Among them, the 

dimensionless index parameters include the shape indicator, 

the impulse indicator, the clearance indicator, the crest indi-

cator, the kurtosis indicator, etc., which have the following 

advantages. 

1. The dimensionless indicators fully reflect the 

fault state. 

2. The dimensionless indicators are not affected by 

the absolute level of the vibration signal. 

3. Failures with multiple defects coexisting have an 

insignificant effect on dimensionless indicators. 

4. The working conditions, loads, and rotational 

speeds have essentially no effect on the dimensionless indi-

cators [8]. 

According to the form of vibration displacement 

data, the data categories are roughly divided, namely: M1a-

M1d and M2a-M2d are fault data, M1e, M2e, M3, M4 and 

M5 are normal data. And the common testing direction of 

each unit is selected in the dataset; six directions such as the 

joint-end X, the joint-end Y, the non-link-end X, the non-

link-end Y, the shaft displacement A and the shaft displace-

ment B are selected for the subsequent study. The character-

istic parameters of rotor working conditions for each period 

of each unit are extracted and counted, and the maximum 

value of rotor speed and fluctuation amplitude are listed for 

horizontal and vertical comparison, and the results are 

shown in Table 2. From Table 2, the following two conclu-

sions can be drawn. 

1. The different speed ranges of mechanical equip-

ments of different units indicate that there are differences in 

the operating conditions. 

2. When the same unit of mechanical equipments 

is in different periods, there are differences in speed.  

From this, it is inferred that each unit of equip-

ments may be in different operation stages, which needs to 

be analyzed by combining characteristic quantities such as 

frequency and amplitude. From data visualization, i.e., three 

aspects of the time series data  visualization,  the  frequency  

Table 2  

Rotor condition data of each unit in each period 

 Maximum 

speed (r/min) 

Minimum 

speed (r/min) 

Speed differen-

tial (r/min) 

M1a 5876 4899 977 

M1b 5787 4913 874 

M1c 6069 6069 0 

M1d 5451 4898 553 

M1e 5379 5649 270 

M2a 9415 9203 212 

M2b 9311 8990 321 

M2c 8729 2 8727 

M2d 8723 8691 32 

M2e 2 2 0 

M3a 994 993 1 

M3b 995 994 1 

M3c 994 993 1 

M3d 995 994 1 

M3e 995 994 1 

M4a 5579 5556 23 

M4b 5592 5496 96 

M4c 5583 5570 13 

M4d 5601 5595 6 

M4e 5590 5564 26 

M5a 2970 2970 0 

M5b 2970 2970 0 

M5c 2970 2970 0 

M5d 2970 2970 0 

M5e 2970 2970 0 

 

domain data visualization, and the speed-frequency visuali-

zation, all the sampled data are depicted in the same figure 

to synthesize the equipment operation dynamic graph, as 

shown in Fig. 1.  

From Fig. 1, a, the amplitude fluctuates within a 

small range with 0 as the reference, and the rotational speed 

is approximately 3300 r/min, so this stage is classified as the 

rotational speed sensing fault stage. From Fig. 1, b, the am-

plitude still fluctuates within a small range with 0 as the ref-

erence, and there is still a certain rotational speed, so this 

stage is classified as the sensing zero drift stage. From 

Fig. 1, c, the amplitude gradually increases from 0, and the 

rotational speed also gradually increases from 0 to 

9000 r/min, so this stage is the start-up stage. And from 

Fig. 1, d, the amplitude basically stabilizes, and the speed 

and frequency also fluctuate normally within a certain 

range, so this stage is the effective smooth stage. 

The analysis can divide each unit into three stages, 

i.e., the shutdown stage, the start-up stage, and the running 

stage. Vibration displacement data can be divided into four 

data types, i.e., the speed sensing fault, the sensing zero 

drift, the start-up phase, and the effective smooth phase. The 

specific data distribution is shown in Table 3. Among them, 

Type 1 represents the tacho-sensor fault stage, Type 2 rep-

resents the sensing zero-point drift stage, Type 3 represents 

the start-up stage, Type 4 represents the effective smooth 

stage, and "-" represents the marginal invalid data. The data 

from the effective smooth stage are selected for subsequent 

extraction of information from dimensionless statistical fea-

ture values as new feature covariates to expand the data di-

mension and prevent the occurrence of overfitting. 

3.2. Data processing based on CEEMD 

By adding N pairs of noise of the opposite sign to  
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Fig. 1 Data visualization of running condition: a – speed sensor failure, b – sensor zero drift, c – startup stage, b – effective 

stabilization stage 
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Table 3 

The distribution of vibration displacement data 

No. Stage Joint-end X Joint-end Y Non-link-end X Non-link-end Y Shaft A Shaft B 

1 M1a 4 4 4 4 4 4 

2 M1b 4 4 4 4 4 4 

3 M1c 1 1 1 1 1 1 

4 M1d 4 4 4 4 4 4 

5 M1e - - - - - - 

6 M2a 4 4 4 4 4 4 

7 M2b 4 4 4 4 4 4 

8 M2c 3 3 3 3 3 3 

9 M2d 4 4 4 4 4 4 

10 M2e 2 2 2 2 2 2 

11 M3a 4 4 4 4 4 4 

12 M3b 4 4 4 4 4 4 

13 M3c - - - - - - 

14 M3d 4 4 4 4 4 4 

15 M3e - - - - - - 

16 M4a 4 4 4 4 4 4 

17 M4b 4 4 4 4 4 4 

18 M4c 4 4 4 4 4 4 

19 M4d 4 4 4 4 4 4 

20 M4e - - - - - - 

21 M5a 1 1 1 1 1 1 

22 M5b 1 1 1 1 1 1 

23 M5c 1 1 1 1 1 1 

24 M5d 1 1 1 1 1 1 

25 M5e 1 1 1 1 1 1 

the original signal,  CEEMD  effectively  avoids  the  modal 

mixing phenomenon and has the advantages of small recon-

struction error and high operational efficiency compared to 

the traditional signal processing method, namely EMD [9]. 

3.2.1. Fundamentals of EMD and CEEMD 

The purpose of EMD is to obtain the IMF, which 

enables the decomposition of complex signals into a finite 

number of IMFs, and the individual IMF components of the 

decomposition contain the local characteristic signals of the 

original signal at different time scales [10]. EMD enables 

the non-smooth data to be smoothed, and then Hilbert trans-

form is performed to obtain a time-frequency spectrum to 

obtain physically meaningful frequencies. It has the ad-

vantage that it does not use any defined function as a sub-

strate, but it adaptively generates IMF according to the sig-

nal under analysis, and it can be used to analyze nonlinear, 

non-stationary signal sequences [11]. The EMD algorithm 

can decompose the original signal continuously to obtain the 

IMF components under certain conditions [12]. However, 

IMF decomposition suffers from the phenomenon of modal 

conflation, i.e., an IMF will contain feature components 

with different time scales. On the one hand, it is due to the 

signal itself, and on the other hand, it is the defect of the 

EMD algorithm itself. Therefore, there is a lot of room for 

improvement in traditional EMD.  

CEEMD adds a set of standard white noise signals 

with the same amplitude and 180° phase difference to the 

original signal decomposition, and then performs EMD de-

composition of the signal, and sums the modal components 

of different groups of white noise and calculates their aver-

age values, using the result as the new modal components. 

The efficiency of the signal decomposition calculation has 

improved [13]. Specific steps are as follows. 

1. A pair of standard white noises with the same 

amplitude and 180° phase difference is added to the original 

signal X(t) to obtain two new signals x1(t), x2(t). 

2. EMD decomposition is performed on x1(t) and 

x2(t), each signal is decomposed to obtain a set of modal 

components, the average value of each set of modal compo-

nents is calculated to obtain IMF1 and IMF2, and then the 

average value is solved to obtain the final IMF components. 

3.2.2. Vibration displacement data processing methods 

based on EMD and CEEMD 

The vibration displacement data of the above ef-

fective smooth-running stage are selected, processed by 

EMD and CEEMD respectively, and the corresponding 

IMFs and residual component images are plotted. In this pa-

per, the data on the X-direction of the joint end of the rotat-

ing machinery M1-M5 are selected for the presentation of 

the results, as shown in Fig. 2. 

From Fig. 2, it can be obtained that IMF compo-

nents obtained from the decomposition of the CEEMD 

method are clearer and more intuitive than those obtained 

from the decomposition of the EMD method, which decom-

poses complex data into simpler directions and facilitates 

the extraction of data information. Therefore, the CEEMD 

method is selected for data processing. After that, the corre-

lation heatmap of IMF is used to extract the dimensionless 

statistical characteristics of the first three components with 

larger correlation coefficients, so as to expand the data di-

mension and subsequently put them into the machine learn-

ing model for training and classification discrimination. 

3.2.3. IMF component correlation determination and data 

feature extraction 

The dataset of rotor vibration displacement con-

tains information that is not relevant to the normal operation  
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a 

 

b 

Fig. 2 Processing results for first 30-week data in the Joint-

end X direction: a – EMD processing results,  

b – CEEMD processing results 

of the rotor. In order to reduce the redundancy of data and 

avoid the interference of redundant information, it is neces-

sary to remove false IMF components and extract feature 

vectors that are relevant to the normal operation of the me-

chanical equipment rotor, which are usually taken by the 

methods of principal component analysis [14] and Shannon 

entropy method. In this paper, the correlation coefficient 

method is used to remove the redundant components, which 

are visually represented by the correlation heatmap [15]. 

The sequence x and y correlation coefficients are 

calculated as follows. 

xy

cov( x, y )
P

( D( x ) D( y ) )
= , (1) 

where: Pxy is the correlation coefficient, cov(x, y) is the co-

variance of x and y, and D(x) and D(y) are the variances of 

x and y respectively. The closer the correlation coefficient 

Pxy is to 1, the larger the correlation; the closer the correla-

tion coefficient is to 0, the smaller the correlation. The 

heatmap of the correlation of IMF components is shown in 

Fig. 3. 

 

Fig. 3 IMF component correlation heatmap 

From Fig. 3, the colors from dark to light represent 

the correlation of the components with the original signal 

from high to low, respectively. The top 3 feature compo-

nents with higher correlations are selected to extract their 

dimensionless statistical feature indicators, namely: the 

shape indicator, the impulse indicator, the clearance indica-

tor, the crest indicator, the kurtosis indicator and the skew-

ness indicator, respectively, to expand the original data di-

mension, add labels and then put into the machine learning 

model for classification training. 

3.2.4. Comparative analysis for EMD and CEEMD 

EMD can handle nonlinear and non-smooth signals 

adaptively, with a high signal-to-noise ratio and good time-

frequency focus. However, there are problems with under-

envelope or over-envelope, and modal aliasing during IMF 

decomposition; while CEEMD uses a relatively small num-

ber of integrated averaging times by adding N pairs of noise 

of the opposite sign, and the spectral leakage problem and 
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modal aliasing effect are weakened, while saving computa-

tion time and the computational efficiency is improved. 

Therefore, this paper adopts the CEEMD method to analyze 

and process the vibration displacement data of rotating ma-

chinery. 

3.3. Construction and evaluation of machine learning  

models 

3.3.1. Introduction to principle of support vector machine 

classification model 

Support Vector Machines (SVM) is a classification 

model whose basic model is an interval-maximizing linear 

classifier defined on a feature space, the interval maximiza-

tion distinguishes it from a perceptron; SVM also introduces 

kernel functions, which make it a substantially nonlinear 

classifier [16]. The learning strategy of SVM is interval 

maximization [17], which can be formalized as a problem 

of solving convex quadratic programming, which is also 

equivalent to the problem of minimizing the loss function of 

a regularized hinge. The learning algorithm of SVM is an 

optimization algorithm for solving convex quadratic pro-

gramming [18]. 

For a nonlinear classification problem in the input 

space, it can be transformed into a linear classification prob-

lem in some dimensional feature space [19] by a nonlinear 

transformation to learn a linear SVM in a high-dimensional 

feature space. Since both the objective function and the clas-

sification decision function in a pairwise problem learned 

by a linear SVM involve only the inner product between in-

stances [20], it is not necessary to explicitly specify the non-

linear transformation, but to replace the inner product 

among them with a kernel function. The kernel function is 

expressed as the inner product between two instances via a 

nonlinear transformation [21]. Specifically, K(x, z) is a func-

tion, or positive definite kernel, implying the existence of a 

mapping (x) from the input space to the feature space [22], 

for any x, z in the input space, with 

( ) ( ) ( ),K x z x z = •  (2) 

In the pairwise problem learned by the linear SVM, 

the kernel function K(x, z) is used to replace the inner prod-

uct and the solution is obtained as a nonlinear SVM [23] as 

follows. 

( ) * *

1

sign ( , )
N

i i i
i

f x y K x x b
=

 
= + 

 
  (3) 

3.3.2. Introduction of classification model result evaluation 

index 

When performing SVM classification tests, it is 

difficult to get a correct assessment of the algorithm's effec-

tiveness by using only one metric for the processing of the 

results. Therefore, four metrics such as accuracy, precision, 

recall and F1-score are generally used [24]. The definitions 

are as follows. 

1. True Positive (TP): True positive measures the 

extent to which the model correctly predicts the positive 

class. That is, the model predicts that the instance is positive, 

and the instance is actually positive. 

2. True Negative (TN): True negatives are the out-

comes that the model correctly predicts as negative. 

3. False Positive (FP): False positives occur when 

the model predicts that an instance belongs to a class that it 

actually does not. False positives can be problematic be-

cause they can lead to incorrect decision-making. 

4. False Negative (FN): A false negative occurs 

when a model predicts an instance as negative when it is 

actually positive. 

In the confusion matrix of Table 4, 1 represents the 

positive class and 0 represents the negative class [25]. 
 

Table 4 

Confusion matrix  

  Predicted Total 

  1 0  

Actual 
1 TP FN Actual Positive 

0 FP TN Actual Negative 

Total 
 Predicted 

Positive 

Predicted 

Negative 

TP + FN + FP + TN 

 

In this paper, the accuracy score, the precision 

score, the recall score and the F1-score are used to describe 

the results of the proposed approach. 

1. The accuracy score is a machine learning classi-

fication model performance metric that is defined as the ra-

tio of true positives and true negatives to all positive and 

negative observations. In other words, accuracy tells us how 

often we can expect our machine learning model will cor-

rectly predict an outcome out of the total number of times it 

made predictions. 

 ( ) ( )/= + + + +Accuracy TP TN TP FN TN FP  (4) 

2. The precision score is a useful measure of the 

success of prediction when the classes are very imbalanced. 

Mathematically, it represents the ratio of true positive to the 

sum of true positive and false positive. 

 ( )/  = +Precision TP FP TP  (5) 

3. The recall score is often used in conjunction with 

other performance metrics, such as precision and accuracy, 

to get a complete picture of the model’s performance. Math-

ematically, it represents the ratio of true positive to the sum 

of true positive and false negative. 

 ( )/Recall TP FN TP= +  (6) 

4. The F1-score represents the model score as a 

function of precision and recall score. Mathematically, it 

can be represented as a harmonic mean of precision and re-

call score. 

 ( )1 2  /=   +F Precision Recall Precision Recall  (7) 

3.3.3. Results of SVM model for vibration displacement 

data 

The vibration displacement data of the effective 

smooth phase after the EMD decomposition process men-

tioned above were put into the SVM classification model for 

training and prediction, and the results were evaluated using 

the evaluation indexes mentioned above, as shown in Table 

5. The vibration displacement data of the effective smooth 
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phase after the above CEEMD decomposition process were 

put into the SVM classification model for training and pre-

diction, and the results were evaluated using the above eval-

uation indexes, as shown in Table 6. 
 

Table 5 

EMD results of SVM model 

Evaluation index Value 

Accuracy score 0.974256 

Precision score 0.969450 

Recall score 0.992451 

F1-score 0.980814 
 

Table 6 

CEEMD results of SVM model 

Evaluation index Value 

Accuracy score 0.981634 

Precision score 0.978564 

Recall score 0.993102 

F1-score 0.985780 
 

From Table 5 and Table 6, we can be obtained the 

CEEMD method can better comply with the trend of vibra-

tion data. It can be more accurate to make classification 

judgment, for rotor fault detection of rotating machinery, 

with high practical application value [26]. 

3.4. Discussion 

In this paper, the effectiveness of the proposed 

method is verified on a turbine data set. However, the 

CEEMD method is suitable for fault diagnosis of a wider 

range of rotating machinery equipment with nonlinear and 

non-stationary characteristics. Therefore, we expect to ap-

ply this method to more fault diagnosis applications of ro-

tating machinery equipment in the future. 

4. Conclusion 

In this paper, the vibration displacement data of the 

rotor part of large rotating machinery are selected and stud-

ied in two aspects: data pre-processing and vibration signal 

processing. The data pre-processing part is combined with 

the operation mechanism of rotating machinery to select ef-

fective data for feature extraction; the vibration signal pro-

cessing part adopts the comparison method of EMD and 

CEEMD to decompose the intrinsic mode function. By ex-

tracting the information of dimensionless statistical indica-

tors in the components, CEEMD can determine whether the 

mechanical rotor malfunctions in operation more accurately, 

which is of high application value for rotor component fault 

diagnosis of rotating machinery. 

The classification model composed by SVM in this 

paper has high accuracy and good generalization ability to 

determine and classify mechanical rotor faults, which can 

effectively determine the occurrence of faults in mechanical 

rotors. Compared with other classification models, SVM has 

higher accuracy, which makes it more suitable for the prac-

tical application of rotor fault diagnosis in mechanical 

equipments. 
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L. Zhang, S. Yu, G. Guo, B. Gong 

A FAULT DIAGNOSIS APPROACH FOR ROTATING 

MACHINERY ROTOR PARTS BASED ON 

EQUIPMENT OPERATION PRINCIPLE AND CEEMD 

S u m m a r y 

Aiming at the problem of fault diagnosis of rotor 

parts of large rotating machines, a fault diagnosis approach 

based on the equipment operation principle and the Comple-

mentary Ensemble Empirical Mode De-composition 

(CEEMD) method is proposed. First, the vibration displace-

ment data of the rotor in each direction during the operation 

of rotating mechanical equipments are pre-processed; then, 

the vibration data, in the effective smooth operation stage 

based on the equipment operation principle, are selected for 

Empirical Mode Decomposition (EMD) and CEEMD anal-

ysis methods to evaluate the equipment operation status; fi-

nally, vibration data are analyzed to extract dimensionless 

statistical indicators by the Intrinsic Mode Function (IMF) 

component. The effectiveness of the proposed approach is 

verified by the prognostic dataset of rotor parts fly-off in the 

Industrial Big Data Challenge 2019. From the experimental 

result, fault diagnosis of rotor components of large rotating 

machinery is successfully realized by establishing the pro-

posed approach. 

Keywords: fault diagnosis, rotor parts fly-off, equipment 

operation principle, Complementary Ensemble Empirical 

Mode Decomposition (CEEMD), Industrial Big Data Chal-

lenge 2019. 
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